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Abstract: Vinyl Benzoate/Heptadecafluorodecyl acrylate (VBe/HFDA) co-polymers were
synthesized and characterized as thickening agents for supercritical carbon dioxide (SC-CO2).
The solubility and thickening capability of the co-polymer samples in SC-CO2 were evaluated
by measuring cloud point pressure and relative viscosity. The molecular dynamics (MD) simulation
for all atoms was employed to simulate the microscopic molecular behavior and the intermolecular
interaction of co-polymer–CO2 systems. We found that the introduction of VBe group decreased the
polymer–CO2 interaction and increased the polymer–polymer interaction, leading to a reduction
in solubility of the co-polymers in SC-CO2. However, the co-polymer could generate more
effective inter-chain interaction and generate more viscosity enhancement compared to the
Poly(Heptadecafluorodecyl) (PHFDA) homopolymer due to the driving force provided by π-π
stacking of the VBe groups. The optimum molar ratio value for VBe in co-polymers for the viscosity
enhancement of SC-CO2 was found to be 0.33 in this work. The P(HFDA0.67-co-VBe0.33) was able to
enhance the viscosity of SC-CO2 by 438 times at 5 wt. %. Less VBe content would result in a lack
of intermolecular interaction, although excessive VBe content would generate more intramolecular
π-π stacking and less intermolecular π-π stacking. Both conditions reduce the thickening capability
of the P(HFDA-co-VBe) co-polymer. This work presented the relationship between structure and
performance of the co-polymers in SC-CO2 by combining experiment and molecular simulations.

Keywords: supercritical CO2; shale gas; thickening agent; co-polymer; molecular simulation

1. Introduction

Supercritical carbon dioxide (SC-CO2) has been applied in many industrial processes due to its
good diffusion, heat transfer and mass transfer properties. In unconventional oil and gas exploitation,
CO2 has been recognized as clean fracturing fluid, which has strong width generation capability [1,2].
SC-CO2 does not damage the reservoir and possesses obvious technical advantages for the stimulation
of low permeability and water-sensitive reservoir compared to hydraulic fracturing. In addition, CO2

is easier to flow back and could replace the natural gas adsorbed in the reservoir [3,4]. The practices
of the United States and Canada showed that the stimulation effect of CO2 fracturing was especially
excellent for shale gas reservoirs [5]. However, the low viscosity of SC-CO2 has limited its capability
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of exporting the proppants into the reservoir fractures to support the oil–gas pathway [6]. Therefore,
thickening SC-CO2 is essential in improving the technology for the sand fracturing of SC-CO2 [7].
The viscosity enhancement of CO2 could improve its proppant exporting performance and reduce its
filtration into the reservoir [4].

Due to the low solubility of polymer in CO2, thickening CO2 using polymers was very difficult.
The good solubility of polymer in SC-CO2 is reflected by the CO2-philic group, low surface tension [8]
and low glass transition temperature (Tg) [9,10] generally. Tapriyal et al. found that the charge deviation
and quadrupole moment allows CO2 to play the roles of both electron-accepting Lewis acid and
electron-donating Lewis base, which provides it with the ability to interact with specific groups (such
as fluorine, carbonyl, carboxyl, etc.) [11]. For example, the hydrogen bond and electron donor–acceptor
interaction (EDA) between CO2 and carbonyl group was believed to improve the solubility of materials
in SC-CO2 [12,13]. Wallen et al. demonstrated that, except for the Lewis Acid–Lewis Base (LA–LB)
interaction between the carbon of CO2 and oxygen of carbonyl in the CO2-carbonyl compound systems,
there is a cooperative C–H···O interaction which is worth considering in the design of CO2-philic
materials [14–16]. The CO2-soluble polymers were generally recognized as containing CO2-philic
groups with high free volume, low solubility parameters and low glass transition temperatures [17–20].

Beckman et al. put forward the argument that specialized thickeners should be synthesized rather
than testing a huge number of commercial polymers [21]. Researchers have explored methods to
enhance the CO2-philicity by modifying polymers with specific groups [22–24]. Due to the strong
LA–LB interaction between F and C of CO2, fluoropolymer has high solubility in CO2, but does not
enhance the viscosity of CO2 significantly, which may due to the weak polymer–polymer interaction.
It was believed that the co-polymer obtained from the combination of a CO2-philic monomer and
CO2-phobic monomer could generate inter-chain associations to thicken CO2 by hydrogen bonds,
solvo–phobic or van der Waals interactions [25]. It may be an effective strategy to modify the
CO2-philic polymer by introducing a CO2-phobic group in the molecular design of thickening agents
for SC-CO2 [26–28]. Enick et al. have synthesized P(HFDA-co-St) co-polymers as thickening agents
and the experimental results showed that the co-polymers could thicken CO2 effectively [4,6].

The exploitation of new functional polymer for thickening CO2 requires clear knowledge of the
effect of molecular structure on performance. It is difficult to obtain the correction by experiments
due to the huge cost of time and economy. Molecular simulation has been used to reveal microscopic
structure and intermolecular interactions of the polymer–CO2 system. Johnson et al. have calculated
the interaction between CO2 and polymer repeat units by ab initio calculation, but the calculation
results were inconsistent with the experimental results. The reason is that the model does not
consider the influences of temperature and polymer–polymer interactions [29,30]. Compared to
the ab initio calculation, the molecular dynamics simulation (MD) for all atoms is more suitable for the
polymer–CO2 system and the results are more credible. Liu and Sun have explored the correlation
of co-polymer structure with its solubility by MD simulations and obtained good results [31–34].
The microscopic information of the polymer–CO2 system could be used to provide guidance for the
exploitation of polymer thickeners. To date, little research about the thickening capability of polymer
in SC-CO2 simulated by the all-atom MD has been reported as far as we know.

This paper aims to provide insights into the role of intermolecular interactions in the solubility
and thickening capability of π-stacked co-polymers by experiments and molecular simulation. Four
co-polymers with different compositions were synthesized and characterized. The solubility and
thickening capability of the co-polymers in SC-CO2 were evaluated by cloud point pressure and
relative viscosity measurement experiments. By investigating the co-polymer–CO2 interaction energy,
equilibrium conformations and radial distribution functions (RDFs), microscopic structure and
intermolecular interaction of co-polymer–CO2 systems were explored. The relationships of the
co-polymer structure and composition with the solubility and thickening capability were revealed.
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2. Methodology

2.1. Synthesis and Characterization

2.1.1. Materials

The materials used in this work were vinyl benzoate (VBe, 99.5%, Alfa Aesar, Heysham, UK),
3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl acrylate (HFDA, 98%, Alfa Aesar, Heysham,
UK), 2,2′-Azobisisobutyronitrile (AIBN, 99%, Aladdin Industrial Corporation, City of Industry, CA,
USA), 1,1,2-Trichlorotrifluoroethane (99.5%, Aladdin Industrial Corporation, City of Industry, CA,
USA), Methanol (99.9%, Aladdin Industrial Corporation, City of Industry, CA, USA) and Chloroform-d
(99.8%, Alfa Aesar, Heysham, UK). AIBN was recrystallized twice before use.

2.1.2. Preparation of Co-Polymer

The Vinyl benzoate/Heptadecafluorodecyl acrylate (VBe/HFDA) co-polymer was synthesized
with AIBN as the initiator according to the procedure shown in Scheme 1 [35–37]. Two monomers
were mixed together in a glass ampoule. AIBN (1.0 mol % relative to monomers) was added as
a free radical initiator. The ampoule was sealed under reduced pressure and the polymerization
was carried out at 60 ◦C for 24 h after the oxygen was removed. The product was dissolved in
1,1,2-trichlorotrifluoroethane and then purified twice in methanol. After this, the product collected and
dried under vacuum. The co-polymers synthesized were named P(HFDAx-co-VBey), ‘x’ is the molar
ratio of HFDA and y is the molar ratio of Vinyl Benzoate.
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Scheme 1. Synthetic procedure of the P(HFDA-co-VBe) co-polymer, where x: the molar ratio of HFDA
and y: the molar ratio of VBe.

2.1.3. Nuclear Magnetic Resonance (NMR) Spectroscopy

1H-NMR spectrum of the co-polymer was recorded by Bruker 400 MHz Nuclear Magnetic
Resonance Spectrometer (Bruker, Karlsruhe, Germany) with 1,1,2-tritriuorotrichloroethane and
Chloroform-d used as the solvent at 20 ◦C. The spectra were used to analyze the co-polymerization
ratio. The co-polymerization ratio of the two monomers was obtained by the integral relative intensity
of the chemical shifts of the H atoms belonging to different characteristic proton groups [32–36].

2.1.4. Differential Scanning Calorimetry

To evaluate the chain flexibility, glass transition temperature of the co-polymers as measured
using the Mettler-Toledo Differential Scanning Calorimeter (Mettler Toledo, Zurich, Switzerland)
under the N2 atmosphere. The heating rate and the cooling rate were 10 ◦C/min [22–24]. Each sample
was measured three times, taking the average of the last two as the result.

2.1.5. Molar Mass Analysis

Six solutions with different concentrations of the co-polymer sample was dissolved in
1,1,2-trichlorotrifluoroethane, before being filtered through a 0.8-µm filter. The absolute refractive index
increments of co-polymer sample, dn/dc, were determined by the Optilab rEX extended differential
refractive index detector, while the molar mass of the co-polymer sample was measured by Static
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Light Scattering (SLS) with Wyatt DAWN HELEOS Multi-Angle Laser Light Scatter (Wyatt Technology,
Santa Barbara, CA, USA). The light scattering data was measured through a fixed 18-angle detector
display simultaneously [38–44].

2.1.6. Surface Tension Measurements

The surface tension of the co-polymers was determined to evaluate the polymer–polymer
interactions. The solution of polymer with 1,1,2-trifluorotriochloroethane was spin-coated on a glass
substrate at a rotational speed of 2000 rpm. A homogeneous polymer film was obtained after drying.
The contact angles of water–polymer and hexadecane–polymer were measured by DSAHT Contact
Angle Meter (KRÜSS GmbH, Hamburg, Germany). After this, the surface tension of the co-polymers
was calculated by the two-liquid method to evaluate the polymer–polymer interaction [36,45–47].

2.2. Cloud Point and Viscosity Measurements

The core part used for cloud point and viscosity measurements was the high temperature and
high pressure visual unit, which is shown in Scheme 2. The visual windows were made of quartz glass
and the supporting pressure is 30 MPa. The temperature was controlled by oil bath. The volume of the
unit could be changed by moving the piston, which had a moving distance that was determined by
displacement meter.
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Scheme 2. High-temperature and high-pressure visual unit used for cloud point and viscosity
measurements.

The polymer–CO2 mixture was stirred for 30 min to form a homogeneous system after being
heated to the desired temperature, before the piston was moved to bring the system to the desired
pressure. The polymer–CO2 system was a single phase under the initial conditions after having
achieved phase equilibrium. After this, the piston was moved slowly to increase the volume of the
unit under constant temperature, before decreasing the pressure until mist appeared. The pressure at
which the mist appeared exactly was the cloud point pressure [48,49]. The phase transitions of the
CO2–polymer system under a constant temperature were shown in Figure 1. The cloud point pressure
was determined by repeating three measurements.
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Figure 1. The phase transitions of supercritical CO2–polymer system under constant temperature,
(a) single phase (above cloud point); (b) the appearance of the mist (cloud point); and (c) two phase
(below cloud point).

The pitching device at the top of the device could put aluminum ball into the visual unit. At the
pressures above the cloud point pressure, the process of aluminum ball passing through the visual
windows was captured by the high-speed camera at 2000 frames per second and used for the viscosity
calculation. The viscosity of CO2 and polymer–CO2 mixture were calculated by Equation (1) under the
pressures above the cloud point pressure [50,51]:

η =
t(1− ρl/ρs)

A[1 + 2α(T − Tr)][1− 2β(P− Pr)]
, (1)

where α and β are the thermal expansion coefficient and the compression coefficient of the visual unit;
Tr and Pr are the reference temperature and pressure; ρl and ρs are the density of the solution and the
ball respectively; t is the settling time; and A is the apparatus constant.

The ratio of the CO2–polymer viscosity to the CO2 viscosity at the same temperature and
pressure, which is also known as the relative viscosity was used to evaluate the viscosification of the
co-polymer [21]. The relative viscosity was obtained by Equation (2):

Relative viscosity = ηmix/ηCO2 , (2)

where ηmix is the viscosity of the CO2–polymer mixture and ηCO2 is the viscosity of CO2.

2.3. Molecular Dynamics Simulation

Two types of systems, which are namely the system with eight chains of co-polymer as well
as the co-polymer–CO2 system with eight chains of co-polymer and 2000 molecules of CO2, were
simulated by the Material Studio 7.0 (MS) package. All the force-field parameters of CO2 and polymers
were determined by the COMPASS force-field. Firstly, HFDA and VBe repeat units were established.
Four molecular modelings of P(HFDA-co-VBe) random co-polymers were constructed with different
molar ratios of HFDA to VBe. PHFDA homopolymer was constructed with HFDA repeat units. The
molecular modeling of P(HFDA-co-VBe) co-polymer is shown in Scheme 3.

Then, CO2 and polymer molecules were optimized by the Smart Minimizer of the Discover
module. After this, the systems were constructed by the Amorphous Cell module. This module makes
the boxes have periodic boundary conditions and constructs quasi-infinite system to represent the
macro system precisely. The different systems simulated are shown in Table 1.
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Scheme 3. The molecular modeling of P(HFDA-co-VBe) co-polymer.

Table 1. The systems simulated by all-atom molecular dynamics.

Run System Mn of One
Chain

Number
of Chains

Number of HFDA
Units in One Chain

Number of VBe
Units in One Chain

Number
of CO2

1 CO2+PHFDA 3630 8 7 0 2000
2 CO2+P(HFDA0.87-co-VBe0.13) 3777 8 7 1 2000
3 CO2+P(HFDA0.67-co-VBe0.33) 3555 8 6 3 2000
4 CO2+P(HFDA0.50-co-VBe0.50) 3333 8 5 5 2000
5 CO2+P(HFDA0.29-co-VBe0.71) 3556 8 4 10 2000
6 PHFDA 3630 8 7 0 0
7 P(HFDA0.87-co-VBe0.13) 3777 8 7 1 0
8 P(HFDA0.67-co-VBe0.33) 3555 8 6 3 0
9 P(HFDA0.50-co-VBe0.50) 3333 8 5 5 0

10 P(HFDA0.29-co-VBe0.71) 3556 8 4 10 0

Five cycles of annealing calculation from 300 to 500 K was calculated by Anneal in the Forcite
module to delay the systems. The optimized conformation of co-polymer–CO2 system is shown in
Figure 2.
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while polymer chain was marked as ball and stick figure).

The MD simulation with 2000 ps was carried out in the NPT (constant-pressure,
constant-temperature) ensemble at 25 MPa and 308.2 K. The electrostatic interactions were calculated
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using the Ewald summing algorithm and the van der Waals interactions were calculated using the
atom-based summation. The time step was 1 fs and the frame output interval was 5000 ps. Andersen
method was used for the temperature control and Berendsen method was used for the pressure
control [33,34]. The final 500 ps equilibrium conformations were used for data analysis.

3. Results and Discussion

3.1. Synthesis and Characterization

The experimental results of the synthesis and physical properties of the co-polymer samples
are shown in Table 2. With the enhancement of the molar ratio of VBe, the surface tension and
glass transition temperature increased gradually. The molar mass measurement results showed that
the differences of molar mass between the co-polymer samples were small, so the effects of molar
mass on cloud point pressure and viscosification were not considered in this paper. The co-polymer
compositions were determined by comparing the peak intensities of phenyl protons at 6.8 and 7.1 ppm
(a and b) and methylene protons at 1.9 ppm (h). Taking the spectrum of P(HFDA0.87-co-VBe0.13) shown
in Figure 3a as an example, the chemical shift of the H atoms in HFDA group at the point h was in the
range of 1.8–2.0 ppm, while the chemical shift of the H atoms in VBe group at the point a and b was
in the range of 6.5–7.2 ppm. The integral relative intensity of the peaks of h to a + b, was equal to the
molar ratio of the two groups, which was HFDA/VBe = x:y = h/2:(a + b)/5 = 0.87:0.13 [32–36]. The
co-polymerization ratios of the other co-polymers were obtained by the same method, which is shown
in Figure 3b–d.

Table 2. Experimental results for the synthesis and physical properties of the co-polymers.

Run Sample Mw (g/mol) a Composition b Feed Ratio Tg (◦C) c
γ (mN/m−1) d

HFDA:VBe HFDA:VBe

1 P(HFDA0.87-co-VBe0.13) 152,100 87:33 85:15 52.6 27.4
2 P(HFDA0.67-co-VBe0.33) 145,600 67:33 70:30 55.4 29.7
3 P(HFDA0.50-co-VBe0.50) 142,900 50:50 50:50 58.1 32.5
4 P(HFDA0.29-co-VBe0.71) 150,400 29:71 30:70 62.8 35.8

a Measured with Wyatt DAWN HELEOS Multi-Angle Static Light Scattering Scatter; b Determined by 1H-NMR
using Bruker-400 MHz NMR; c Measured by Mettler-Toledo Differential Scanning Calorimeter; d Determined by
contact angle measurements of water-polymer and hexadecane-polymer with Krishna DSAHT Contact Angle Meter.

3.2. Solubility of Co-Polymers in SC-CO2

The cloud point pressure of the co-polymer–CO2 solution with mass concentration at 308.2 K and
temperature at 1 wt. % of concentration are shown in Figure 4. As observed in Figure 4a, the cloud
point pressures of the co-polymers gradually enhanced with an increase in the mass concentration.
The cloud point curves also reflected the influence of the VBe molar ratio on cloud point pressures.
With an increase in the molar ratio of VBe, the cloud point pressures of the co-polymers increased
rapidly. It seemed that the VBe content had greater effect than the mass concentration in determining
the solubility of the co-polymers. The cloud point pressure of the co-polymers increased with an
increase in temperature, which is shown in Figure 4b. With the temperature rose from 308.2 K to
328.2 K, the cloud point pressures of the four co-polymers were found to increase by about 5 MPa
equivalently. Obviously, the temperature has a significant effect on the solubility of the co-polymers in
SC-CO2. This may be related to the change of CO2 properties caused by the change in temperature.
When the temperature rose, the density and dielectric constant of CO2 decreased, so its dissolubility
decreased [52]. To counteract the downfall of CO2 dissolubility, the pressure must be increased to
enhance the co-polymer–CO2 interactions, which helped to balance the intermolecular interactions in
the solutions [53].
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The radial distribution function (RDF) is a common function used to study the microstructures
and evaluate the intermolecular interactions, which refers to the spherically symmetric distribution
probability of other particles in a space centered on a given particle. This can be calculated as
follows [54,55]:

gαβ(r) =
V

NαNβ

〈
Nα

∑
i=1

niβ(r)
4πr2∆r

〉
, (3)

where gαβ(r) is the value of radial distribution function, Nα is the number of α particles; Nβ is the
number of β particle; V is the volume of box simulated; and niβ(r) is the number of β particles in the
space of (r, r + ∆r) centered on α particles.

Solvation plays an important role in controlling the solubility of polymer in SC-CO2 [56]. The
solvation behavior of the polymer in SC-CO2 depends on the relative strength of the solute-solvent



Polymers 2018, 10, 268 9 of 16

interaction to the solvent-solvent interaction [57]. The enrichment or dispersion of CO2 around the
polymer would determine the tendency of the polymer to gather or disperse in CO2 [58]. Intermolecular
RDF has been used to evaluate the miscibility of polymer–solvent systems by investigating the solvation
behavior. If the RDF values of atom pairs between polymer and solvent are greater than or almost
equal to those of polymers, indicating the richness of the solvent around the polymer, the polymer
would dissolve easily and may exhibit good solubility in the solvent [19,59,60]. The RDF statistical
results for the C of the polymer–C of the polymer and C of the polymer–C of CO2 are shown in Figure 5.
For the system of P(HFDA0.87-co-VBe0.13)-CO2, the RDF curve of C of the polymer–C of CO2 was
almost equal to that of C of the polymer–C of the polymer as observed in Figure 5a. For the other
three co-polymers, the RDF curves of C of the polymer–C of CO2 became significantly lower than
that of C of the polymer–C of the polymer as shown in Figure 5b–d. With an increase in VBe content,
the curve gaps between C of the polymer–C of CO2 and C of the polymer–C of the polymer increased
gradually. The RDF results showed that the co-polymers with lower VBe content were more likely to
be surrounded and solvated by CO2, thus indicating that they were more soluble in CO2.
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Figure 5. Intermolecular RDFs of the carbon-carbon pairs of polymer–polymer and
polymer–CO2. (a) P(HFDA0.87-co-VBe0.13); (b) P(HFDA0.67-co-VBe0.33); (c) P(HFDA0.50-co-VBe0.50);
(d) P(HFDA0.29-co-VBe0.71).

Generally speaking, the solubility of polymers in SC-CO2 is dominated by polymer–CO2

interactions, polymer–polymer interaction and chain flexibility. The CO2-soluble polymers have strong
polymer–CO2 interaction and weak polymer–polymer interactions, which is reflected by low surface
tension. In addition, the high chain flexibility results in the polymers exhibiting the high entropy
of mixing in CO2, which is reflected by the low glass transition temperature (Tg). The experimental
results in Table 2 showed that with an increase of the molar ratio of VBe, the surface tension and Tg

increased gradually, which indicated that the enhancement of polymer–polymer interaction and the
decrease of chain flexibility. The polymer–CO2 interaction strength could be characterized by the
interaction energy quantitatively, with a greater absolute value of the interaction energy indicating a
stronger polymer–CO2 interaction. The interaction energies of co-polymer–CO2 and PHFDA–CO2

were examined by MD. As shown in Table 3, the interaction energy of PHFDA–CO2 was significantly
greater than those of the four co-polymers. The interaction energy of co-polymer–CO2 trended
downward along with the VBe molar ratio. This indicated that the import of VBe weakened the
co-polymer–CO2 interaction.
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Table 3. Absolute value of the interaction energy between polymer chains and CO2 at 308.2 K and
25 MPa (energy unit: kJ/mol).

Run System Echain−CO2 Echain ECO2 Einter

1 CO2+PHFDA 4341.63 1357.22 1556.01 1428.40
2 CO2+P(HFDA0.87-co-VBe0.13) 3986.58 1089.34 1698.63 1198.61
3 CO2+P(HFDA0.67-co-VBe0.33) 3643.29 773.12 1805.42 1064.75
4 CO2+P(HFDA0.50-co-VBe0.50) 3327.36 680.63 1718.76 927.98
5 CO2+P(HFDA0.29-co-VBe0.71) 3438.42 769.19 1960.29 708.4

In summary, with an increase in VBe content, the co-polymer–CO2 interaction energy decreased,
the polymer–polymer interaction enhanced, the chain flexibility declined and resulted in unfavorable
entropy of mixing, which resulted in a decrease the co-polymer solubility and an increase in the cloud
point pressure of the co-polymer–CO2 system.

3.3. Thickening Capability of Co-Polymers in SC-CO2

The variations of the relative viscosity of the co-polymer–CO2 solutions against mass
concentration at 308.2 K and 30 MPa were used to evaluate the viscosification, which is shown
in Figure 6. This indicated that all the co-polymers could thicken SC-CO2 and the thickening capability
increased with greater mass concentration. Unlike the solubility, the thickening capability did not vary
with the VBe molar ratio linearly with a maximum occurring at 33.0 mol %. The P(HFDA0.67-co-VBe0.33)
could enhance the viscosity of SC-CO2 by 438 times at 5 wt. %. The P(HFDA0.87-co-VBe0.13) with lower
content of VBe did not enhance the viscosity of SC-CO2 significantly, while the thickening capabilities
of P(HFDA0.29-co-VBe0.71) and P(HFDA0.50-co-VBe0.50) with higher content of VBe were also limited.
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concentration.

Figure 7a,b showed the relative viscosity of co-polymer–CO2 solution with 2 wt. % of
concentration versus temperature at 30 MPa and versus pressure at 35 ◦C, respectively. As shown
in the figure, the relative viscosity diminished with an increase in temperature, although this was
enhanced with an increase in pressure. With an increase in temperature, the dissolubility of CO2

decreased, the co-polymer chains crimped, and the size of hydrodynamics became smaller, so the
degree of intermolecular association decreased, leading to a decrease in thickening capability. At higher
pressures, the solubility parameter and dissolubility of CO2 was enhanced [52,53], and the co-polymer
chains were more stretched in solution, with the larger hydrodynamic size allowing the generation of
stronger thickening capability through more intermolecular association.
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To understand the thickening capability of the co-polymers intuitively, the equilibrium
conformations of the co-polymers and the PHFDA in SC-CO2 obtained by molecular dynamics
simulation were analyzed. As shown in Figure 8, there was no effective aggregation between the
polymer chains for the PHFDA. The co-polymers containing VBe groups exhibited aggregation
between polymer chains in different levels. It may be inferred that PHFDA lacked the basic power
of triggering intermolecular association due to the weak polymer–polymer interaction, while the
VBe group in the co-polymers could provide the driving power. The most obvious intermolecular
association was initiated by P(HFDA0.67-co-VBe0.33), which formed effective molecular aggregates.
The P(HFDA0.87-co-VBe0.13) with lower VBe content exhibited less inter-chain aggregation compared
to P(HFDA0.67-co-VBe0.33). It was inferred that its poor thickening capabilities rooted in the lack
intermolecular aggregation was due to the shortage of VBe groups. However, the excess of VBe groups
would generate more intramolecular π-π stacking and a decrease in intermolecular π-π stacking,
just as the equilibrium conformations shown in Figure 8. Therefore, the thickening capabilities of
P(HFDA0.50-co-VBe0.50) and P(HFDA0.29-co-VBe0.71) with higher VBe content were not as good as
P(HFDA0.67-co-VBe0.33). In this work, 33.0 mol % of VBe content of the co-polymer was the optimum
value for generating the strongest intermolecular association and thus the best thickening performance.
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Figure 8. Equilibrium conformations of five CO2–polymer systems at 308.2 K and 25 MPa. All the CO2

molecules were deleted to highlight the polymer chains (lower) and the specific functional groups and
backbones (upper).

The peak position and peak value of the radial distribution function could indicate the strength of
the inter-group interaction indirectly. A smaller peak position and higher peak value represented the
stronger interaction strength. Intermolecular RDFs for C-C pairs of the VBe groups and F-F pairs of
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the HFDA groups were used to further investigate the microstructure of the four co-polymer–CO2

systems quantitatively, with the results shown in Figure 9. As shown in Figure 9a, the distance of
the RDF curves that achieved the values of greater than zero was about 2.9 Å. This indicated that the
intermolecular interactions of VBe groups in the co-polymers were dominated by van der Waals forces.
The RDF values and positions of the peaks were significantly different for the four polymer–CO2

systems. The RDF curve peak of P(HFDA0.67-co-VBe0.33) was the highest, while a peak appeared at the
distance of 4.9 Å. The RDF curve peak heights of P(HFDA0.87-co-VBe0.13) and P(HFDA0.50-co-VBe0.50)
were almost the same, but the peak of the former appeared at 10.7 Å, which was farther away than the
6.5 Å of the latter. No peak could be observed in the RDF curve of P(HFDA0.29-co-VBe0.71), which had
the smallest RDF value. As shown in Figure 9b, all the curves showed similar trend and no obvious
peak was observed. This indicated that the intermolecular interaction between HFDA groups in
co-polymer was not strong enough to generate effective intermolecular associations. It may be related
to the strong electronegativity and fluorine repulsion of F atoms in the HFDA group. By comparing
the data in Figures 5 and 9, it is not difficult to find that intermolecular aggregation occurs between
the VBe groups not between HFDA groups. According to the results of experiments and simulations,
the thickening capabilities of the co-polymers in SC-CO2 should be attributed to the π-π stacking of
VBe group.
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4. Conclusions

Four P(HFDA-co-VBe) co-polymers with different compositions were synthesized and evaluated.
The molecular models of co-polymer–CO2 systems were established to study the molecular behaviors
and intermolecular interactions by the all-atom MD simulation. We found that the π-π stacking of the
VBe group played a decisive role in thickening SC-CO2. The solubility of the co-polymers decreased
with an increase in VBe content, while the thickening capability did not vary with the VBe molar
ratio linearly. The relative viscosity of the co-polymers reached its maximum of 438 at a VBe molar
ratio of 33.0% in this work. Less VBe content resulted in the lack of intermolecular π-π stacking,
while excessive VBe content generated more intramolecular π-π stacking and less intermolecular π-π
stacking. This work provided the molecular insights into the relationship of co-polymer structure
with the activity by the study of intermolecular interactions. The thickening capability of ternary
co-polymer or polymer surfactant in SC-CO2 will be discussed in future studies.
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