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Abstract: The overall performance of an electrostrictive polymer is rated by characteristic numbers,
such as its transverse strain, blocking force, and energy density, which are clearly limited by several
parameters. Besides the geometrical impact, intrinsic material parameters, such as the permittivity
coefficient as well as the Young’s modulus and the breakdown electric field, have strong influences
on the actuation properties of an electroactive polymer and thus on the device’s overall behavior.
As a result, an analysis of the figures of merit (FOMs) involving all relevant material parameters
for the transverse strain, the blocking force, and the energy density was carried out, making it
possible to determine the choice of polymer matrix in order to achieve a high actuator performance.
Another purpose of this work was to demonstrate the possibility of accurately measuring the free
deflection without the application of an external force and inversely measuring the blocking force
under quasi-static displacement. The experimental results show good electrostrictive characteristics
of the plasticized terpolymer under relatively low electric fields.

Keywords: electrostrictive unimorph cantilever; deflection; blocking force measurement; actuators;
material optimization; figure of merit

1. Introduction

Electrostriction is a common phenomenon encountered in dielectric materials placed under the
influence of an external electrical field; it consists of the generation of stress and strain [1–3]. Normally,
any dielectric material is electrostrictive by nature, but strain/stress effects are more pronounced in
some materials [4]. Among them, polymers are an interesting class due to their flexibility, light weight,
and high permittivity, leading to the generation of considerable strain, which can be very promising in
various actuator applications, like micro-pumps [5], haptic devices [6], smart guidewires for medical
instruments [7], and so on. Nevertheless, the electrical fields required to reach significant deformations
are relatively high (hundreds of V/µm) [8]. For this reason, researchers are currently focusing on the
synthesis of new polymers with enhanced electrostrictive properties, making it possible to drastically
reduce the applied electric fields [9,10]. Other alternative strategies leading to drastically enhanced
electromechanical performances of the electroactive materials are also being investigated, such as
the use of a model of swollen elastomers based on interpenetrating networks which contains certain
instabilities [11], or by conducting microstructure compositions by means of numerical simulation
with the aid of both idealized and periodic models [12].
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As recently reported [13], one of the simplest practical techniques is to incorporate a plasticizer
into the existing polymer matrix. Excellent results in terms of the transverse strain as well as the energy
density under a very low electric field have been achieved. An essential step of such an approach
is to be able to compare the performance of different materials in order to find the best chemical
composition. Such a comparison should be based on a standard method that can be widely applied
to any kind of electroactive polymer, leading to a simple way of choosing an adequate actuator for a
specific application. This issue should be particularly considered in the material optimization phase,
but unfortunately, there is no mention of it in the literature. For instance, the strain versus electric
field for a polymer is generally used to evaluate the actuator’s quality. However, this criterion is far
from sufficient as the polymer film can display extremely large deformations but may be very soft,
resulting in undesirable effects like buckling or poor mechanical coupling that deteriorate the device’s
performance. Another approach found in the literature revolves around the actuation behavior of an
electroactive polymer, principally depending only on the electrostrictive coefficient [14,15]. For the
same reason, this criterion was not suitable for all actuator applications. Accordingly, in addition to
analyses on the strain response and electrostrictive coefficient, other material parameters, like the
Young’s modulus, the electric field limit, etc., should be discussed, so as to find a good trade-off
between force and strain characteristics in order to achieve appropriate actuator behaviors.

Based on the above arguments, this paper reports on a simple method for assessing the
electroactive material properties based on various characteristics, such as the force, the strain, and/or
the energy density. In other words, the proposed method aims to integrate different materials in a
particular actuator and to measure its effectiveness by means of defined standard criteria for the figures
of merit (FOMs). The study also explains that the characteristics are strongly affected by intrinsic
material parameters, including the permittivity and the Young’s modulus as well as the electrical
breakdown. Another objective of this paper was to provide an efficient technique for accurately
measuring the blocking force under a quasi-static regime. The precision of the force measurement
clearly depends on the type of load cell as well as on the manner in which it is installed on the actuator.
Due to these reasons, empirical force measurements are quite challenging and rarely reported in the
literature, even though they are considered to be some of the most important factors reflecting the
actuation performance of an electroactive polymer. Indeed, a performance actuator is not only qualified
by how much displacement it can achieve but also how much load it can exert. As a result, this paper
proposes a general method for evaluating the electroactive characteristics based on the FOMs of force,
strain, and energy density, making it much easier to compare different kinds of materials.

This paper is organized as follows: Section 2 aims to provide a method based on figures of merit
that embraces the material parameters that affect their behavior. Other issues related to the electrical
breakdown as well as a selection of polymer matrixes are also discussed. Section 3 is dedicated to
the actuator’s preparation and the test bench setup, followed by experimental results described in
Section 4. Finally, the conclusion and future works are presented in Section 5.

2. Method for Achieving High Material Performances

2.1. Figures of Merit Based on an Electrostrictive Material Model

The well-known model for an electrostrictive material can be written as follows [16]:{
S31 = M31E2 + sET31
D31 = εE + 2M31ET31

(1)

where S is the strain, T is the stress, D is the electric displacement, E is the electric field, M is the
electrostrictive coefficient, s is the compliance, and ε is the permittivity of the polymer.

It is noteworthy that S31 denotes the transverse strain corresponding to the ratio of change in the
length of the sample (direction of axis 1) under an applied electric field along the thickness direction
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(axis 3). A similar explanation can be made for other parameters, like T31 and D31. Figure 1 illustrates
the direction of the applied electric field as well as the deformation.
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Figure 1. Principle schematic of the electrostrictive actuation.

Without stress (i.e., for T31 = 0), the electrostrictive transverse strain under an electric field can be
simplified as [17]:

S31 = M31E2 (2)

where the electrostrictive coefficient, M31, depends on the permittivity and the Young’s modulus of the
material, as expressed in Equation (3):

M31 ∝
ε0εr
Y

(3)

Here, εr is the relative permittivity of the polymer and ε0 is the vacuum permittivity.
From Equations (2) and (3), it is noteworthy that the resulting strain under a constant electric field

can be enhanced by either increasing the permittivity or decreasing the Young’s modulus. Therefore,
the FOM of the strain is defined by

FOMstrain =
ε0εr
Y

(4)

Substituting S31 = 0 in Equation (1) yields:

T31 = YM31E2 (5)

Combining Equations (3) and (5) makes it possible to induce the FOM of the blocking force for a
given electric field

FOMforce = ε0εr (6)

Again, the above equation demonstrates a further advantage of increasing the permittivity in
order to achieve a better actuation performance.

Besides the strain and the blocking force, another critical parameter also affecting the
electromechanical coupling of the polymer is the mechanical energy density (Wm) which is given by
the following expression [13]:

Wm =
1
2

YS2
31 (7)

Substituting Equation (2) into (7) yields:

Wm =
1
2
(ε0εr)

2

Y
E4 (8)
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Finally, the FOM of the mechanical energy density can be defined as:

FOMenergy =
(ε0εr)

2

Y
(9)

In actuator applications based on electroactive polymers, the strain response, the blocking force,
and the mechanical energy density under a low electric field can be simultaneously enhanced by
increasing the dielectric permittivity of the polymer. For a better electromechanical coupling, especially
in low-frequency actuator applications, a decrease in the Young’s modulus should be involved but
it must be limited in order not to drastically change the elasticity or the compliance of the material.
Figure 2 summarizes the FOM of an electrostrictive actuator based on three critical parameters
comprising the strain response, the blocking force, and the mechanical energy density.
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2.2. Electrical Breakdown

An ideal electrostrictive material does not only have a high figure of merit, but also an electrical
breakdown that occurs when the dielectric strength of the material is exceeded. In practical situations,
each material has its ideal electric field for operation that directly affects the limits of the strain range.

To better clarify these issues, we here introduce three different kinds of composites, i.e., a pure
polymer and two modified polymers (A and B) possessing higher electrostriction coefficients than the
pure polymer but with different electric field breakdowns. Figure 3 illustrates the linear relationship
between the strain and the electric field square for these three composites, where the slope of each
curve represents the electrostriction coefficient, M31. As observed, the M31 value of sample A is higher
than for the other samples, leading to a better strain response for a given electric field. Nonetheless,
its electrical breakdown is relatively low, drastically reducing the strain range and, as a result, limiting
the electromechanical conversion. This kind of material is suitable for applications where a low input
voltage is mandatory. The pure material, on the other hand, exhibited a large range of electrical
breakdown but had a quite poor electrostrictive property and required an enormously high input
voltage to attain satisfactory strain.

Sample B seemed to be a good compromise between the electrostrictive behavior and the electrical
breakdown limit. However, we cannot conclude that this material is the most appropriate choice in
any practical application, nor that material A, with its higher electrostrictive coefficient, would be.
Again, it should be kept in mind that the choice of each material is strongly affected by the intended
use. For a better improvement in the electromechanical properties, it is important to ensure a fair
balance between the various parameters, including the strain, the blocking force, the electric field
range, etc. The weight given to each criterion effectively depends on the application area as the final
purpose is not only to achieve the greatest electrostrictive behavior, but also to have a reasonable
electric field range.
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Finally, this paper proposed to compare the characteristics of different electrostrictive materials to
those of a standard material (e.g., the pure polymer). All criteria should be based on the FOMs of the
strain, the blocking force, and the energy density as well as the allowable maximal voltage imposed by
the final application.

2.3. Selection of a Polymer Matrix

In this section, we justify how to choose an electroactive material suitable for an actuation
application based on several criteria presented previously. As reported in [18], the main drawback of
most electrostrictive polymers and dielectric elastomer actuators is their high electric field requirement,
i.e., in the 1 kV range. To overcome this limitation, a recent innovative solution reported by
Capsal et al. [13] involved enhancing the electromechanical performance of a P(VDF-TrFE-CTFE)
fluorinated terpolymer by doping it with a plasticizer (e.g., DEHP or DEIP), giving rise to a decreased
Young’s modulus and an increased dielectric permittivity of the material [19]. This simple chemical
modification made it possible to achieve excellent electrostrictive strain with an electric field of around
5.5 times lower than that required with a conventional terpolymer.

Table 1 depicts the characteristics of different electroactive polymers, including the modified
terpolymer and conventional polymers. It is clear that the modified terpolymer presented excellent
results in terms of force, strain and mechanical energy density, with its figures of merit largely superior
to those of the other polymers. On the other hand, the breakdown field of the modified sample was
limited at around a hundred V/µm, but this is generally sufficient for most actuation applications
where the input voltage must be restricted. Finally, using a simple method of adding a reasonable
quantity of plasticizer into the terpolymer matrix, the novel material invented by [13] allowed a
five-fold increase in dielectric permittivity and a three-fold decrease in the Young’s modulus, making
it one of the best candidates for actuator applications with an exceptional electromechanical response.

Table 1. Characteristics of different electroactive polymers.

Type PDMS [20] PU [21] Nylon [22] Neat Terpol [13] Modif. Terpol [13]

εr @ 1 Hz 2.5 4.3 5 35 150
Y (MPa) 2 20 2000 100 30

FOMenergy (F2/N) 2.44 × 10−28 0.72 × 10−28 0.01 × 10−28 9.58 × 10−28 586 × 10−28

FOMforce (F/m) 2.21 × 10−11 3.80 × 10−11 4.42 × 10−11 30.9 × 10−11 133 × 10−11

FOMstrain (Fm/N) 1.11 × 10−17 0.19 × 10−17 0.22 × 10−19 0.31 × 10−17 4.42 × 10−17

Breakdown field (V/µm) 200 50 30 150 140

PDMS: Polydimethylsiloxane; PU: Polyrethane; FOM: Figure of Merit.

To better assess the performance of the plasticized polymer, the mechanical properties
characterizing the material rupture based on the stress/strain behavior, along with the electrical
breakdown as a function of the input electric field, were investigated. It is shown in Figure 4 that the
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modified sample gives rise to a higher critical strain level, which is in agreement with the fact that
the Young’s modulus of the neat terpolymer is superior to the modified one. The results in Figure 5,
on the other hand, showed the limitations of the modified polymer, in which the probability of material
breakdown is more significant, compared to the pure polymer under the same electric field. Figure 6
highlighted the dependence of the material’s thickness on the breakdown probability. As expected,
the modified sample with the smallest thickness of 25 µm led to the highest allowable electrical field,
justifying the choice of this configuration in the next study. Accordingly, the plasticized terpolymer
seems to be very promising for flexible actuator devices where a low input voltage is needed. Finally,
the electrical and mechanical properties can be imperative factors that may limit or promote future
applications of material design.
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In the following sections, the modified terpolymer was chosen to assess the electrostrictive
performance based on the criteria described above. Comparison of the FOMs of force, strain,
energy density as well as the electric field range of this polymer and other former materials were
also investigated.
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3. Fabrication Process and Characterization Test Bench

3.1. Sample Preparation

As the manufacturing of electroactive polymer devices is quite simple, there are many possibilities
for sample’s fabrication available. The most commonly used configuration consists of a top metallic
layer, an adhesive layer, and finally, a polymer layer. Electroactive polymer devices also vary in
shape and thickness, which may lead to different behaviors that are strongly affected by the boundary
conditions [4,23]. Also, the type of mounting conditions highly influences the resonant frequency and
the electromechanical coupling.

This paper describes the use of a new all-organic composite, proposed by Capsal et al. [19].
It consists of a P(VDF-TrFE-CTFE) 56.2%/36.3%/7.5% terpolymer powder, provided by Piezotech S.A.S
(Arkema group, Lyon, France). Films were made by solution casting. Firstly, the terpolymer was
dissolved in a 14%wt. Methyl Ethyl Ketone (MEK, Sigma–Aldrich, Paris, France) solvent. The solution
was then cooled at room temperature for 2 h. Secondly, (2-ethylhexyl) phthalate (DEHP, Sigma–Aldrich)
was added into the polymer matrix and stirred for 1 h. The mixture was then cast onto a glass substrate
using a Doctor blade (Elcometer, Manchester, UK), and the solvent was left to evaporate. The films
were subsequently placed in an oven at 60 ◦C for 12 h to ensure that the solvent was completely
removed. In order to enhance the crystallinity of the samples, annealing at 103 ◦C occurred for one
hour. Lastly, a Cressington Sputter Coater (208 HR, Orlando, FL, USA) deposited 25 nm-thickness gold
electrodes on each side of the plasticized terpolymer film with 25 µm of thickness.

To prepare the electroactive composite actuator, a sheet of the P(VDF-TrFE-CTFE) composite
was cut into two strips of 40 mm × 10 mm. A PolyEthylene Terephthalate substrate (PET) with the
same dimensions as the polymer film was prepared and an adhesive layer was then applied between
the terpolymer and the Mylar substrate. The PET was chosen due to its interesting characteristics,
like flexibility, simple implementation, commercially available, and low cost. In addition, it is widely
used as a substrate in various printed electronics. These features are very interesting for applications
of printing multilayer design which aim to reduce the power supply voltage.

Finally, the assembly was pressed to increase the interfacial bonding between the active layer and
the substrate. Figure 7 illustrates the fabrication procedure of the bender actuators. This actuator fabrication
process was relatively simple compared to that of carbon nanotube Buckypaper actuators [24].



Polymers 2018, 10, 263 8 of 15
Polymers 2018, 10, 262 8 of 16 

 

 

Figure 7. Fabrication process of a P(VDF-TrFR-CTFE) composite actuator. 

3.2. Experimental Setup of the Actuation Test 

This section deals with the influence of a measurement apparatus on the results. For complete 
characterization of the actuator, the displacement as well as the generated force must be measured. 

By definition, “free stroke” is the actuator’s displacement under zero external load [25]. 
Measurements of the “free stroke” are considered to be the most elementary of the actuation 
characteristics. However, depending on the boundary conditions, results may vary greatly. 
Cantilever measurements under no load present no difficulty, but for unimorph actuators, several 
factors need to be taken into account. Holding the active parts of the actuator will lead to slightly 
different results than if the inactive part is held, and this also depends on where and how the actuator 
is held. For instance, it is usually specified that the unimorph should be held at a particular distance 
from the edge of the actuator, as the displacement of an electroactive actuator depends upon the 
applied voltage, frequency, and force. 

Displacement measurements are quite simple, as the problem is simply to accurately measure 
the motion of a specified point on the actuator. Transducer accuracy can vary from quite coarse (e.g., 
mechanical dial gauges with 0.025 mm precision) to extremely fine (e.g., laser interferometers with 
high resolution in the micrometer range) and the choice is largely dependent on experimental needs 
and cost. The instrument must be mounted to limit vibration and minimize interference with actuator 
motion and environment, but these mechanical limitations can be readily overcome. In our case, the 
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3.2. Experimental Setup of the Actuation Test

This section deals with the influence of a measurement apparatus on the results. For complete
characterization of the actuator, the displacement as well as the generated force must be measured.

By definition, “free stroke” is the actuator’s displacement under zero external load [25].
Measurements of the “free stroke” are considered to be the most elementary of the actuation
characteristics. However, depending on the boundary conditions, results may vary greatly. Cantilever
measurements under no load present no difficulty, but for unimorph actuators, several factors need to
be taken into account. Holding the active parts of the actuator will lead to slightly different results than
if the inactive part is held, and this also depends on where and how the actuator is held. For instance,
it is usually specified that the unimorph should be held at a particular distance from the edge of the
actuator, as the displacement of an electroactive actuator depends upon the applied voltage, frequency,
and force.

Displacement measurements are quite simple, as the problem is simply to accurately measure
the motion of a specified point on the actuator. Transducer accuracy can vary from quite coarse
(e.g., mechanical dial gauges with 0.025 mm precision) to extremely fine (e.g., laser interferometers
with high resolution in the micrometer range) and the choice is largely dependent on experimental
needs and cost. The instrument must be mounted to limit vibration and minimize interference with
actuator motion and environment, but these mechanical limitations can be readily overcome. In our
case, the system was mounted on top of the Iso-Plate Passive Isolation System to dampen vibrations
in the room. The tip displacement was measured using the non-contact laser sensor (Microtrak II;
MTI Instrument, Inc., Berling, Germany). The contact-type instrument was not employed in our device
in order to limit inertial effects that may distort the measurements. Furthermore, it was difficult to
estimate how the developed forces changed with the presence of an extra mass, particularly when
its amplitude depended on the contact type and was evaluated as a function of time. The situation
became even more complicated when the frequency was varied.

In contrast to the displacement measure, the cantilevered blocked force measure is much more
difficult. Indeed, the accuracy of the force measurement largely depends on the range and resolution
of the load cell as well as its integration on the actuator. For this reason, when selecting an actuator, the
manner in which the force is measured becomes an issue. The results can be very dissimilar between
load cell configurations. Consequently, the conditions surrounding the force measurement and its
experimental setup should be well defined. For instance, a definition of cantilevered blocked force is
the force observed on a gauge when holding the tip of the actuator during energizing [26].
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It is noteworthy that integrating the load cell may produce the inertial effect on the actuator. In our
case, this phenomenon can be discarded since the system operated under relatively low frequencies.
In fact, the operating frequency range was selected in such a way that the inertial force was negligible
compared to the actuator’s force, allowing simplification of the interpretation and the performance
analysis. Another difficulty regarding force measurement devices stems from the fact that it is not
possible to accurately operate without restricting the motion of the actuator. Indeed, a load cell can only
move a very short distance over its full measuring range, e.g., 25.4 µm to 100 µm for the FC-22 load
cell. Hence, the device must be able to measure the actuator’s force over the full range of displacement
without biasing the result, with the force needed to move the device itself. In our case, a Transducer
Techniques GSO-10 10 g load cell with a TMO-1 signal conditioner/amplifier was employed since this
sensor has a high sensitivity and a large frequency bandwidth.

Finally, in the experimental design for force–displacement measurements of an electroactive
polymer actuator, the requirement for adequate equipment was not a trivial problem. Figure 8
shows the essential components of the test bench, including the developed actuator, the load cells
allowing the measurement of the blocking force for extremely low displacements of the sample, and
the displacement transducers fastened to the upper end of the actuator which made it possible to
measure the motion of the bender. To improve the precision of the force measurement, the load cell
was mounted on the carriage of a screw-driven slide, making it possible to accurately determine the
relative positions of the load cells and the polymer based on the slide’s scale and the graduated dial.
The input voltage was generated from the NI 9263 output analog card and was then amplified by
a high voltage amplifier (Treck 609D-6 Lockport, NY, USA). The signal was applied to the actuator
through the set of compliant electrodes mounted on the fixture base. All the data were monitored with
LabVIEW software, Paris, France.
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4. Results and Discussions

This section describes a set of experiments conducted on actuators made from the neat and
DEHP-plasticized terpolymer P(VDF-TrFE-CTFE). In order to assess the performance of these
electrostrictive polymers, the electromechanical response was measured as a function of different
stimuli under very low frequency. As mentioned above, working at a low frequency made it possible
to enhance the accuracy of the force and strain measurements. Another purpose was the extremely
high permittivity of the modified terpolymer under such a low bandwidth. For more details about the
mechanical and dielectric properties of the proposed material as a function of frequency, the reader
can refer to [13].
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It is noteworthy that, in our experiment, the input electric field was limited to around 40–50 V/µm
which is small enough with respect to the breakdown strength of the terpolymer (see Table 1).
As reported in [19], a low electric field also enables a fit with the classical Maxwell electrostrictive
model and to any non-linearity due to the saturation effect being avoided. The following subsections
demonstrate that under such moderate electric fields, high electrostrictive responses in terms of force
and strain are still achieved, confirming the excellent actuation characteristics of the proposed materials.

4.1. Free Displacement

In order to highlight the actuation performances of the all-organic composites, several unimorph
architectures were investigated. Figure 9 describes the field-induced actuation of a unimorph
comprising an active polymer P(VDF-TrFE-CTFE) + 10 wt % DEHP and an inactive PET substrate.
To prevent a discharge effect during operation under high voltage, the surface approximatively 1.5 mm
from the edge of the active layer was not covered with an electrode. Figure 9 shows the actuation
behavior of the developed unimorph under electric fields of 0 V/µm and 50 V/µm. A high deflection
response of the modified terpolymer was achieved under a relatively low electric field.

Based on [27], the tip displacement (δ) of a unimorph depends on the device’s geometry as well
as the material’s properties. Under quasi-static conditions, the transverse strain (S31) of a unimorph
can be inferred from the deflection measurements, according to the following expression:

δ0 =
3L2

2e
2AB(1 + B)2

A2B4 + 2AB(2 + 3B + 2B2) + 1
S31 (10)

where δ0 is the cantilevered tip deflection; e and L are, respectively, the sample thickness and the length,
Ysubstrate, Ypoly, esubstrate and epoly depict the Young’s modulus of the substrate, the Young’s modulus of
the polymer, the substrate thickness, and the polymer thickness, respectively, A = Ysubstrate/Ypoly and
B = esubstrate/epoly.
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Figure 10 illustrates the empirical quasi-static displacement versus the electric field at 0.1 Hz
for the pure and modified terpolymers. A quadratic dependence of the induced deflection under
low electric fields (less than 50 V/µm) was observed, in contrast to the saturation behavior of the
deflection at higher input electric fields. As expected, a gap between the ascending and descending
branches occurred, representing the hysteresis characteristic of the composite. Similar to other
electroactive materials, like magnetic substrates, magnetostrictive materials, piezoceramics, shape
memory alloys, etc., when the electrostrictive actuator partially inherits the piezoelectric property,
it exhibits the disadvantages of hysteresis and creep (or drift) behaviors [28]. Such comportments may
deteriorate the system’s performance and lead to oscillation vibration and even instability, especially
where very precise positioning is required, for instance in the case of atomic force microscopes or
micro-manipulators. On the other hand, compared with shape memory alloys, the hysteresis of our
material was much lower under similar electric field cycling [29,30].
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The effect of the DEHP plasticizer on the electrostrictive response of the terpolymer at low a
frequency is clearly confirmed by Figure 10, with a 2.5-fold enhancement between the modified
and neat terpolymers. It has been previously reported that in the case of dielectric polymers,
the electrostrictive strain under an electric field can be mainly attributed to Maxwell forces, induced
by dipolar orientation within the material [4]. Also, experimental measurements demonstrated an
exceptional increase in dielectric permittivity as well as a somewhat decreased Young’s modulus of
the plasticized composite, leading to a large enhancement of the electrostrictive coefficient and the
figures of merit.
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4.2. Blocking Force

Figure 11 depicts the evaluation of the measured blocking force as a function of the applied
electric field for two compositions of terpolymer. A quadratic dependence of the blocking force in
terms of the electric field was achieved, confirming good agreement between experiment and theory,
as shown in Equation (5). A comparison between the former and the modified samples demonstrates
a great enhancement of the blocking force, with a 2.5-fold increase under 40 V/µm. Such a large
improvement can be explained by the fact that the modified material exhibited a higher dielectric
permittivity, leading to higher FOM of the blocking force, based on Equation (6).Polymers 2018, 10, 262 12 of 16 
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In conclusion, in order to optimize the force and strain generated by an electrostrictive material,
its dielectric permittivity should be increased. This observation correlated with the working principles
of the electrostrictive materials since the Maxwell electrostatic stress (TE), according to Equation (5),
induces strain in the material. As a result, an enhancement in force leads to a better strain response
and vice versa. These two parameters play a key role in the performance of polymer actuation.

4.3. Force versus Deflection

With electroactive benders, the ability of the actuator to generate force decreases linearly
with deflection [31,32]. The experimental force versus the deflection tip were derived as follows:
The developed actuator was mounted in a rigid clamp equipped with an electrical contact. The sensing
element for the load cell was positioned 1 mm to 2 mm from the end of the actuator. Also, it was
placed at a desired distance from the bender’s reference position so that the sample could freely deflect
before coming in contact with the load cell. Following excitement from a step electric field, the actuator
delivered a force signal whose peak value was recorded by the LabVIEW software. The deflection
at which the actuator was unable to exert a measurable force on the load cell was considered the
free deflection. Experiments were conducted under 0.1 Hz frequency and four levels of electric field,
comprising 10 V/µm, 20 V/µm, 30 V/µm, and 40 V/µm.

Figure 12 displays the experimental force as a function of the deflection for different input electric
fields. As expected, a linear relationship was achieved, representing typical characteristics of the
bender actuator. The force at zero deflection is defined as the blocking force, corresponding to the
maximum force that the actuator can exert upon an electric field. At the opposite end of the curve,
the deflection at zero force is called the free deflection (δ0). It is then possible to express the deflection
(δ) function of the curve as follows:

δ = δ0 − F/K (11)

where F is the applied force and K is the stiffness coefficient of the actuator.
Based on the force–deflection curve, it is possible to predict the actuator’s displacement as a

function of the externally applied load, which is a relevant parameter for designing electroactive
material applications.
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4.4. Mechanical Energy

The mechanical energy generated by an actuator is also a key parameter reflecting the performance
of the electrostrictive polymers. Depending on the position of an object subjected to a conservative
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force, the mechanical energy is usually defined as the actuator’s ability to carry out work. If F represents
the conservative force and x represents the position, the mechanical energy of the force between the
two positions (d1 and d2) is defined as

Emechanic =

d1∫
d2

Fdx = F.δ (12)

Figure 13 illustrates the mechanical energy generated by two kinds of terpolymer benders as a
function of the applied force under a 40 V/µm electric field. The result reveals an optimum point
where the mechanical energy passes through a maximum, corresponding to half of the maximum force.
It is noteworthy that the mechanical energy of the all-organic plasticized polymer is six-fold that of the
neat polymer. These last remarks demonstrate the advantage of using a plasticized composite, since the
applied input electric field can be largely reduced to achieve similar electrostrictive properties.

The mechanical energy density can be inferred from the relationship in Equation (7) or from the
calculation of the ratio between the energy Emechanic and the volume. As the volume of the sample is
equal to 10−8 m3, the optimal energy density of the pure terpolymer and its plasticized counterpart
respectively reach 70 J/m3 and 400 J/m3 under a relatively low electric field of 40 V/µm. Again,
this result demonstrates that the fact that incorporating a plasticizer into the polymer matrix enables a
drastic improvement of the actuation properties as well as a reduction in the input voltage, which is
currently one of the major drawbacks of electrostrictive materials.Polymers 2018, 10, 262 14 of 16 
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electric field of 40 V/µm.

5. Conclusions

This paper has proposed new criteria for assessing the electroactive material performance based
on the figures of merit of the force, the strain, and the energy density. These characteristic numbers are
greatly affected not only by the intrinsic parameters like the permittivity and the Young’s modulus of
material, but also by the breakdown electric field. The proposed approach is an efficient way to select
a polymer matrix with large actuation properties and makes it possible to simplify the comparison
between different kinds of electroactive composites. Moreover, this work provides an efficient method
for achieving highly accurate force measurements which can be quite challenging, especially under
quasi-static conditions. The experimental results revealed a large enhancement of electromechanical
activities in terms of free deflection and generated force under a relatively low electric field by
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incorporating a plasticizer into the terpolymer matrix. This phenomenon confirms the high potential
of the developed material for real-world actuator applications, especially in multifunctional flexible
electroactive devices. Future works will focus on the mechanical behavior of actuators, including
displacement and force, over a wide frequency range. Further characterization of the material in
various dynamic regimes should also be investigated.

Author Contributions: Jean-Fabien Capsal, Nellie Della Schiava and Kritsadi Thetpraphi prepared the all-organic
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