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Abstract: The effects of octakis[(3-glycidoxypropyl)dimethylsiloxy]octasilsesquioxane (GPOSS) on
the crystallinity, crystal structure, morphology, and mechanical properties of polyoxymethylene
(POM) and POM/GPOSS composites were investigated. The POM/GPOSS composites with varying
concentrations of GPOSS nanoparticles (0.05–0.25 wt %) were prepared via melt blending. The structure
of POM/GPOSS composites was characterized by differential scanning calorimetry (DSC), wide angle
X-ray diffraction (WAXD), and polarized light microscopy (PLM). The mechanical properties were
determined by standardized tensile tests. The morphology and dispersion of GPOSS nanoparticles in
the POM matrix were investigated with scanning electron microscopy (SEM) and energy dispersive
X-ray (EDX) analysis. It was observed that the dispersion of the GPOSS nanoparticles was uniform.
Based on DSC studies, it was found that the melting temperature, lamellar thickness, and the degree
of crystallinity of the POM/GPOSS composites increased. The POM/GPOSS composites showed
an increased Young’s modulus and tensile strength. Finally, compared with the pure POM, the addition
of GPOSS reduced the spherulites’ size and improved the crystallinity of the POM, which demonstrates
that the nucleation effect of GPOSS is favorable for the mechanical properties of POM.

Keywords: polyoxymethylene (POM); octakis[(3-glycidoxypropyl)dimethylsiloxy]octasilsesquioxane
(GPOSS); composites; morphology; mechanical properties

1. Introduction

Composites based on polyoxymethylene (POM), or polyacetal with silsesesquioxanes, are an
interesting group of engineering materials due to the significant modification capabilities of these
polymers and their wide application in industry. POM, with (–CH2–O–) as the main chain, is a major
engineering plastic, with a high degree of mechanical strength, dimensional stability, and abrasion
resistance. Two types of acetal are commercially available: homopolymers and copolymers [1].

Engineering applications require the creation of materials with significantly high strength
properties and high thermal resistance. Thus, there is a need for research directed towards the
modification of the structure and properties of materials, and such modification is the main aim of
implementing various nanofillers. The nanoparticles incorporated into the polymer matrix usually
significantly influence the polymer’s crystallization as well as the crystal phase type [2]. Particle size,
their quantity, the degree of dispersion in the polymer matrix, and the processing conditions are the
most relevant parameters in terms of composite properties [3,4].

Polyhedral oligomeric silsesquioxanes (POSS) are nanostructures with the empirical formula RSiO1.5,
where R is a hydrogen atom or an organic group such as alkyl, alkylene, acrylate, hydroxyl, or epoxide
units [4–8]. POSS may be referred to as a silica nanoparticle, consisting of a silica cage core and other
organic functional groups attached to the corners of the cage [8]. The advantage of POSS as a nanofiller is
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due to the magnitude of its core; the core of octasilsesquioxanes can reach as high as approximately 0.5 nm.
The whole molecule, depending on the substituent type, can range from 1 to 3 nm [9,10]. Comparing
the average size of the macromolecular chains of these silsesquioxane molecule sizes, together with the
possibility of implementation of the appropriate functional group, facilitates the deposition of POSS in the
polymer matrix. Poly(methyl methacrylate) [10], polyethylene [11], polypropylene [12,13], poly(ethylene
terephthalate) [14], polylactide [15], epoxide resins [16], polyurethanes [17], and polyoxymethylene [18,19]
were all found to have an impact on certain physical properties such as glass transition, decomposition
temperature, viscosity, fracture toughness, and barrier properties [20–24].

Few papers have been published concerning the effects of POSS molecules on the melting and
crystallization, the microstructure, and the thermo-mechanical properties of polyoxymethylene [25–27].
Durmus et al. investigated the microstructure and isothermal melt-crystallization behavior of
polyoxymethylene (POM) modified by methyl-polyhedral oligomeric silsesquioxanes (methyl-POSS) [25].
They pointed out that the addition of a PP/POSS nanocomposite dramatically enhances the crystallization
rate of POM. It was concluded that the rate acceleration effect of the PP/POSS nanocomposite in POM
crystallization is probably due to the tremendous increase in the number of nuclei due to the nano-POSS
particles [25]. Lllescas et al. studied hybrid nanocomposites containing polyoxymethylene copolymer
(POM) and four types of polyhedral oligomeric silsesquioxane (POSS) nanoparticles. They found that
the added POSS nanoparticles can improve the thermo-mechanical properties of some polymers [26].
They reported that the formation of hydrogen bonding interactions between the POM and Si–OH
groups of msib-POSS increased their mutual compatibility and led to nanometer-size dispersion
of some msib-POSS molecules [26]. Pielichowski et al. studied the influence of the heating rate
on the shape of the melting peak of polyoxymethylene (POM) using both high-speed differential
scanning calorimetry (DSC) and StepScan DSC. They pointed out that a low heating rate facilitates the
recrystallization of polyoxymethylene due to molecular nucleation [27].

The aim of this study was to determine the influence of a small amount of GPOSS on the
crystallinity, crystal structure, morphology, and mechanical properties of POM, where the introduction
of the nanoparticles is achieved via melt processing.

2. Experimental Section

2.1. Materials

The commercial form of POM (Tarnoform 300), with a melt flow index of 0.9 g/10 min (190 ◦C,
2.16 kg), was supplied by Grupa Azoty S.A (Zakłady Azotowe, Tarnów-Moscice, Poland) for use in this
study. GPOSS was synthesized by the hydrosilylation process [28], using a methodology developed at
the Faculty of Organic Chemistry of Adam Mickiewicz University (Poznan, Poland). The synthesis of
GPOSS was conducted in accordance with the procedure described in [29,30].

The chemical structure of GPOSS was confirmed by spectroscopic methods (NMR, FT-IR), and
the results of analysis are as follows:

1H NMR (CDCl3, 298 K, 300 MHz) δ (ppm) = 0.05 (OSiCH3); 0.51 (SiCH2); 1.51(CH2); 2.47, 2.65
(CH2O); 3.00 (CHO); 3.25 (CH2O); 3.33, 3.56(OCH2).

13C NMR (CDCl3, 298 K, 75.5 MHz) δ (ppm) = −0.66 (SiCH3); 13.39 (SiCH2); 22.89 (CH2); 43.98
(CH2O); 50.29 (CHO); 71.75 (OCH2); 73.61 (CH2O).

29Si NMR (CDCl3, 298 K, 59.6 MHz) δ (ppm) = 12.87 (OSi(CH3)2); −109.13 (SiOSi).
FT-IR (ATR): 2998, 2955, 2931, 2869, 1253, 1070, 902, 838, 547 cm−1.
The chemical formula of GPOSS is presented in Figure 1.
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Figure 1. Chemical structure of the octakis[(3-glycidoxypropyl)dimethylsiloxy]octasilsesquioxane 
(GPOSS). 

2.2. Preparation of the POM/GPOSS Nanocomposites 

POM pellets were ground into a powder using a Tria grinder and dried at 80 °C for 4 h. The 
POM powder was premixed with various amounts of GPOSS (0.05, 0.1, and 0.25 wt. %) using the 
rotary mixer Retsch GM 200 (Retsch GmbH, Haan, Germany) (t = 4 min, n = 2000 rpm). The 
melt-mixing of the blends was carried out in a Brabender single screw extruder, equipped with an 
intense mixing zone, operating at 190 °C with a screw rotational speed of 15 rpm. The extruded rod 
was cooled in a water bath and subsequently pelletized. Standard test samples were produced by 
injection molding using an Engel machine (ES 80/20HLS, Schwertberg, Austria) with a 22 mm screw 
and an L/D ratio of 18. The processing parameters were as follows: injection temperature along the 
barrel: 180/190/200 °C; nozzle temperature: 210 °C; mold temperature: 60 °C. 
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The melting and crystallization behavior of the composites were studied using a differential 
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the thermal and mechanical prehistory. Next, the samples were cooled to 120 °C at a cooling rate of 
20 °C/min and held there for 5 min and finally reheated again to 220 °C at the same rate.  

The degree of crystallinity (Xc) of the samples was determined from the values of enthalpy 
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with a Linkam THMS 600 hot stage (Linkam Scientific Instruments Ltd., Tadworth, UK) was used to 
study the crystallization process via cooling. The samples were heated at 200 °C for 2 min to obtain a 
full melting of the POM, then quickly cooled (20 °C/min) to the isothermal crystallization 
temperature of approximately 148 °C. The growth of the spherulites was observed during 
crystallization using an Opta-Tech camera (Opta-Tech, Warsaw, Poland) at 200× magnification. 

Figure 1. Chemical structure of the octakis[(3-glycidoxypropyl)dimethylsiloxy]octasilsesquioxane (GPOSS).

2.2. Preparation of the POM/GPOSS Nanocomposites

POM pellets were ground into a powder using a Tria grinder and dried at 80 ◦C for 4 h. The POM
powder was premixed with various amounts of GPOSS (0.05, 0.1, and 0.25 wt %) using the rotary mixer
Retsch GM 200 (Retsch GmbH, Haan, Germany) (t = 4 min, n = 2000 rpm). The melt-mixing of the
blends was carried out in a Brabender single screw extruder, equipped with an intense mixing zone,
operating at 190 ◦C with a screw rotational speed of 15 rpm. The extruded rod was cooled in a water
bath and subsequently pelletized. Standard test samples were produced by injection molding using
an Engel machine (ES 80/20HLS, Schwertberg, Austria) with a 22 mm screw and an L/D ratio of 18.
The processing parameters were as follows: injection temperature along the barrel: 180/190/200 ◦C;
nozzle temperature: 210 ◦C; mold temperature: 60 ◦C.

2.3. Characterization

2.3.1. Differential Scanning Calorimetry (DSC)

The melting and crystallization behavior of the composites were studied using a differential
scanning calorimeter (Netzsch, DSC 204 F1 Phoenix, Selb, Germany) operating under nitrogen flow
(150 mL/min). Samples of about 8 mg were heated up to 220 ◦C and held there in order to eliminate
the thermal and mechanical prehistory. Next, the samples were cooled to 120 ◦C at a cooling rate of
20 ◦C/min and held there for 5 min and finally reheated again to 220 ◦C at the same rate.

The degree of crystallinity (Xc) of the samples was determined from the values of enthalpy melting
registered during the second heating, using the following equation:

Xc(%) =
∆Hm

(1 −ϕ)∆H0
m

(1)

where ∆Hm is the melting enthalpy of the samples, ϕ is the weight fraction of GPOSS nanofiller, and
∆H0

m is the melting enthalpy for a 100% crystalline of polymer—this latter measurement was taken as
186 J/g for the POM copolymer [31].

2.3.2. Optical Polarized Light Microscopy (PLM)

An optical polarized light microscope (PLM) (Nikon Eclipse E400, Kanagawa, Japan), equipped
with a Linkam THMS 600 hot stage (Linkam Scientific Instruments Ltd., Tadworth, UK) was used to
study the crystallization process via cooling. The samples were heated at 200 ◦C for 2 min to obtain a full
melting of the POM, then quickly cooled (20 ◦C/min) to the isothermal crystallization temperature
of approximately 148 ◦C. The growth of the spherulites was observed during crystallization using
an Opta-Tech camera (Opta-Tech, Warsaw, Poland) at 200× magnification.
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2.3.3. Wide-Angle X-ray Diffraction (WAXD)

The crystal structures of the POM and POM/GPOSS composites were evaluated with wide-angle
X-ray diffraction (WAXD) measurements taken at room temperature, using a Brücker D2 diffractometer
(Madison, Japan), equipped with Cu Kα radiation (λ = 0.1542 nm), operating at 40 kV and 40 mA.
Diffraction patterns were recorded for 2θ values ranging from 10 to 50◦, at a scanning rate of 0.01◦/s.
The d-spacing of the POM/GPOSS was evaluated with the Bragg equation:

2d sin θ = nλ (2)

where θ is the Bragg’s angle for the corresponding crystallographic plane (hkl), n is the order of
diffraction, and λ is the incident wave length.

2.3.4. Mechanical Properties

The mechanical properties of the samples were determined by tensile tests performed using
a universal testing machine: a Zwick/Roell Z005 (Ulm, Germany). The samples were dumbbell-shaped,
with dimensions of 75 mm × 5 mm × 2 mm (test specimens type 1BA), according to the PN-EN ISO
527-2 standard. The tensile tests were run at room temperature. Tensile modulus was determined at
a 1 mm/min cross head speed, whereas other tensile characteristics were measured at 50 mm/min
speed. Young’s modulus (E), ultimate tensile strength (σM), and tensile stress at break (σB) were
evaluated from the tensile stress-strain curves. The reported data were the average of the results of
10 specimens.

2.3.5. Scanning Electron Microscope (SEM)

The morphology of the fractured surfaces of the POM/GPOSS composite, coated with gold, was
observed using a scanning electron microscope (SEM)—TESCAN TS 5135 (Brno, Czech Republic).
The dispersion of GPOSS nanoparticles in the POM matrix was investigated using the back-scattered
electron (BSE) signal and secondary electron (SE) signal, with an accelerating voltage of 15 kV, and the
Si distribution was subsequently mapped.

3. Results and Discussion

3.1. Effect of GPOSS on Melting and Crystallinity

The DSC melting curves for pure POM and POM with GPOSS nanoparticles, registered during
the first heating at a rate of 20 ◦C/min, are shown in Figure 2.
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The onset of the melting temperature (Tm1 onset), the maximum melting temperature (Tm1), the
melting enthalpy (∆Hm1), the lamellar thickness (lc), the melting enthalpy (∆Hm2), and the crystallinity
(Xc) are listed in Table 1.

Table 1. DSC data of pure POM and POM/GPOSS composites (cooling and heating rate: 20◦/min).

Samples Tm1 (◦C) Tm1 onset (◦C) ∆Hm1 (J/g) lc (nm) ∆Hm2 (J/g) Xc (%)

pure POM 169.2 158.0 −138.5 9.8 −134.3 72
POM/0.05 wt % GPOSS 171.2 159.0 −142.0 11.4 −135.8 73
POM/0.1 wt % GPOSS 173.7 160.0 −143.5 14.2 −137.4 74

POM/0.25 wt % GPOSS 175.7 163.2 −154.1 17.2 −149.9 81

A clear single endothermal peak within the temperature range of 169–180 ◦C for the pure POM
and its composites was observed, indicating that, as the result of modification, compatible blends of
POM with GPOSS were achieved. This suggests a strong interfacial interaction between POM and the
glycid groups of POSS. As seen in Figure 2, it follows that the melting temperature of POM/GPOSS
composites becomes higher as GPOSS content increases. For example, an increase in the Tm from
169 ◦C in pure POM to 176 ◦C (an increase of approximately 7 ◦C) in POM with 0.25 wt % GPOSS was
observed, an effect consistent with our primary observation for polyoxymethylene modified by vinyl
groups of POSS [19].

The melting temperature (Tm1) observed during the first DSC heating run may be related to
the lamellar thickness, where a greater lamellar thickness corresponds to a higher polymer melting
temperature. This relationship is described by the Gibbs-Thompson equation (Equation (3) [32].
Based on this equation, the lamellar thickness (lc) of the POM/GPOSS composites was evaluated and
compared with the corresponding values of the pure POM.

lc =
2σe · T0

m

∆h0(T0
m − Tm)

(3)

where Tm is the observed melting temperature for a crystalline lamellar of thickness (lc), T0
m is the

equilibrium melting temperature of the crystalline lamella of an infinite thickness, σe is the lamellar
basal surface free energy (12.5 × 106 J·cm−2 for POM) [33], and ∆h0 is the enthalpy of fusion for the
crystalline phase (315 × 106 J·cm−3 for POM) [34].

Figure 3 illustrates the relationship between the amount of GPOSS and lamellar thickness (lc) of
the POM polymer single crystals.
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An increase in the lamellar thickness of POM with 0.25 wt % GPOSS to about 17 nm, compared
with the pure POM where the lamellar thickness was equal to 9.8 nm, was noted. It is known that
lamellar thickness increases with an increase in crystallization temperature [35]. A similar phenomenon
has been observed in POM with carbon nanotubes (CNTs) [36].

As presented in Table 1, an increase in the Xc value from 72% in pure POM to 81% (i.e., an increase
of about 13%) in POM modified with 0.25 wt % GPOSS was observed. A significant increase in
enthalpy in the second melting (∆Hm2) from 134.3 J/g in pure POM to 150 J/g in the highest amount of
POM/0.25 wt % GPOSS may indicate that GPOSS additives play a heterogenic nucleation role in POM.

Similar effects have been observed by Hu and Ye through the analysis of the POM crystallization
process with the addition of polyamide 6 (PA6). It has been shown that PA6 leads to an increase in the
degree of crystallinity (Xc), improving the crystallization growth rate and resulting in a reduction in
the size of spherulites in POM [37].

3.2. Effect of GPOSS on the Spherulitic Morphology

The spherulitic morphology of pure POM and POM/GPOSS composites was observed using
optical polarized light microscopy (PLM), as shown in Figure 4.
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Figure 4. PLM micrographs of the crystallized pure POM (a) and its composites with different GPOSS
concentrations: (b) 0.05 wt %; (c) 0.1 wt %; (d) 0.25 wt %. T = 148 ◦C. The cooling rate was set to
20 ◦C/min. (magnification 200×).

Significant differences between the structure of pure POM (Figure 4a) and POM modified with
GPOSS can be seen in Figure 4b–d. For all cases, spherulite forms differing in magnitude, shape,
spatial distribution, and well-developed spherulitic morphology can clearly be seen. It is obvious that
the POM spherulites become smaller as GPOSS content increases (Figure 4b–d). Figure 5 illustrates
the dependence of the size of spherulites in the POM on GPOSS content; the addition of 0.25 wt %
GPOSS leads to a significant decrease in POM spherulite size—specifically, from 48 × 10−6 to about
35 × 10−6 m. Such an effect is due to the heterogeneous nucleation role of GPOSS.
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Figure 5. The dependence of the size of spherulites in pure POM and its composites with different
GPOSS concentrations. The cooling rate was set to 20 ◦C/min.

3.3. Effect of GPOSS on the Crystal Structure

The crystal structure of POM was studied using the WAXD technique. The analysis of the WAXD
allows us to determine the crystal atom structure, including the position/symmetry of the atoms in the
unit cell, the unit cell size, and the shape/size of the nanocrystalline domain [38]. The X-ray diffraction
patterns for the POM and POM/GPOSS composites with different GPOSS concentrations, as a function
of Bragg’s angle (2θ) and measured at room temperature, are presented in Figure 6.
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As can be seen in Figure 6, two intense Bragg diffraction peaks can clearly be observed at the
Bragg angles 2θ = 22.7◦ and 2θ = 34.14◦, where the peak at 22.7◦ corresponds to the basal reflection
(100), and the peak at 34.14◦ corresponds to the basal reflection (105). POM crystallizes in a hexagonal
crystallographic form with unit cell dimensions of a = b = 4.46 Å and c = 17.3 Å [39]. In general, it was
observed that the X-ray diffraction patterns of POM/GPOSS composites are similar to the diffraction
pattern of the hexagonal form observed for the crystalline phase of pure POM. The crystallite size
(Lhkl), according to the Scherrer formula (Equation (3)), was evaluated for the crystallographic plane
(100), using the following equation:

Lhkl =
Kλ

βhkl × cos θhkl
(4)



Polymers 2018, 10, 203 8 of 12

where Lhkl is the apparent crystallite size of the normal direction of the {hkl} crystal plane (in Angstrom,
1 Å = 10−10 m), K is a Scherrer constant, normally taken as 0.9, βhkl is the full-width at half-maximum
(in radian) of the crystalline peak, nm, θ is the Bragg diffraction angle, and λ is the wavelength of
entrance X-ray (0.154 nm for Cu), as presented in Table 2.

Table 2. Crystal size (Lhkl) evaluated according to the Scherrer formula.

Samples L100 (Å)

pure POM 228
POM/0.05 wt % GPOSS 217
POM/0.1 wt % GPOSS 186

POM/0.25 wt % GPOSS 143

The highest WAXD diffractogram intensity was observed for the POM/GPOSS composites,
indicating the higher crystalline structure order of the POM.

Based on WAXD studies, it was also shown that, with an increase in GPOSS content in the POM,
an increase in the diffraction peak at half height width occurs, corresponding to a reduction in crystal
size (from 228 to 143 Å).

In 0.05 and 0.25 wt % POSS, a clear decrease in the L100 crystallite size of composites, in comparison
with pure POM, was found, suggesting that GPOSS has a nucleating effect on POM.

3.4. Effect of GPOSS on Mechanical Behaviour

In Figure 7, typical tensile stress-strain curves of pure POM and POM/GPOSS composites with
different GPOSS nanoparticle concentrations are presented.
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The average values and standard deviations of mechanical properties are given in Table 3.

Table 3. Mechanical properties, with standard deviations, of pure POM and POM/GPOSS composites.

Samples Ultimate tensile strength (MPa) Young’s modulus (GPa) Tensile stress at break (MPa)

pure POM 55.00 ± 0.52 1.83 ± 0.13 45.97 ± 0.65
POM/0.05 wt % GPOSS 57.50 ± 0.43 2.44 ± 0.23 49.78 ± 0.78
POM/0.1 wt % GPOSS 57.64 ± 0.90 2.48 ± 0.15 49.90 ± 0.69
POM/0.25 wt % GPOSS 57.80 ± 0.95 2.60 ± 0.25 50.25 ± 0.73
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The Young’s modulus (E), ultimate tensile strength (σM), and tensile stress at break (σB) values of
POM/GPOSS composites and pure POM were compared, and an increase in tensile properties, such as
strength and modulus, with increasing GPOSS concentrations was noted. The Young’s modulus of the
POM was increased from 1.8 to 2.6 GPa with the addition of 0.25 wt % GPOSS, which corresponds to
an approximate 45% increase. Similarly, an increase in tensile strength was observed for POM/GPOSS
composites compared to pure POM. The maximum value of the tensile strength (σM) was observed for
the POM/GPOSS composite with the addition of 0.25 wt % GPOSS. Compared with the pure POM, the
addition of GPOSS reduced the size of the spherulites and improved the crystallinity (Xc) of the POM,
which demonstrates the nucleation effect of GPOSS, as the nucleus is favorable for the mechanical
properties. These results are in agreement with the DSC results. The changes in mechanical properties
may also be a result of a good dispersion of GPOSS nanoparticles in the POM matrix and a good
adhesion of these two components.

3.5. Effect of GPOSS on Morphology

SEM microscopy was used to analyze the morphology and dispersion of particles of GPOSS in
the POM matrix. Figure 8 presents SEM images that show the morphologies of pure POM (a) and
POM/GPOSS composites with the addition of 0.05 wt % (b) and 0.25 wt % GPOSS (c).
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A relatively homogenous distribution of GPOSS particles in the POM matrix can be seen in
Figure 8a–c. The dispersion of the GPOSS particles in the POM matrix was homogeneous, and a similar
phenomenon was described in the literature for silsequioxanes with polyamide and polyethylene [30].
Figure 8d,e shows the energy dispersive X-ray spectrometer (EDS) composition distribution maps of
the Si element on the surface of the POM/0.05 wt % GPOSS (d) and POM/0.25 wt % GPOSS composites
(e). The white dots in this figure are the X radial signals radiating from the Si element. A random
dispersion of 0.25 wt % GPOSS nanoparticles was found on the entire fractured surface of the POM.
A similar effect was observed for polyoxymethylene and POM/HAp nanocomposites [40].
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4. Conclusions

In the study reported herein, the effect of GPOSS on the melting behavior, structure, and mechanical
properties of POM was investigated. The properties of POM/GPOSS composites were characterized
as a function of the GPOSS content, which varied from 0 to 0.25 wt %. DSC measurements indicated
a significant change in the melting temperature and crystallinity of the nanocomposites, relative to
the matrix. POM/GPOSS composites of an evidently higher degree of crystallinity were achieved,
indicating a heterogenic nucleation role of the GPOSS additive for pure POM.

Polarized microscopy results indicate that the POM spherulites become smaller as GPOSS content
increases. During POM crystallization, small spherulites about 35 µm in diameter were produced.
The incorporation of GPOSS reduced the mean size of the spherulites, suggesting a nucleation effect.
X-ray diffraction results indicate no significant changes in the hexagonal structure of the POM in the
presence of GPOSS.

The enhancement in the Young’s modulus of the composites containing 0.25 wt % GPOSS, relative
to the pure POM, was about 45%. This suggests that GPOSS should work as a reinforcement in the
POM matrix. The reason for this is due to the good dispersion of GPOSS in the POM matrix. SEM
results proved the existence of a uniform structure in the heterogeneous compatible blends, in which
intensive interfacial interactions may be present.
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