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Abstract: Self-healing materials have attracted much attention because that they possess the ability to
increase the lifetime of materials and reduce the total cost of systems during the process of long-term
use; incorporation of functional material enlarges their applications. Graphene, as a promising
additive, has received great attention due to its large specific surface area, ultrahigh conductivity,
strong antioxidant characteristics, thermal stability, high thermal conductivity, and good mechanical
properties. In this brief review, graphene-containing polymer composites with self-healing properties
are summarized including their preparations, self-healing conditions, properties, and applications.
In addition, future perspectives of graphene/polymer composites are briefly discussed.
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1. Introduction

Regenerative abilities allow creatures to repair damaged functions to prolong their life span.
Researchers are inspired to design and prepare self-healing materials to increase the lifetime of
materials and reduce the total cost of systems during the process of long-term use. Recently, great
progress has been made in self-healing composite materials that possess the ability to restore their
structure and functionality after damage. Early self-healing materials were focused on microcapsule or
microtubule by release of healing agents to achieve repairing. However, the self-healing times of these
methods are dependent on the amounts of healing agents in the microcapsule or microtubules [1].
To address these limitations, dynamic chemistry involving dynamic covalent chemistry (e.g., imine
bonds [2,3], disulfide bonds [4–6], acylhydrazone bonds [7–9], and boronate ester bonds [7])
and non-covalent interactions, such as hydrogen bonds [10,11], π−π stacking [12], hydrophobic
interactions [13,14], host-guest interactions [15], ionic interactions [16], electrostatic interactions [17],
and metal-coordination interactions [18–20], has been recently introduced to construct self-healing
materials with multiple reversible healing ability.

Graphene, as a new type of two-dimensional planar monolayer of sp2 carbon atoms, has attracted
widespread attention in all kinds of research areas due to its large specific surface area, excellent
electrical conductivity, thermal conductivity, and unique mechanical properties [21–25]. Recently,
graphene or graphene derivatives have been widely introduced into polymer matrices. The excellent
performance of graphene or graphene derivatives, combined with the advantages of the polymer
matrix, makes graphene/polymer composites suitable for application in conductive devices, coating,
and biological and pharmaceutical field [26–30]. Although graphene-based composites have been
well established [31–34], graphene-containing composites with self-healing capacity have not been
summarized up to now. Introduction of self-healing capability into graphene/polymer composites
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will endow them with the ability of repairing themselves after damage and enlarge their service life.
A lot of studies have been reported on the self-healing of the graphene/polymer composites due to
their wide applications (Figure 1). Therefore, it is necessary to review self-healing graphene/polymer
composites, which combine the outstanding properties of graphene with advantages of the polymeric
matrix and can be used in the field of mechanics, thermology, photology and electricity.

In this review, the current advances in self-healing graphene/polymer composites have been
summarized, including their preparation methods, self-healing conditions, properties and applications.
Finally, the future prospects of the self-healing graphene/polymer composites are discussed.
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2. Fabrication Methods

2.1. Simple Mixing

The simple mixing is the simplest and commonest method for preparing graphene or graphene
derivative/polymer composites [35–43]. Usually, graphene or graphene derivatives are blended with
polymers by mechanical mixing or ultrasonic dispersion. For example, Sabzi et al. [44] prepared
poly(vinyl alcohol) (PVA)/Agar/graphene self-healing hydrogels by simply mechanical stirring
and ultrasonication.

Considering its easy agglomerate due to the strong π-π interactions, usually, graphene has been
oxidized into graphene oxide (GO). Yan et al. fabricated chitosan/GO supramolecular hydrogels
with self-healing properties [45]. It was found that at high GO concentration, a hydrogel can be
obtained by simple mixing chitosan and GO at room temperature. However, at low GO concentration,
the supramolecular hydrogel formed only at high temperature (95 ◦C). Walther et al. fabricated
rapid self-healing supramolecular elastomers by simple mixing graphene and supramolecular
pseudo-copolymer [37]. The copolymer system was formed by co-assembly of diaminotriazine (DAT)
functionalized polyglycidols (PG) and cyanuric acid (CA) functionalized PG. Thermally reduced
graphene oxide (TRGO) was added from a freshly sonicated dispersion to a heated supramolecular
pseudo-copolymer to reach 0.1 wt % in the final nanocomposite. The excellent photothermal
effect was enhanced by TRGO, which made the hydrogen bonds break and bond in co-assembled
elastomers (Figure 2).
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amounts (0.1 wt %) allows localized heating via a NIR laser (808 nm) to break the hydrogen bonds,
thus allowing molecular motion and relaxation. Reproduced with permission from [37]. Copyright
(2017) Advanced Functional Materials.

2.2. In Situ Polymerization

In situ polymerization can be interpreted to mean that the monomer and graphene or graphene
derivative were mixed firstly and subsequently polymerized by the addition of initiators [46–58].
For example, Green et al. demonstrated physically cross-linked graphene-polyacrylamide (PAM)
self-healing hydrogels with increased thermal stability and electrical conductivity [54]. All the reactants,
acrylamide (AM), N,N-methylenebisacrylamide (MBA), and potassium persulfate, were added to the
graphene dispersion in water and polymerized.

Taking advantage of this method, our group fabricated cationic PAM/GO self-healing
hydrogels with tough, stretchable, compressive property [46]. The GO aqueous dispersion
was adjusted to pH 10 by dropping ammonium hydroxide. Successively, the monomers
2-(dimethylamino)ethylacrylatemethochloride (DAC) and AM were added into the GO suspension
under stirring followed by the addition of MBA. After adding initiators, polymerization was carried
out in an oven at 35 ◦C for 12 h. Ran et al. fabricated self-healing GO/hydrophobically associated
polyacrylamide (HAPAM) composite hydrogels [49]. During the synthesis, GO, the hydrophilic
monomer AM and the hydrophobic monomer stearyl methacrylate were mixed to make a uniform
solution. After that, potassium persulfate was added to the solution to initiate the polymerization.
As shown in Figure 3, a dual cross-linked network was formed after introducing GO into HAPAM
through a facile one-pot in situ polymerization.

During the in situ polymerization process, graphene can also be modified and participate in the
polymerization, forming the covalent bond between graphene and polymers. For example, Karak et al.
fabricated a tough self-healing elastomeric nanocomposite containing a castor oil-based hyperbranched
polyurethane (PU) and an iron oxide nanoparticle decorated reduced graphene oxide (IORGO)
nanohybrid [59]. The IORGO was prepared by the co-precipitation of ferrous and ferric ions on
the GO sheets, followed by the reduction of GO. The reaction was carried out by in situ polymerization
of poly(ε-caprolactone) diol, 1,4-butanediol, 2,4/2,6-toluene diisocyanate and IORGO. After formation
of pre-polymer, a monoglyceride of castor oil as a chain extender was added to form the resulting
PU/IORGO nanocomposites. The reaction process is a conventional condensation reaction and is
shown in Figure 4a. The same group also prepared sulfur nanoparticle decorated reduced graphene
oxide (SRGO) [60] and fabricated self-healing hyperbranched PU/SRGO nanocomposites [61].

Similarly, Kim et al. synthesized a phenyl isocyanate modified GO and obtained the self-healing
composites by condensation reaction of poly(tetramethylene glycol) and 4,4′-methylene diphenyl
diisocyanate and phenyl isocyanate modified GO in the presence of phenylhydrazine [62] (Figure 4b,c).
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from [59]. Copyright (2015) New Journal of Chemistry. (b) Modification of graphene oxide (GO) by
phenyl isocyanate. (c) Overall reaction scheme to prepare a PU/MG nanocomposite. Reproduced with
permission from [62]. Copyright (2013) European Polymer Journal.
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2.3. Diels-Alder (DA) Reactions

The DA reaction and its retro-Diels-Alder (rDA) analogue is a promising route to introduce
self-healing properties to polymeric systems, which can be performed under mild conditions without
any catalyst or healing agent [63–66]. To realize the DA reaction, GO is usually functionalized to
react with polymers. For example, Liu and coworkers synthesized the maleimide functionalized
GO [67], which can produce a DA cross-linked bond with furan groups of the polyurethane chains
(Figure 5). Zhang et al. synthesized an ultrafast self-healing composite material based on DA reactions.
The surface modification of graphene involved hydramine-functionalized graphene oxide (FGO) and
reduction of FGO to afford hydramine-functionalized graphene nanosheets. The resulted composite
was formed by introduction of functionalized graphene nanosheets into the pre-PU which was
prepared from the condensation of NCO-terminated PU and a DA resultant of furfury alcohol and
bismaleimide [68,69].
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2.4. Layer-by-Layer Self-Assembly Technique

The layer-by-layer (LBL) self-assembly technique is a versatile approach to fabricate multilayered
nanostructural composites [70–73]. The first implementation of this technique is attributed to
J. J. Kirkland and R. K. Iler, who carried it out using microparticles in 1966 [74]. The LBL self-assembly
technique now can be accomplished by using various methods such as immersion, spin, spray,
electromagnetism, or fluidics. For example, Fan et al. introduced a self-healing anticorrosion coating
on a magnesium alloy (AZ31) substrate [75]. Firstly, cerium nitrate hexahydrate was coated on AZ31
substrate and then the sample was heated at 80 ◦C for 30 min to partially convert the oxide Ce(III) to
Ce(IV). Subsequently, poly(ethyleneimine) (PEI) and GO was coated on the sample to form the PEI/GO
layer. Finally, the PEI/GO coated sample was immersed in PEI, deionized water, poly(acrylic acid)
(PAA), and deionized water, alternatively (Figure 6a). Graphene oxide was incorporated as corrosion
inhibitor and the self-healing ability was attributed to the PEI/PAA multilayers. Ge et al. also prepared
a self-healing multilayer polyelectrolyte film based on branched PEI, PAA and graphene by a LBL
self-assembly technique [76].
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Sun and coworkers reported an intrinsically healable, reduced graphene oxide (RGO)-reinforced
polymer composite film via LBL assembly [77]. RGO modified with β-cyclodextrin (β-CD) (denoted
as RGO-CD) can complex with branched PEI grafted with ferrocene groups (Fc) (denoted as bPEI-Fc)
based on host-guest interactions to form bPEI-Fc&RGO-CD complexes. The bPEI-Fc&RGO-CD
complexes are LBL assembled with PAA to fabricate PAA/bPEI-Fc&RGO-CD composite films.
The reversible host-guest interactions between nanofillers and LBL-assembled polyelectrolyte films
make the composites possess excellent mechanical robustness and highly efficient self-healing
properties simultaneously (Figure 6b,c).
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2.5. Hydrothermal Methods

Apart from the aforementioned fabrication methods, there are other ways to fabricate self-healing
graphene/polymer composites. Tang et al. reported conductive and self-healing nanocomposite
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hydrogels though a simple hydrothermal method [78]. All the reagents were poured into a Teflon-lined
stainless steel autoclave and heated at 100 ◦C for 10 h, forming nanocomposite hydrogels.

3. Self-Healing Condition

To restore their original properties, graphene/polymer composites need to repair themselves
autonomously or require external energy/stimuli such as mechanical force, light, heat, pH changes.
In this section, different self-healing conditions of graphene/polymer composites were summarized.

3.1. Heating

Heating is a common self-healing condition due to its easy operation. By heating, the
mobility of polymer chains increases, thus facilitating the self-healing of graphene/polymer
composites [40,41,43,48,51,53,54,56,67,79–82]. Pugno and Valentini’s group fabricated a negative
temperature coefficient (exhibiting electrical resistance decrease with temperature increase) silicone
rubber (SR)-graphene nanoplatelets (GNPs) composite that can be healed by simple thermal annealing
in an oven up to 250 ◦C for 2 h [43]. After heating treatment, the composite showed a healing efficiency
of ~87% by tensile strength. The reversible crosslinking among the damaged network of SR/GNP
composite can be thermally activated due to free silanol groups. In conductive composites, the electrical
conductivity commonly decreased due to the destroyed conductive network during tensile cycles.
However, Zhan et al. reported a conductive graphene/natural rubber composite [40], in which the
electrical conductivity rose to nearly two times higher than that of the original one after four tensile
cycles and subsequently thermal treatment. The increased conductivity indicates that the destroyed
networks, which occur during the tensile process, can be healed during the post thermal treatment.

3.2. Light Radiation

Although heating is an easy way to repair damaged graphene/polymer composites, during
heating other parts of devices are susceptive to heat, thus heating will cause interference of other parts
of the devices and result in the deterioration of devices. Therefore, light radiation is an alternative way
to repair the damaged composites. Graphene has good ability of photothermal energy transformation
that makes the self-healing graphene/polymer composites usually show the same capacity [83].
Zhang et al. synthesized an ultrafast infrared (IR) laser-triggered self-healing composite material [68].
Due to the IR absorbing capacity of functionalized graphene nanosheets (FGNS), the temperature of the
composites increased from 30 ◦C to 150 ◦C over within 20 s under IR laser irradiation, which reaches
the healing temperature of rDA chemistry. The healing efficiency of the snipped specimen reached
more than 96% in terms of Young’s modulus, fracture strength, fracture elongation only by IR laser
irradiation in 1 min (Figure 7).
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The near-infrared (NIR) irradiation has been suggested as a non-invasive, harmless and highly
efficient skin-penetrating biomedical technique [84,85]. Tong and coworkers demonstrated a fast
self-healing GO-hectorite clay-poly(N,N-dimethylacrylamide) hybrid hydrogel realized by NIR
irradiation for only 2~3 min up to the strength recovery of ~96% [52]. GO acted not only as
a collaborative cross-linking agent, but also as a NIR irradiation energy absorber to transform it
to thermal energy rapidly and efficiently to promote the mutual diffusion of the polymer chains across
the cut interface. Liang and coworkers reported a self-healing bilayer hydrogel system [86]. When the
fracture surfaces of the cut hydrogel were contacted, the healing is achieved by irradiating with a NIR
illuminant with a wavelength of 808 nm and a power of 1.25 W. The self-healing behavior was ascribed
to the photothermal energy transformation property of GO. With the increase of GO content, the heating
rate of the hydrogels increased. Kim et al. synthesized self-healing PU/graphene nanocomposites with
mechanical, thermal, optical properties [62]. The self-healing ability of PU/graphene nanocomposites
was achieved because of intermolecular diffusion of polymer chains, which can be accelerated by
NIR absorptions.

Considering NIR as a non-invasive, harmless and highly efficient biomedical technique, it can be used in
photothermal therapy. Wang et al. reported a hydrogel made by cross-linking poly(N,N-dimethylacrylamide)
chains on 3D graphene networks that exhibits good neural compatibility, high conductivity, low
impedance and efficient NIR-triggered photothermal self-healing [57,87]. The self-healing hydrogel
can act effectively as a promising artificial tissue material.

In addition to IR or NIR, other wavelengths of light radiation can also achieve self-healing
capability. For example, Fei et al. fabricated a tri-layered, light-triggered healable and highly electrically
conductive fibrous membrane by depositing RGO and silver nanowires onto gold nanoparticles
incorporated poly(ε-caprolactone). The polymer chains interdiffuse across the crack surface of the
damaged fibrous membrane under 532 nm light irradiation, and recrystallize upon cooling after
turning off the continuous-wave diode laser. The surface conductivity recovery by 91% and tensile
strength of the membrane are still well maintained after multiple cutting-healing cycles [88].
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3.3. Microwave

Graphene has an excellent microwaves absorption capability due to its large area conjugated
π-structure [89,90]. Under microwaves absorption, the π-structure of graphene will make it
a giant electric dipole and transform microwaves into heat in the form of dipoles distortion [91],
thus the microwaves absorption can also be used for self-healing of the graphene/polymer
composites. For example, Zhang et al. utilized DA chemistry to prepare covalently crosslinked reduced
functionalized GO/PU composites with self-healing ability using microwaves [63]. The two broken
surfaces were immediately reunited when subjected to a gentle pressure and exposed to a 800 W
domestic microwave oven operating at 2.45 GHz for 5 min followed by 2 h at 70 ◦C without any
continuous pressure. The microwaves absorbed by reduced functionalized GO turned into heat and
then promoted the healing process of the composites based on DA chemistry. The healed samples still
possess good Young’s modulus, fracture strain and fracture stress. Iron oxide (IO) nanoparticles have
intrinsic microwave absorbing capacity and high thermal conductivity, which can also be incorporated
in self-healing composites. Karak et al. reported a tough self-healing elastomeric nanocomposite
containing IORGO, which exhibits the healing efficiency of 99% or more by microwave treatment [59].

3.4. Solvent-Assistant Self-Healing

Deionized water or organic solvent is a practicable external stimulus to heal damage [71,92–94].
Solvents can be helpful to the recombination of chemical bonds. In our group the hydrogels fabricated
by copolymerization of AM and DAC in the presence of GO can be healed by dropping of water [46].
The cut pieces were slightly put together with the fracture surfaces contacting each other. Because
the fresh fracture surfaces are relatively adhesive when the hydrogel was cut, no additional external
force is required for connecting the broken parts. After a drop of water was dropped on the fracture
surfaces, the healed sample can be stretched to a large strain by hand (Figure 8a–c). Without water
assistance, the healed hydrogel has a fracture stress of 248.9 kPa and the healing efficiency is about
45.6%. After self-healing with water assistance, the hydrogel reaches a stress of 503.4 kPa and the
healing efficiency on the base of fracture stress is 92.3%. These results indicate that ionic bonds and
hydrogen bonds can be reformed via water assistance.

In addition, salt solution can also facilitate the self-healing process. For example, Wang and Tong et al.
prepared a multiple shape memory, self-healable, and super tough PAA-GO-Fe3+ hydrogel [47].
The self-healing process is due to the strong ionic binding of Fe3+ ions to the carboxyl groups on the
PAA chains. Keeping the cut surfaces in contact and immersing them in FeCl3/HCl solution for a certain
time gave rise to the self-healing process. After 15 h immersion, the healed hydrogel can bear a dumbbell of
5.5 kg. Importantly, the break position of the healed hydrogel after tensile test is not the healing position,
proving the perfect connection of cut surfaces by Fe3+ ions (Figure 8d–i).
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surface (b). After standing for 24 h, the sample can be stretched to a large strain by hand (c). Reproduced
with permission from [46]. Copyright (2017) ACS Applied Materials and Interfaces. Photos of the
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(g) stretched to ≈600% after immersing in FeCl3/HCl for 5 h; (h) loaded with ≈5.5 kg after healing
for 15 h; (i) the healing surface and broken surface after tensile test of the hydrogel healed for 15 h.
Reproduced with permission from [47]. Copyright (2016) Macromolecular Materials and Engineering.

3.5. Simple Contacting without Any External Stimuli

This self-healing process is realized at room temperature without any external stimuli,
which is more practical considering the economic and operation aspects [78,95–99]. For instance,
Peng and Turng et al. fabricated a mussel-inspired electroactive chitosan/GO composite hydrogel [95].
The self-healing property was due to dynamic covalent bonds, hydrogen bonding and π-π
stacking. The two pieces of the hydrogel can be reconnected when the fractured surface contacts.
The stress–strain curves of the recovered hydrogel almost coincided with that of the original one.
Polyborosiloxane (PBS) is a well-known “solid–liquid” material whose viscoelastic properties (it flows
as a highly viscous liquid at low strain rates but behaves as a solid at high strain rates) promote fast
and complete healing due to its dynamic dative bonds. However Saiz et al. developed self-healing
graphene-based PBS composites [98]. The mechanical and electrical properties of the composites
can be autonomously and fully healed no matter scratched or complete ruptured just by placing the
fracture surfaces in contact at ambient conditions for 10 min without external stimulus. Since the
healing is driven by polymer flow and the dynamic dative bond interactions between polymer chains,
the self-healing can be repeated multiple times.

Self-healing speed is another key factor for practical application. Designing materials with high
self-healing speed without any external stimuli is highly desired. Bao et al. synthesized a rapid and
efficient self-healing thermo-reversible elastomer (HBN-GO) based on GO and amine-terminated
randomly branched oligomers [99]. Both the amorphous structure of the elastomer and its low glass
transition temperature (Tg) allow the polymer chains to diffuse and mix at room temperature, and be
able to self-heal at room temperature without the need of any plasticizer, solvent, healing agents or
external stimuli. Two cut pieces of samples were gently brought into contact and healed in less than
60 s. The obtained stress–strain curves were similar to that of the original uncut samples (Figure 9).
The HBN-1% GO sample can be healed to 60% of its original tensile strength prior to cutting by
bringing the two cut pieces back in contact for 1 min. In addition, complete healing of the mechanical
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properties can be obtained in 1 h. Increasing the amount of GO allows for more covalent cross-linking
and more restricted movement of polymer chains, which may explain the observed trend for increased
time for the self-healing process. Both the samples in HBN-2% GO and HBN-4% GO also possess fast
self-healing capabilities, in which they are able to recover 36% and 20% of their original extensibilities,
respectively, in 1 min. the self-healing capability only dropped to 90% efficiency after the two fractured
surfaces were left apart for 24 h, and dropped further to 50% after 96 h (Figure 9).

Kim et al. developed a mussel-mimetic nanocomposite hydrogel based on catechol-containing
polyaspartamide and GO [97]. Two pieces of damaged gels can be strongly healed by contacting with
each other due to the dynamic complexation between B3+ and catechol. No obvious cut line was seen
and the healed sample can be stretched without fracturing by the tweezers.
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the healing agent [36]. The GO microcapsules were embedded into a waterborne PU matrix to 
prepare self-healing and anticorrosive coatings. The self-healing of graphene/polymer composites 
can be achieved through multiple methods. For example, Huang and Chen et al. synthesized 
mechanical enhanced graphene-thermoplastic PU composites [91], which can be self-healed by IR 
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heat, IR light, and microwave [35].  

Figure 9. Strain-stress curves of the self-healing composites with GO at (a) 1 wt %, (b) 2 wt % and
(c) 4 wt % (termed HBN-1% GO, HBN-2% GO, HBN-4% GO, respectively) upon different healing time
at room temperature; (d) Strain-stress curves of the HBN-2% GO samples of 10 min healing at different
waiting time. The waiting was performed at approx. 0% relative humidity from [99]. Copyright (2013)
Advanced Materials.

3.6. Microcapsules and Others Healing Methods

Apart from the aforementioned self-healing conditions, microcapsules are also utilized to heal
the damaged composites, although this method cannot realize multiple healing in one damaged area.
Gao et al. fabricated GO microcapsules (GOMCs) in Pickering emulsions containing linseed oil as the
healing agent [36]. The GO microcapsules were embedded into a waterborne PU matrix to prepare
self-healing and anticorrosive coatings. The self-healing of graphene/polymer composites can be
achieved through multiple methods. For example, Huang and Chen et al. synthesized mechanical
enhanced graphene-thermoplastic PU composites [91], which can be self-healed by IR light, electricity
and electromagnetic waves with high healing efficiencies (Figure 10). Zhang et al. also reported
a recyclable epoxy resin (ER)/graphene nanocomposite, where a graphene crosslinked ER matrix via
DA reaction can be rapidly and efficiently healed via multiple approaches, including heat, IR light,
and microwave [35].
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4. Properties and Applications

4.1. Mechanical Property

Self-healing materials usually have poor mechanical properties, which limit their applications.
In order to improve the mechanical behaviors, graphene and its derivates were usually added into the
polymer matrix [36,52,63,67,81,100]. For instance, Deng and Wang et al. synthesized a gar-PAM/GO
nanocomposite double network (DN) hydrogel with good fatigue resistance and self-healing ability [48].
The hydrogels exhibit excellent mechanical properties with a fracture strain of 4600%, fracture
strength of 332 kPa and fracture dissipated energies of 11.5 MJ m−3. The healed hydrogels also
have favorable mechanical properties with a fracture strain of 2000% and a fracture strength of 153 kPa.
GO played a role as the cross-link agent in the polyacrylamide network, which improved the tensile
property (Figure 11).

The distribution of GO sheets in the composites affects the properties of the polymer composites
especially the mechanical property. GO sheets were slightly agglomerated at high contents
(0.5 wt %, 1.0 wt %). Primary GO sheets are well dispersed in the polymer matrix at low content
(0.1 wt %). Sun et al. fabricated a covalent bonding GO/PU composite with significant mechanical
reinforcement and thermal healable property. The Young’s modulus (21.95 ± 2.56 MPa) and fracture
strain (449 ± 16%) increased twice and the fracture stress (8.01 ± 0.71 MPa) even increased nearly
4 times at a GO loading of only 0.1 wt %. The enhanced mechanical properties of the composites
are ascribed to the good dispersion of GO and covalent linking based on DA chemistry [79].
To improve the mechanical properties, functional groups are usually introduced on the graphene
surface. Liu et al. synthesized maleimide functionalized GO and then added it into a PU matrix,
forming the self-healing composite [67]. The composites with maleimide functionalized GO exhibit
higher self-healing efficiency and mechanical properties than the composites with unmodified GO
because the maleimide functionalized GO serves as cross-linking points, improved the dispersion
and interfacial interaction with the polymer matrix, which effectively dissipates energy and obviously
increases the mechanical properties.
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memory behavior and self-healing ability [80]. An unfolded cube box was designed as the original 
shape and heated at 35 °C. The compressed box can recover its original shape after heated at 37 °C 
for 30 s and can be repeated 10 times (Figure 12a). The hyperbranched PU–TiO2/RGO 
nanocomposite fabricated by Karak et al. also possessed excellent shape memory behavior [50]. As 
RGO is a conducting material, it absorbs the energy from sunlight and efficiently transfers the 
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shape recovery.  

Figure 11. (a) Tensile stress–strain curves, and (b) elastic modulus and fracture dissipated energy of
a PAM/GO single network (SN) gel, agar-PAM DN gel, and agar-PAM/GO DN gel. (c) Loading–unloading
cyclic tensile stress–stain curves at a maximal strain of 1000%, and (d) corresponding dissipated energy of
three gels. (e) Photos of the stretching process of agar-PAM/GO DN gel (from i to iii). Reproduced with
permission from [48]. Copyright (2016) Advanced Engineering Materials.

4.2. Shape Memory Property

Besides high mechanical properties, shape memory behavior is an attractive property for
self-healing graphene/polymer composites due to their wide applications in machinery, electronic
device, chemical industry, biology and other fields [47,50,59,61,80,82]. For instance, Weng and Dai et al.
prepared a series of graphene–poly(acrylamide-co-acrylic acid) hybrid materials with shape memory
behavior and self-healing ability [80]. An unfolded cube box was designed as the original shape and
heated at 35 ◦C. The compressed box can recover its original shape after heated at 37 ◦C for 30 s and
can be repeated 10 times (Figure 12a). The hyperbranched PU–TiO2/RGO nanocomposite fabricated
by Karak et al. also possessed excellent shape memory behavior [50]. As RGO is a conducting material,
it absorbs the energy from sunlight and efficiently transfers the absorbed energy to the PU matrix.
Therefore, the nanocomposite reaches its transition temperature easily to recover its shape. The surface
temperature was measured to be 38.1–38.4 ◦C at the time of shape recovery.

For conductive graphene/polymer composites, the shape memory can be realized by electrical
conductivity. When the content of conductive filler in a polymer matrix exceeds the percolation
threshold, the conductive network can generate Joule heating. Therefore, the speed of the shape
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memory depends on the electrical conductivity of the filler. For instance, Mohammad and coworkers
synthesized fast electroactive shape memory and self-healing PVA/graphene nanocomposites.
The electrically triggered shape recovery experiments of the composite containing 3 and 4.5 wt % of
graphene (designated as PVA/Gr3 and PVA/Gr4.5, respectively) were conducted under four different
DC voltages (40, 50, 60 and 70 V) and the resulting recovery ratio as a function of recovery time is
presented in Figure 12b,c, respectively. It can be clearly seen that increasing the graphene content from
3 to 4.5 wt % leads to a dramatically faster recovery response [41].
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does not have free carries (electrons), on the other hand, as the polymer molecules pile together by 
van der Waals forces, the distances between the molecules are large, electrons overlap between the 
molecules are poor, so the free carries are very difficult to mobile in polymer [101]. Therefore, 
graphene can be used as an ideal filler to prepare conductive self-healing composite due to its 
inherent good conductivity [57,68,88,99,102]. The content of graphene highly affects the conductivity 
of self-healing composites and the conductivity of composites increases with the increase of 
graphene content. The charge-transfer resistance of a bPEI/(PAA-graphene) multilayer 

Figure 12. (a) The shape memory behavior of an unfolded cube box (10 mm × 10 mm × 10 mm) (top).
Photographs demonstrating the shape memory behavior of the unfolded cube box in different times
(bottom). Scale = 10 mm. Reproduced with permission from [80]. Copyright (2013) Macromolecular
Rapid Communications. Electrically activated shape recovery ratio as a function of time under various
triggering voltages for (b) PVAc/Gr3 and (c) PVAc/Gr4.5. The inset shows the sample geometry.
Reproduced with permission from [41]. Copyright (2016) Society of Chemical Industry.

4.3. Conductivity and Electrical Devices

Generally, a polymer is partially an insulator because the covalent bond of the polymer chain
does not have free carries (electrons), on the other hand, as the polymer molecules pile together
by van der Waals forces, the distances between the molecules are large, electrons overlap between
the molecules are poor, so the free carries are very difficult to mobile in polymer [101]. Therefore,
graphene can be used as an ideal filler to prepare conductive self-healing composite due to its
inherent good conductivity [57,68,88,99,102]. The content of graphene highly affects the conductivity
of self-healing composites and the conductivity of composites increases with the increase of graphene
content. The charge-transfer resistance of a bPEI/(PAA-graphene) multilayer polyelectrolyte film
electrode prepared by Ge et al. is 750 Ω, which is better than the pure bPEI/PAA electrode without
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graphene [76]. In conductive hydrogels, the water content of hydrogels is also a factor affecting
the conductivity [103]. For example, Tang et al. fabricated a versatile hydrogel composite based on
a commercial superabsorbent polymer and a hyperbranched polymer with RGO though a simple
hydrothermal method [78]. The hydrogel possesses a super water-absorption ability and a fast
electrical self-healing ability. The main factor influencing conductivity is the water content, and the
RGO nanosheets improve the sensitivity of samples of water content because RGO can contribute to
water dispersion and free ion (e.g., Na+) transportation.
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Figure 13. Electrochemical measurements and application for as-prepared stretchable and self-healing
supercapacitors. (a) Photographs, (b) cyclic voltammogram curves, and (c) evolutions of specific
capacitance of the supercapacitor before and after stretching to 100%. (d) Cyclic voltammogram curves,
(e) galvonostatic charge−discharge measurements, and (f) Nyquist plots of the supercapacitor before
healing and after self-healing cycles. (g) Illustration of the supercapacitor driving a photodetector
of perovskite nanowires. (h) Photographs of the supercapacitor before and after self-healing.
(i) Photocurrent dependence on time of the photodetector under illumination of on/off states driven
by the original and self-healing supercapacitor after a healing cycle; red corresponds to the self-healing
supercapacitor and black to the original. Reproduced with permission from [39]. Copyright (2017) ACS
Nano. (j) Fabricated supercapacitor temperature dependence of cyclic voltammetry profiles at a scan
rate of 20 mV s−1. The arrow indicates the direction of increasing temperatures. (k) Galvanostatic
charging–discharging profiles at a current density of 1 A g−1. The inset indicates calculated specific
capacitance with respect to temperature change. Reproduced with permission from [104]. Copyright
(2017) Scientific Reports.
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Supercapacitors are very common applications of conductive self-healing composite. For instance,
Liu and Gao et al. assembled a stretchable and self-healable supercapacitor [39]. The supercapacitor
was fabricated on two parallel RGO-based fiber springs wrapped with gel electrolyte and PU.
After being cut and healed, the electrochemical performances of the device were still maintained
at a high level (Figure 13a–i). Low temperature is a big challenge for applications of conductive
self-healing composite. Chung and Ok et al. reported a supercapacitor with a high energy density that
can work at low temperatures (even dropped to −30 ◦C) [104]. The supercapacitor was fabricated
with a combination of biochar-RGO electrodes and a polyampholyte hydrogel. The reason why the
supercapacitor performance is improved at low temperature is that water molecules strongly adsorbed
on hydrophilic polymer chains cannot participate in ice formation (Figure 13j,k).

4.4. Anticorrosive Coating

Fabrication of self-healing anticorrosive coatings has attracted attentions as it has the ability to extend
the service life and prevent the substrate from corrosive attack. The self-healing coating on the surface
of the material can repair the damaged surface automatically to protect the material [35,36,38,75,105–110].
For example, Lu and coworker reported a novel nanocomposite coating that consisted of lignin-modified
graphene and waterborne PU [38]. The self-healing, electrically conductive coatings with UV resistant can
be used as corrosion preventive or antistatic coatings. Gao et al. prepared a self-healing and anticorrosive
coating [36]. The anticorrosion properties of neat PU coatings and GOMCs/PU composite coatings were
characterized by the salt spray test on hot-dip galvanized steel (HDG) substrates with a 5% NaCl solution.
The HDG plate coated with GOMCs/PU coatings showed no visual evidence of corrosion even after
116 h of salt spray test, while some white corrosion products were observed on the neat PU coated HDG
plate (Figure 14).
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Figure 14. Schematic and images of (a) neat PU coating and (b) GOMCs/PU coatings subjected to the
salt spray test for 116 h. Schematic and images of (c) neat PU coating and (d) GOMCs/PU coatings
after scratching and 15 days of healing, subjected to the salt spray test for 43 h. Inset: the enlarged
view of the white block. Reproduced with permission from [36]. Copyright (2016) Composites Science
and Technology.

4.5. Biological and Pharmaceutical Applications

One of the threats to human health is microbial contaminations or infections. Microbial fouling is
the critical factor to degradation of polymeric self-healing materials. Therefore, antimicrobial activity is
a fantastic property of self-healing composites. The nanocomposites prepared by Karak et al. exhibited
good antimicrobial activity against Staphylococcus aureus, Escherichia coli and Candida albicans
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because sulfur-containing compounds and polysulfanes are generally considered to be antimicrobial
agents [61].

The medical field also has great interest in self-healing materials. For example, Hu et al. fabricated
a double network hydrogel based on β-CD functionalized graphene and N,N-dimethylacrylamide that
can achieve a self-healing ability at 37 ◦C [53]. Camptothecin (CPT) as a model anticancer drug was
loaded into the hydrogel before the second hydrogel network was introduced. The content of loaded
CPT and the cumulated CPT release in a β-CD functionalized graphene hydrogel are both better than
that of a pristine graphene hydrogel (Figure 15a). Therefore, this system had potential capacity as
anticancer drug carrier.

Due to the biocompatibility of DNA, the hydrogels can possess a variety of biological and
environmental applications. Shi et al. reported GO/DNA self-healing hydrogels with high mechanical
strength, excellent environmental stability, high dye-adsorption capacity and can be applied in tissue
engineering, drug delivery, and removing organic pollutant [81].

Self-healing hydrogels were proposed to be used as biomaterials because of the capability of
spontaneously healing any injury. Lu et al. prepared a mussel-inspired conductive, self-adhesive,
and self-healing tough hydrogel [102]. The hydrogel could be implanted because of its good long-term
biocompatibility and detection in vivo, which showed more accuracy in detecting/stimulating specific
muscles in deep tissue. The intramuscular hydrogel electrodes yielded excellent signals from the dorsal
muscle after implantation. The magnitude of the signals was in the range of 0.1–40 mV (Figure 15b–d),
which was much higher than the signals detected by the surface electrodes.
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Figure 15. (a) Cumulate CPT release of hydrogels in PBS. Reproduced with permission from [53].
Copyright (2014) Materials Technology Advanced Performance Materials. The hydrogel as intramuscular
electrodes. (b) Three hydrogel electrodes implanted into the dorsal muscle and the wires from
the electrodes were transcutaneously connected to the signal detector. (c) Photos of the hydrogel
implantation. (d) Example of the electromyographic signal recorded by the implanted hydrogel
electrodes from the muscle when the rabbit was interfered by external stimulation. Reproduced with
permission from [102]. Copyright (2016) Small.
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5. Future Perspectives

Self-healing graphene/polymer composites are one of the most promising intelligent materials.
The latest research progress in the preparation, properties and applications of self-healing
graphene/polymer composites is reviewed and some of the composites are summarized in Table 1.
Despite the rapid development of this research area, there are still many challenges that should be
solved and considered in view of the practical applications.

(1) Graphene, as a component of the self-healing composites, can play an active role in the
self-healing process because of the photothermal energy transformation ability. In this case, graphene
acts as an energy absorber to transform irradiation or sunlight to thermal energy rapidly and efficiently
to promote the mutual diffusion of the polymer chains across the damaged interface, thus facilitating
the self-healing process. On the other hand, graphene in the composites is only used as a reinforcing
agent to enhance the mechanical strength. In this case, the self-healing process may be impeded
because some interactions between graphene and polymers will limit the movement and diffusion of
the polymer chains. In addition, the glass transition temperature of the composites may be changed
after the addition of graphene, thus influencing the self-healing efficiency. Therefore, graphene as
a reinforcing agent can improve the mechanical performance. However, the self-healing efficiency
of the composite will be reduced. The mechanical properties and self-healing efficiency are two
contradictory aspects. How to balance the two aspects to achieve graphene/polymer composites with
both high mechanical strength and high self-healing efficiency is a challenge.

(2) For intrinsically self-healing graphene-based materials, simple contacting without any external
stimuli is considered to be most potential considering practical application. Therefore, exploring this
kind of self-healing graphene-based composites is desired.

(3) For electrical conductive graphene/polymer composites, the mechanical strength and the
conductivity are two contradictory aspects. Increasing the graphene content will increase the
conductivity of the composite, but excess graphene will reduce the mechanical strength. How to
obtain high mechanical strength and high conductivity of the graphene/composites with self-healing
properties is a challenge.

(4) A lot of polymeric materials should be developed which exhibit self-healing properties.
Also, it is highly challenging to endow the combined properties in a single material. The structural
incompatibility among such types of polymers is one of the crucial reasons for this difficulty.

(5) To improve the compatibility of polymer and graphene, graphene usually needs to be modified.
However, modification of graphene will lose some inherent properties of graphene. Therefore, how to
improve the compatibility of polymer and graphene and retain the inherent properties of graphene as
much as possible in the composite is a challenge.
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Table 1. The properties of various self-healing graphene/polymers composites.

Materials Self-Healing Mechanisms Self-Healing Condition Self-Healing Efficiency Original Mechanical Property Applications Reference

FG/TPU material PU chains diffuse IR light, Electricity,
Microwave (2.45 GHz)

98% of electrical
conductivity Tensile strength 40 MPa Transport industries,

construction industries, electronics [91]

P(AM-co-DAC)/GO
Hydrogels

Hydrogen bonds,
electrostatic interaction Drop water

>92% of tensile strength,
>99% of tensile strain and

>93% of toughness

Young’s modulus 1 MPa Tensile
strength 2 MPa - [46]

Chitosan/GO Hydrogel π-π stacking, hydrogen
bonds Contact (room temperature) - Adhesive strength 1 MPa

compressive stress 14 KPa
Electroactive tissue engineering

applications [95]

PU-DA-mGO Dynamic covalent bonds Heating (120 ◦C after 10 min) 90% of tensile strength Stress 38 MPa Aerospace, automobile,
coating, electronics, energy, etc. [67]

Graphene/PU Diels-Alder chemistry IR 96% of tensile strength Breaking strength 36 MPa
Young’s modulus 127 MPa Flexible electronics [68]

PVAc/graphene
nanocomposites

Diffusion of the polymer
chains 60 ◦C for 1 h 89% (mechanical properties) - Sensors and fast deployable and

actuating devices [41]

RFGO/PU composites Diels–Alder chemistry Microwaves 93% (mechanical properties) Stress 24 MPa
Young’s module 52 MPa

Flexible conductors,
strain sensors [63]

PAA-GO-Fe3+

Hydrogel
Ionic binding Contact and immersed in

FeCl3/HCl Nearly 100% tensile Tensile strength 2.5 MPa
Elongation 700% Soft actuators, robots [47]

PDA-pGO-PAM
hydrogel Non-covalent bonds Contact 60% of tensile strength 95%

of electrical conductivity Tensile strength 75 kPa Bioelectronics [102]

PAM/GO DN gel Hydrogen bond Heating 80 ◦C for 3 h 48% of tensile strength Elongation 4600% Fracture
strength 332 kPa Engineering fields [48]

Au@PCLx/rGO/Ag Fibers soften and flow Light irradiation (532 nm) 90% of tensile strength 91%
of conductivity Tensile strength 4.85 MPa Optoelectronic devices [88]

SR/GNP composite Reversible bonds Thermal annealing 87% of tensile strength Stress 1.3 MPa Seals, hoses and
automotive sector [43]

HPU-IO-RGO Diffusion of the polymer
chains Microwave sunlight 99%

Tensile strength 24.15 MPa
Tensile modulus 28.55 MPa

Toughness 110.8 MJ m3

Transport, construction,
electronics [59]

GO-Clay-PDMAA
Hybrid Hydrogels

Diffusion of the polymer
chains hydrogen bonds NIR 96% (mechanical strength) Strength 184 kPa Elongation

1890% Surgical dressing [52]

GO/PU composites Covalent bonding Heating 78% of tensile stress
Tensile modulus 21.95 MPa

Fracture stress 8 MPa
Young’s modulus 22 MPa

Smart materials and
structural material [79]

SHPU/grapheme
composites Interchain diffusion NIR 39% Stress 4 MPa Functional polymer [62]

GO/PAA composite
hydrogels

Diffusion of polymer
chains hydrogen bond

Contact at different
temperatures 88% (mechanical properties) Tensile strength 0.35 MPa

Elongation 4900% (healed) Biomedical and engineering fields [56]
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6. Conclusions

In this review, we have summarized the recent progress of graphene-containing polymer
composites with self-healing capability. The preparation methods, self-healing conditions,
and properties and applications of the graphene/polymer composites have been briefly discussed.
Finally, the further perspectives of the composites have been proposed. Intelligent materials and
self-healing materials, specifically for graphene-containing composites, are still in the initial stage.
There will be a great research space in the field. The progress will guide further development of the
self-healing graphene/polymer composites.
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