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Abstract: Polymers in highly confined geometries can display complex morphologies including
ordered phases. A basic component of a theoretical analysis of their phase behavior in confined
geometries is the knowledge of the number of possible single-chain conformations compatible
with the geometrical restrictions and the established crystalline morphology. While the statistical
properties of unrestricted self-avoiding random walks (SAWs) both on and off-lattice are very well
known, the same is not true for SAWs in confined geometries. The purpose of this contribution is
(a) to enumerate the number of SAWs on the simple cubic (SC) and face-centered cubic (FCC) lattices
under confinement for moderate SAW lengths, and (b) to obtain an approximate expression for their
behavior as a function of chain length, type of lattice, and degree of confinement. This information is
an essential requirement for the understanding and prediction of entropy-driven phase transitions of
model polymer chains under confinement. In addition, a simple geometric argument is presented that
explains, to first order, the dependence of the number of restricted SAWs on the type of SAW origin.

Keywords: freely jointed chain; confinement; enumeration; conformational entropy; phase transition;
self-avoiding random walk; face-centered cubic; simple cubic; lattice model; hard sphere

1. Introduction

Self-avoiding random walks (SAWs) have long been used in polymer science as one of the
simplest and most useful descriptions of polymeric chains. The relative simplicity of SAWs has
made them an ideal tool to investigate static and dynamic properties of polymers both analytically
and computationally [1–7] . They have proved particularly useful in the determination of universal
behavior and scaling laws for polymer systems ranging from individual chains to melts. The critical
behavior of SAWs is also closely related to that of the Ising model and to percolation [8–18].

Besides their extensive application in polymer science, SAWs have been a subject of mathematical
interest in their own right [19,20], mainly because of their close relationship to Brownian motion
and stochastic processes in general soft matter physics [21–23]. In spite of the very simple idea
underlying SAWs, comparatively few results have been rigorously solved in a mathematical sense [19].
As a consequence, a great deal of computational work has been carried out to complement analytical
approaches. From the numerical point of view, a currently active research area is the efficient
computation of the number of distinct conformations for an SAW of a given length on a lattice,
which is very closely related to the single-chain classical partition function [24]. Over the last several
years, increasingly sophisticated enumeration algorithms [25–27] have been continually pushing
the upper SAW length limit for which numerical results on enumeration can be obtained within a
reasonable computational time.
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Detailed knowledge of SAW properties in restricted geometries is an essential ingredient in
the study of confined polymeric systems, which can range from single macromolecules to highly
entangled melts in pores, slits, narrow gaps and nanocavities. Such properties include the number of
distinct SAWs for a given length, mean squared end-to-end vector, distribution of size, etc. Although
SAWs in such restricted geometries have also been studied [11,12,28–32], they have received far less
attention than unrestricted SAWs, one of the reasons being the apparent lack of applications in polymer
science. The relatively recent [33–48] increased interest in confined polymeric systems, accompanied
by significant advances in molecular simulations and the availability of experimental techniques
able to probe the behavior of individual macromolecules in channels, slits, etc. [49–53] is a strong
motivation for the investigation of SAWs in such confined geometries. Recent Monte Carlo (MC)
simulations [54] of highly confined, dense assemblies of linear, freely jointed chains of strictly tangent
hard spheres of uniform size show that such athermal polymer systems display an unexpectedly broad
range of morphologies, presumably connected by phase transitions.

In the following, “polymer” will refer to a linear chain of strictly tangent hard spheres, unless
explicitly stated otherwise. “Monomer” will refer to each of the hard spheres that make up a chain,
and “site” will refer to each of the points of a lattice. We will also refer interchangeably to the cubic P
and F lattices and the corresponding simple cubic (SC) and face centered cubic (FCC) crystals obtained
by placing a spherical base motif on all lattice points.

As stated earlier, the present work is motivated by the simulation results of Ref. [54] where
linear, freely-jointed chains of tangent hard spheres of uniform size are generated and successively
equilibrated under various conditions of confinement. The latter is realized through the presence of
flat, impenetrable parallel walls in one or more dimensions. Extreme confinement corresponds to the
state where inter-wall distance approaches monomer diameter leading eventually to the formation of
quasi 1D (tube-like) and 2D (plate-like) polymer templates. Typical computer-generated polymer
configurations can be seen in Figures 1 and 2 in lateral and cross-sectional views, respectively.
They correspond to systems containing a total of 720 monomers and average number of bonds per chain
N = 7, 17 and 35 at a packing density ϕ = 0.50. In all cases, chains are packed in an approximately
3.11× 3.11 square tube of length 77.8. All lengths are reported in units of monomer diameter (equal
to the SAW step length). Periodic boundary conditions are applied on the long dimension, and hard
walls exist in the short ones. More details on the simulation algorithm, the systems studied and the
corresponding model parameters can be found in [54].

Visual inspection of athermal chain configurations confined in square tubes, as the ones shown
in Figures 1 and 2, reveals the presence of highly ordered regions with crystalline defects. A more
precise analysis of the local environment around each sphere monomer identifies such structures as
slightly defective, coexisting FCC crystals of different orientations. Entropy is the sole driving force for
structural transitions between different ordered morphologies in such athermal systems. Accordingly,
an enumeration of all possible chain configurations on a specific regular lattice, subject to spatial
restrictions arising from confinement, would allow us to determine the conformational component of
entropy and eventually predict the stability of each distinct polymer crystal.

An analysis, based on the Characteristic Crystallographic Element (CCE) norm [55–57], of the
geometrical environment around the spherical monomers shows the ordered regions in such
highly-confined polymer structures to very closely correspond to an FCC crystal. One remarkable
aspect of such dense polymer systems in the bulk (i.e., without spatial confinement) is the existence of
highly ordered, crystalline phases [58]. In previous MC work [57–64], it was shown that the
apparent loss of entropy, caused by the regular organization of monomers in the sites of a crystal
lattice, is more than compensated for by the increase of available volume for monomers, and hence
translational entropy, as made evident by sharp decreases in asphericity and acylindricity of the
Voronoi cells associated with each monomeric site. The resulting crystalline structures strongly
resemble those appearing in Molecular Dynamics (MD) and MC simulations of single (monomeric)
spheres, well known since the pioneering work of Alder and Wainwright [65–67]. These crystalline



Polymers 2018, 10, 1394 3 of 25

polymer structures can be simplistically viewed as built from crystals of single hard spheres and
overlaying on them all possible linear paths of a given length that connect tangent spheres. Vice versa,
configurations of single hard spheres can be obtained trivially from available configurations of
polymers by deleting all bonds in chains.

Figure 1. Lateral views of computer-generated, linear freely jointed chains of tangent hard spheres of
uniform size confined in tubes of square cross section at ϕ = 0.50. All systems contain a total of
720 monomers. From top to bottom: chains consist, on average, of N = 7, 17 and 35 bonds. In all cases,
chains are packed in an approximately 3.11× 3.11 square tube of length 77.8. Periodic boundary
conditions are applied on the long dimension and impenetrable flat walls in the short ones. Ordered
regions with crystalline defects can easily be recognized by visual inspection. A precise analysis shows
them to be slightly defective, coexisting face-centered cubic (FCC) crystals of different orientations.
Monomers have been colored according to the chain they belong to. The tube axis direction in
both panels is along a direction of the crystallographic type 〈100〉. Image created with the VMD
software (version 1.9.3, Theoretical and Computational Biophysics Group, University of Illinois,
Urbana, IL, USA) [68].

Figure 2. Same as in Figure 1 but for cross-sectional views. From left to right: chains consist, on average,
of N = 7, 17 and 35 bonds.

As a matter of fact, if chain connectivity is ignored and the monomers are considered as individual
spheres, the resulting ordered structures are virtually indistinguishable, except for one main feature,
from those appearing in single hard sphere systems [69–71]. The distinguishing feature is the absence of
twinned structures in polymer systems [72]. In computer simulations, packings of single hard
spheres often form quite perfect tetrahedral clusters which tend to aggregate in pentatwins [73].
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The entropic conformational entropy loss associated with twinning in polymeric systems raises the
entropic barrier to the extent that individual crystals with single or multiple stacking directions and
abundant defects are observed predominantly in simulations.

Since difference in entropy is the only hindering or driving force for phase transitions in athermal
polymeric systems [6,74–76], the entropy calculation in confined geometries is an essential requirement
in understanding and predicting their phase behavior. Although all previously described characteristics
have been obtained from off-lattice simulations, the appearance of highly ordered crystalline phases in
quasi 1D (tube-like) confined polymer systems, such as the ones shown in Figures 1 and 2, motivates
the calculation of their entropy on crystal lattices under equivalent spatial restrictions.

Figure 3 is a simplified, generic, two-dimensional representation of the ordered structures
observed in MC simulations of highly confined polymeric systems [54]. The left panel represents
a typical system configuration (MC-snapshot) confined between parallel walls. The centers of the
spherical monomers (circles in solid line) are, on average, close to the sites of the perfect crystal
(circles in dashed line). Configuration space is sampled through changes in the positions of the
monomers as the MC progresses (such changes being compatible with chain connectivity, packing
density, confinement and crystalline morphology; see, for example, the corresponding MC algorithms
in [54,77]), much as monomer vibrations about the equilibrium position sample configurations in MD
simulations. At high densities, monomers remain close to the sites of the crystal lattice (shown in the
right panel), so that on-lattice polymer chains, built by joining the corresponding sites of the perfect
crystal, closely approximate the original off-lattice system from the conformational point of view.
Each of these chains is thus effectively a restricted SAW on the crystal lattice.

Figure 3. Schematic representation of ordered polymer structures in a confined geometry. Circles inside
a solid line represent spherical monomers, polygonal lines represent polymer backbones. Monomers
along a chain are strictly tangent (circles in solid line on left panel), monomers belonging to different
chains do not need to, but can also be tangent. On both panels, circles with dashed lines represent
sites of the perfect crystal. On average, polymer backbones can be considered self-avoiding random
walks (SAWs) on the sites of the perfect crystal (right panel).

In typical classical MC simulations [78–82], configurations for off-lattice polymer systems are
generated with a probability proportional to their statistical (Boltzmann) weight and correspond to
individual points in a configuration space spanned by continuously varying degrees of freedom,
e.g., Cartesian coordinates of monomer centers in an MD formulation based on Newton’s equations of
motion, or Euler, torsion and bond angles in a Lagrangian formulation, etc. Entropy or free energy
calculations require then the evaluation of a high-dimensional integral in configuration space [78].

On the other hand, configuration space for lattice SAWs (Figure 3, right panel) is discrete
and entropy is evaluated as a sum of Boltzmann probabilities or weights. Since all feasible
configurations are equally probable in athermal systems, entropy is proportional to the logarithm of the
number of different SAWs. While extensive work on the exact enumeration of SAWs on unrestricted
lattices in several dimensions (typically the d-dimensional hypercubic lattice Zd) has been carried
out, enumeration of SAWs on restricted cubic P and F lattices has not been reported to date.
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In this contribution, we evaluate, by direct enumeration, the number of SAWs on the cubic P and
F lattices subject to geometrical restriction and calculate the SAW size as a function of lattice type,
number of bonds and level of confinement.

2. Methods

In the following, an N-step three-dimensional SAW ωN on a lattice is defined as the ordered
sequence of sites ωN(0), ωN(1), . . . , ωN(N), where ωN(0) is the position vector of the SAW origin,
satisfying the condition ωN(i) 6= ωN(j) for i 6= j, and such that |ωN(i + 1) − ωN(i)| = 1,
i ∈ {0, 1, . . . , N − 1}, where it is assumed that the step length of the SAW is taken as the unit of
length, and |x| = √x · x denotes the usual Euclidean norm.

According to the previous definition of step length, two neighboring sites are 1 length unit apart
on both the cubic P and the F lattices. For the cubic P lattice, the edge length of the conventional cell is
therefore also a unit, whereas, in the cubic F lattice, the edge length of the conventional cell is

√
2.

The individual components of the position vector of the i-th site of an N-step SAW are
denoted by ωN

j (i) with j = 1, 2, 3. The squared end-to-end distance of the SAW
∣∣ωN

∣∣2 is given by∣∣ωN
∣∣2 = (ωN(N) − ωN(0)) · (ωN(N) − ωN(0)). With the previous definitions of unit length,

|ωN |2 = N2 for a fully extended SAW, whereas the minimum SAW length is min(|ωN |2) = 1.
These two values bracket the range over which the distribution of (ωN)2 is defined. If we denote by
cN the number of distinct N-step SAWs, the average squared end-to-end distance is given by:〈∣∣∣ωN

∣∣∣2〉 =
1

cN
∑
ωN

∣∣∣ωN
∣∣∣2 ,

where the sum is over the cN SAWs starting at a given lattice point ωN(0). For unrestricted SAWs,
ωN(0) can be any one of the countable infinity of lattice points, since the set {ωN} of all SAWs starting
at all points of a given lattice has the same space group symmetry as the lattice itself. Let us define
the following equivalence relation on the set {ωN} of all three-dimensional SAWs of a given length
N starting at all points of a given lattice: two SAWs ωN , ω′N ∈ {ωN} are equivalent, and we write
ωN ≈ ω′N , if there exists a geometrical transformation T (group element) in the space group Ia3̄d
such that T(ωN(i)) ≈ ω′(i)N i ∈ {0, 1, . . . , N}. The set of all distinct cN SAWs is then the set of all
equivalent classes {ωN}/cN . For confined SAWs, the introduction of geometric restrictions will reduce
this trivial multiplicity (which is due to the maximal symmetry of the unconfined lattice).

For unrestricted lattices, the number cN and thus the computational effort for the exact
enumeration problem for SAWs are believed to grow exponentially with power law corrections
as N increases, instead of the purely exponential growth for simple non-SAWs. More specifically,
it is conjectured, and there is strong numerical and nonrigorous evidence, that cN and

〈∣∣ωN
∣∣2〉

depend on N as:

cN ∼ AµN Nγ−1, (1)〈∣∣∣ωN
∣∣∣2〉 ∼ DN2ν, (2)

where A, D, µ, γ and ν are (dimension dependent) positive constants. The constant A is known
as the amplitude, µ as the connective constant, while γ (the entropic exponent) and ν are critical
exponents. For simple non-SAWs, γ = 1 and ν = 1

2 . Estimates and bounds for µ, ν and γ for SAWs are
available [25,83–89]. Approximate values in three dimensions are µ ≈ 4.684, γ ≈ 1.157 and ν = 0.588.

The value of cN has been the object of increasingly refined and extensive calculations. Milestone
calculations for the 3D cubic P lattice are: Orr’s N ≤ 6 [24], Fisher and Sykes N ≤ 9 [17,90,91],
Guttmann N ≤ 21 [83,88,91–94], MacDonald et al. N ≤ 26 [84,88], Clisby et al. N ≤ 30 [87],
Schram et al. N ≤ 36 [25–27], this latter value being the current record, obtained by the length
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doubling method. The latter group has also determined the current highest values of cN on the
BCC (body-centered cubic) (N = 28) and FCC (N = 24) unrestricted lattices. The continual
growth of the range of known values of cN has made it possible to obtain more accurate numerical
estimates of the various parameters appearing in Equations (1) and (2). Extrapolation by means of
differential approximants and direct fitting to asymptotic expansions yields values for γ and ν in good
agreement with those obtained by the MC renormalization group [95], conformal bootstrap [96] and
field theory [97].

In this contribution, we present results for the cubic P (SC) and cubic F (FCC) lattices restricted to
a pore or “tube” of square cross section. While the complete set {ω} of SAWs on the unrestricted lattice
possesses the maximal crystallographic symmetry of space group Ia3̄d, the introduction of geometrical
restrictions reduces the symmetry on the one hand and, on the other, introduces additional freedom in
the definition of the problem. For polymers confined in a pore or tube, the natural correspondence
would be to an SAW whose growth is limited in the plane transversal to the tube direction. The new
degrees of freedom, which are not meaningful for unrestricted SAWs, are the orientation of the tube
axis, the size of its cross-section and the origin of the SAW: the orientation of the tube axis will be
defined by direction indices according to crystallographic practice: [ijk]. The cross section will be
assumed to be a square of side L, measured in units of SAW step length. Finally, cN will be calculated
for each distinct origin located on the tube cross section at x = 0.

The value of cN will of course depend on the choice of the origin and on the doubly countable
infinity of degrees of freedom: direction [ijk] and tube cross section L. In the MC simulations of confined
polymers that motivate this work, hard-sphere chains confined to tubes of square cross-section are
observed to preferentially form quite perfect FCC crystalline domains with their [100] aligned along
the tube axis. For both the SC and FCC lattices, we will thus consider the geometrically restricted
lattice RL(L) to consist of all the lattice points of coordinates x contained in the square-section “tube”
defined by:

RL(L) = {x | x1 ∈ Z , |x2|, |x3| < L}, (3)

where the unit of length is the SAW step length. In Equation (3), the tube has been assumed to be
oriented parallel to one of the three standard cubic crystallographic axes, or, equivalently, to belong to
the direction type 〈100〉. The x1 (or x) axis [98] has been chosen without loss of generality due to the
equivalence of all three axes in the cubic system. The sides of the tube are contained in planes of the
crystallographic form {100}.

Unlike in the references cited above, and again motivated by the MC simulations of hard-sphere
model polymers confined to tubes, the range of SAW lengths investigated in this work has been
kept modest. The reason is twofold: the rich morphological behavior of confined polymers is
already clearly observable in MC simulations of comparatively short chains (N ≈ 5–15). This can be
understood by observing the structural similarity of the ordered chain morphologies presented in the
panels of Figures 1 and 2 and which correspond to systems characterized by different chain lengths
(from N = 7 to 35). Furthermore, once cN in this range is known, it can be used as the basis of reliable
approximations for the prediction of entropy-driven phase transitions for much longer chains as well.
For these two reasons, we have employed the direct enumeration procedure to determine cN .

The introduction of the tube restriction reduces the symmetry of the full cubic lattice to
that of tetragonal space group I41/acd. As a consequence, lattice sites in the tube cross section
are not all identical any more, but split into subsets of SAW origins Oi, all sites in a subset being
crystallographically equivalent. We will refer to the cardinality |Oi| of these subsets as their multiplicity
and will label each of the distinct origins by a type which effectively corresponds to the numerical
subindex, i, of each subset. For example, there are three possible origins for SAWs on an SC lattice
restricted by a tube of size 3× 3, with multiplicities (type 1) |O1| = 4, (type 2) |O2| = 8, (type 3)
|O3| = 4 (Figure 4), and six possible origins for SAWs on an FCC lattice restricted by a tube of size
3
√

2× 3
√

2, with multiplicities |O1| = 4, |O2| = 8, |O3| = 4, |O4| = 4, |O5| = 4 and |O6| = 1 (Figure 5).
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1(4){1/4}
1(4){1/4}

2(4){2/4} 3(1){4/4}

1(4){9/36}

2(8){15/36} 3(4){25/36}

Figure 4. Numbering scheme for all possible origins of SAWs restricted to a tube of square cross section
on the cubic P (simple cubic, SC) lattice, for three tube cross section sizes. In all panels, black circles
represent lattice points, squares are the tube cross sections: 1× 1, 2× 2 and 3× 3 from left to right.
The view is along the tube axis in direction [100]. Numbers on the left correspond to the label of each
distinct origin (type). Numbers in parentheses correspond to the cardinality (multiplicity) of each
subset. Subindices in braces correspond to area ratios (overlaps), ri.

1(2)
{1/4}

1(4){1/4}

2(1){4/4}

1(2){9/36}

2(4){15/36}

3(2){25/36}

4(1){16/16}

1(4){4/16}

2(4){8/16}

3(4){9/16}

1(2){25/100}

3(4){45/100}

4(2){49/100}

2(4){35/100}

6(2){81/100}

5(4){63/100} 6(1){36/36}

1(4){9/36}

2(8){15/36}

3(4){16/36}

4(4){24/36}

5(4){25/36}

Figure 5. Numbering scheme for all possible origins of SAWs restricted to a tube of square cross section
on the cubic F (FCC) lattice, for six tube cross section sizes. In all panels, black circles represent lattice
points, squares are the tube cross sections: 0.5

√
2× 0.5

√
2, 1
√

2× 1
√

2, 1.5
√

2× 1.5
√

2, 2
√

2× 2
√

2,
2.5
√

2× 2.5
√

2, and 3
√

2× 3
√

2 from left to right, and top to bottom. The view is along the tube
axis in direction [100]. Numbers on the left correspond to the label of each distinct origin (type).
Numbers in parentheses correspond to the cardinality (multiplicity) of each subset. Subindices in
braces correspond to area ratios (overlaps), ri.

Figures 4 and 5 schematically show the definition of tube size and the numbering/labeling scheme
for the SC and FCC restricted lattices, respectively. Thus, an n× n tube has a cross section of the same
size as n× n conventional cubic unit cells arranged in a square array, and its side measures L = n
units of length (SAW step) for the SC lattice, and L = n

√
2 for the FCC lattice. In these figures,

a number placed at selected lattice points is their label, corresponding to the notation types in
Tables A1–A9. Each different type corresponds to a different origin for the SAW. The number in
parentheses corresponds to the multiplicity of that type (number of crystallographically equivalent
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restricted lattice points) while the subindex in braces refers to the overlap, to be defined and discussed
in Section 4.

As the size of the tube cross section grows, the number of distinct origins (i.e., of different
types) increases. The value of cN reported below is given separately for all possible distinct
(crystallographically non-equivalent) origins: the values of cN in Tables A1–A9 correspond to the
number of SAWs starting from only one of all equivalent lattice sites of a given type. The value of the
multiplicity is a useful piece of information for situations in which the I41/acd symmetry of the tube is
possibly further reduced by other geometrical considerations. For example, a flat, comb-like array of
equidistant, identical parallel tubes joined at one end by a common channel loses (among others) all
fourfold rotation and screw axes of symmetry, which lowers its space group symmetry to orthorhombic
Imma. For the estimation of the entropy of polymers confined to such a nanostructure, origins
belonging to the same subset for the isolated tube are, at least in principle, no longer equivalent.

For the calculation of cN for SAWs of the moderate lengths considered in this work, simple
enumeration was more than adequate: cN was obtained by exhaustively testing all possible SAWs of
length N for self-intersections or for violation of the geometrical restrictions, and discarding those
that fail to fulfill self-avoidance or geometrical constraint. Computations were carried out on Intel
i7-8700K CPUs with 16 GB of memory. For benchmark purposes in the case of unconstrained SAWs,
the computational (CPU) time required for the full enumeration of a N = 17-SAW in the SC lattice
and of a N = 13-SAW in the FCC lattice reaches approximately 108 and 928 h, respectively.

It must be emphasized that the goal of this work is not to achieve high-accuracy
values [27,85,86,89,99,100] in the calculation of the critical exponents or the leading or sub-leading
correction-to-scaling exponents, but to obtain correlations for cN for chains of moderate length to be
used in the understanding of the entropic mechanisms of phase transitions observed in the off-lattice
(continuum) simulations of confined and densely-packed polymers.

3. Results

The values of cN for SAWs on lattices restricted to a tube of cross section L× L oriented along the
〈100〉 direction are presented in Tables A1–A3 for the SC lattice, together with their average squared
end-to-end distance. The corresponding results for the FCC lattice can be found in Tables A4–A9.
SAW origin types correspond to the labeling schemes of Figures 4 and 5. The coefficients of best fit of
the scaling laws in Equations (1) and (2) to the data of Tables A1–A9 are shown in Tables 1 and 2.
As expected, the values of all coefficients are specific for each lattice type, tube size and type of
origin. Within a given tube size, restricted SAWs starting at more confined lattice sites (lower type)
have systematically lower values of cN than those further removed from the boundaries. Thus,
for SAWs of N = 17 restricted to a 3× 3 tube in the SC lattice, cN = 9, 239, 393, 494 for the more
confined, in the corner of the tube, type 1 (of multiplicity 4), cN = 12, 003, 817, 994 for the less confined
type 2 (on the side wall with multiplicity 8) and cN = 14, 972, 474, 238 for the least confined type 3
(with multiplicity 4). For comparison, using the same number of steps the number of different SAW
configurations is (N = 17) cN = 473, 730, 252, 102 for the unrestricted SC lattice.

Based on the results presented in Tables A1–A9 Figure 6 shows the log-log plot of the number of
distinct SAWs, cN , versus the number of SAW steps, N, for all SC (left panel) and selected FCC
(right panel) lattices for different SAW origins (types) and sizes of the confining tube. Also shown
for comparison purposes are the corresponding results for the unrestricted cases. It can be clearly
seen that, for a given tube size the closer to the tube surface, the lower the total number of distinct
SAWS; for origin types residing in the corner of the tube, the larger the tube size, the larger the SAW
population. Compared to the unrestricted case, type 1 (corner) of the smallest tube shows always the
largest difference while the type of highest value (farthest from the corner) of the largest tube shows
the closest similarity, independently of lattice type.
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Table 1. Calculated coefficients in scaling laws (Equations (1) and (2)) for SC lattice restricted to a tube
oriented along [100]. Universal exponents for unrestricted SAWs are marked with an asterisk *.

Tube Size Type A µ γ D ν

1× 1 1 1.634 2.410 1.417 0.151 1.039

2× 2 1 1.171 3.354 1.202 0.399 0.750
2 1.519 3.262 1.289 0.315 0.794
3 1.926 3.133 1.430 0.259 0.834

3× 3 1 0.993 3.975 0.923 1.610 0.477
2 1.303 3.806 1.133 1.052 0.543
3 1.661 3.606 1.393 0.656 0.620

unrestricted SC lattice: 1.269 4.719 1.102 * 1.046 0.603 *

Table 2. Calculated coefficients in scaling laws (1) and (2) for FCC lattice restricted to a tube oriented
along [100]. Universal exponents for unrestricted SAWs are marked with an asterisk *.

Tube Size Type A µ γ D ν

0.5
√

2× 0.5
√

2 1 1.876 2.674 1.564 0.187 1.047

1
√

2× 1
√

2 1 1.063 4.696 1.745 0.203 0.899
2 2.430 4.928 1.296 0.171 0.952

1.5
√

2× 1.5
√

2 1 0.747 6.615 1.352 0.710 0.597
2 1.213 6.540 1.331 0.477 0.671
3 1.917 6.267 1.410 0.314 0.756

2
√

2× 2
√

2 1 0.622 7.987 1.030 1.914 0.404
2 1.062 7.512 1.282 1.163 0.480
3 1.586 7.532 1.207 0.910 0.520
4 1.764 6.843 1.634 0.521 0.624

2.5
√

2× 2.5
√

2 1 0.568 8.790 0.844 2.420 0.384
2 0.911 8.740 0.873 1.916 0.408
3 0.957 8.347 1.128 1.687 0.421
4 1.413 8.477 1.004 1.421 0.444
5 1.494 8.023 1.279 1.182 0.467
6 1.577 7.606 1.544 0.910 0.505

3
√

2× 3
√

2 1 0.544 9.200 0.749 2.515 0.403
2 0.906 8.827 1.028 1.849 0.425
3 1.335 8.995 0.889 1.578 0.448
4 1.396 8.575 1.200 1.318 0.460
5 1.460 8.224 1.415 1.262 0.454
6 1.456 8.172 1.505 1.062 0.474

unrestricted cubic F lattice: 1.190 10.06 1.135 * 0.934 0.598 *

We should note here that Equation (1), quantifying the dependence of cN on N, is manifestly
valid for the whole range of studied systems, independently of lattice type, tube confinement and
SAW origin. However, the same is not true for Equation (2) which relates SAW size, as quantified
by the average square end-to-end distance, with a number of SAW steps. For the unrestricted lattice,
Equation (2) remains accurate in the whole N-range. In sharp contrast, for the confined lattices,
especially for SAW origins near the confining tube, anomalous behavior is clearly observed for small-N
SAWs. This is particularly evident in the results of Figure 7 showing log-log plots of

〈∣∣ωN
∣∣2〉 versus

N for SC (filled symbols) and FCC (open symbols) unrestricted (black color) and confined (red or
green color) lattices. For the latter, we differentiate between SAW origins corresponding to the most
(SC: type 1 in 1× 1 tube; FCC: type 1 in 0.5

√
2× 0.5

√
2) and least (SC: type 3 in 3× 3 tube; FCC: type 6

in 3
√

2× 3
√

2) confined cases. The combination of spatial restrictions along with the anisotropy in
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cell size leads to this anomalous scaling for early-N SAWs. Thus, all D and ν coefficients reported in
Tables 1 and 2 correspond to fittings applied on data covering the late-N SAW regime.
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Figure 6. Log-log plot of the number of distinct SAW configurations, cN , versus the number of SAW
steps, N, for the SC (left panel) and the FCC (right panel) lattices. Tube cross-sections correspond to
1× 1, 2× 2 and 3× 3 for SC and to 0.5

√
2× 0.5

√
2, 1
√

2× 1
√

2, 1.5
√

2× 1.5
√

2 and 3
√

2× 3
√

2 for FCC.
For a given lattice and confining tube, results are shown for every possible distinct SAW origin (type).
Also shown for comparison are the corresponding curves for the unrestricted lattices (solid black lines).

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 1 . 2 1 . 4
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2 . 0
 S C ,  u n r e s t r i c t e d
 S C ,  1 ´ 1 ,  t y p e  1
 S C ,  3 ´ 3 ,  t y p e  3
 F C C ,  u n r e s t r i c t e d
 F C C ,  2 - 0 . 5 ´ 2 - 0 . 5 ,  t y p e  1
 F C C ,  3 ( 2 0 . 5 ) ´ 3 ( 2 0 . 5 ) ,  t y p e  6
 s l o p e  =  1 . 2 1 6
 s l o p e  =  2 . 0 3 6

log
(<|

�
N |2 >)

l o g ( N )
Figure 7. Log-log plot of the average squared end-to-end distance,

〈∣∣ωN
∣∣2〉, versus the number of SAW

steps, N, for the SC (filled symbols) and the FCC (open symbols) lattices. The black color corresponds to
unrestricted lattices, while red and green to confined ones. The solid blue line corresponds to best linear
fit on the whole range of SAW data for unrestricted SC lattice. The dashed blue line corresponds to
best linear fit on the late-N SAW range for the most confined SC case (type 1 in 1× 1 tube).

In addition to cN and
〈∣∣ωN

∣∣2〉, the discrete probability distribution functions (PDF) and

cumulative distribution functions (CDF) of
∣∣ωN

∣∣2 are available. In Figures 8 and 9, the effects of
tube size (left panel), for a fixed SAW origin, and of origin type (right panel), for a fixed tube cross
section, on the distribution for SAWs of length N = 16 are presented for the SC and FCC lattices,
respectively. As expected, higher confinement (i.e., smaller tube cross section) leads to more stretched
SAWs and a distribution shifted to higher values of

∣∣ω16
∣∣2 (remarkably higher histogram values above∣∣ω16

∣∣2 at and above 50). This shift is particularly evident in the cumulative distributions (left panels of
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Figures 10 and 11). The strong confinement induced by the small tube 1 × 1 definitely leads to
significantly more stretched SAWs.

0 2 5 5 0 7 5 1 0 0 1 2 5 1 5 0 1 7 5
0 . 0 0
0 . 0 2
0 . 0 4
0 . 0 6
0 . 0 8
0 . 1 0
0 . 1 2
0 . 1 4
0 . 1 6
0 . 1 8
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F(|

�
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| � 1 6 | 2
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0 . 1 4
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�
16 |2 )

| � 1 6 | 2

 t y p e  1
 t y p e  2
 t y p e  3

Figure 8. Probability distribution function for
∣∣ω16

∣∣2 for SAWs of fixed length N = 16 on restricted
SC lattices. The left panel shows the effect of the tube cross section for a fixed SAW origin (type 1);
the right panel depicts the effect of SAW origin (type) for a fixed tube cross section (2× 2).
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Figure 9. Probability distribution function for
∣∣ω12

∣∣2 for SAWs of fixed length N = 12 on restricted
FCC lattices. The left panel shows the effect of tube cross section for a fixed SAW origin (type 1);
the right panel depicts the effect of SAW origin (type) for a fixed tube cross section (2

√
2× 2

√
2).

On the other hand, the SAW origin type has little influence on the spread of the distribution,
but it does increase or reduce the probability of certain SAW extensions (see, for example, the higher
red bars in the right panel of Figure 8). It is also remarkable that, for a given N and tube cross
section, the most confined SAWs (type 1 in this case) show non-vanishing probabilities for values of∣∣ω16

∣∣2 for which the probability for types 2 and 3 is zero (isolated black bars in the plot of Figure 8

at
∣∣ω16

∣∣2 = 12, 24, 44, 73). Identical conclusions can be drawn for the effect of origin type and tube
length for SAWS on FCC lattices according to the probability distributions presented in Figure 9.
As can be seen in the right panels of Figures 10 and 11, there is virtually no difference in the cumulative
distributions for the different types of SAW origins.
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Figure 10. Cumulative probabilities for the distribution functions of
∣∣ω16

∣∣2 for SAWs of fixed length
N = 16 on restricted SC lattices of Figure 8. Also shown in the left panel are best fits using the
gamma function.
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Figure 11. Cumulative probabilities for the distribution functions of
∣∣ω12

∣∣2 for SAWs of fixed length
N = 12 on restricted FCC lattices of Figure 9. Also shown in the left panel are best fits using the gamma
function for selected cases.

The effect of chain length on the cumulative distribution of
∣∣ωN

∣∣2 is shown in Figures 12 and 13
for the SC and FCC lattices, respectively. With respect to SC, according to the data in Figure 12, the four
curves corresponding to N = 11, 13, 15, 17 (left panel) are noticeably different, as they should be for
different values of N. However, they come much closer together when scaled by 1/N (right panel of
the same figure). In other words, the characteristic ratio of the SAWs is fairly constant in this range of
N, with a median value of approx. 1.25. A very similar conclusion can be drawn for the FCC case
(Figure 13), where the characteristic ratio shows little variation with the number of SAW steps.
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Figure 12. Cumulative probability distribution function for
∣∣ωN

∣∣2 for SAWs of different length in a
2× 2 tube and for SAW origin of type 1 (left panel) on restricted SC lattices. The right panel shows
the same distributions, scaled by 1/N, which for a step length of 1 is numerically equivalent to the
characteristic ratio of the SAW [101]. Also shown in the left panel are best fits using the gamma function.
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Figure 13. Cumulative probability distribution function for
∣∣ωN

∣∣2 for SAWs of different length in a
2
√

2× 2
√

2 tube and for SAW origin of type 1 (left panel) on restricted FCC lattices. The right panel
shows the same distributions, scaled by 1/N, which for a step length of 1 is numerically equivalent to
the characteristic ratio of the SAW [101]. Also shown in the left panel are best fits using the
gamma function.

4. Discussion

An inspection of the tables shows that cN is, as expected, lower for the restricted lattices than
for the unrestricted ones, the more so, the smaller the restricting tube. The black, solid line in both
panels of Figure 6 represents in log-log scale the growth of cN with SAW length N for the unrestricted
case, while all other lines correspond to the value of cN for SAWs restricted on confining tubes of
specific sizes for all possible different origins, both on the cubic P (left panel) and F (right panel) lattices.

The faster growth of cN for unrestricted SAWs is also reflected in the larger values of the connective
constant µ, which is the dominant term in Equation (1) for large values of N: µSC = 4.719 for the
unrestricted SC lattice, against µSC

r = 3.798 (multiplicity-based, weighted average over all three types of
origin) for the restricted 3× 3 SC lattice, while the corresponding value drops to just µSC = 2.410 for
the 1× 1 tube, a decrease of approximately 50% with respect to the bulk case. For the FCC lattice,
the analogous numbers are: µFCC = 10.06 (unrestricted), µFCC

r = 8.751 (weighted average over all
six types of origin for the restricted 3

√
2× 3

√
2 FCC lattice) and µFCC = 2.674 for the most confined

0.5
√

2× 0.5
√

2 FCC case, the latter being around 75% less than the value of the unrestricted FCC SAW.
This behavior is in agreement with the geometrical meaning of connectivity: restricted SAWs that start
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close to one of the boundaries have, on average, fewer neighbors than those that start farther from the
confining tube.

In addition, the average (weighted by the type multiplicity) connectivity constants in Tables 1 and 2
reflect this trend very clearly: as tube size increases, the values of the average connectivity constant
increase and approach the unrestricted values. For FCC lattices of sizes 0.5

√
2× 0.5

√
2, 1
√

2× 1
√

2,
1.5
√

2 × 1.5
√

2, 2
√

2 × 2
√

2, 2.5
√

2 × 2.5
√

2 and 3
√

2 × 3
√

2, the multiplicity-weighted average
values of µ are 2.674 (73.4%), 4.742 (52.9%), 6.491 (35.5%), 7.613 (24.3%), 8.344 (17.2%) and 8.751
(13.1%), where numbers in parentheses denote percentage reduction with respect to the connectivity
constant of the bulk FCC lattice.

Furthermore, for a given size of the tube, the values of cN for different origins tend to converge
as N grows. This is most clearly observed in the left panel of Figure 6: the curves for the three origin
types are already quite close for the moderate value N = 17 for all restricted SC lattices. The same
is true for the SAWs of length N = 12 on confined FCC lattices as seen in the right panel of Figure 6.
For a given lattice type (FCC or SC) and a given spatial restriction (tube cross section), the value of
cN must approach a common limit as N → ∞, independently of the particular type of SAW origin:
sufficiently long SAWs lose the “memory” of their starting point so that:

lim
N→∞

log ci
N

log cj
N

= 1 i ∈ Oi, j ∈ Oj i 6= j

must hold, where Ok is one of the sets of equivalent SAW origins for a restricted lattice, and ci
N is

the number of restricted SAWs of length N starting at an origin of type i ∈ Oi. The rate at which ci
N

approaches this common N → ∞ limit is of course dependent on the lattice. As can be seen in Figure 6,
SAWs on the restricted FCC lattice tend to this limit more slowly than SAWs on the SC one.

In Figure 14, the ratio
log ci

N
log c1

N
for different SAW origins (i.e., the ratio of the curves represented

in Figure 6 divided by the curve for cN of SAW origin of type 1, taken arbitrarily as reference) is
seen to indeed approach unity as N increases for both SC (left panel) and FCC (right panel) lattices.
Systematically, the ratio tends faster to unity for SAW origins that lie close in space and for smaller tube
cross sections. For example, for an SAW of length N = 13 on the 3

√
2× 3

√
2 FCC lattice for type of

origin i = 2, 4 and 6, the corresponding ratios are 1.026, 1.048 and 1.051. In parallel, for an SAW of
N = 17 steps on a SC lattice with origin type 2, the ratio increases from 1.007 for a 2× 2 tube to 1.011
for a 3× 3 one.
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Figure 14. Ratio
log ci

N
log c1
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as a function of SAW steps, N, for different SAW origins i = 2, . . . , |Ok| on

(left): 2× 2 (solid lines) and 3× 3 (dashed lines) SC and (right): 1
√

2× 1
√

2 (solid line), 2
√

2× 2
√

2
(dashed lines) and 3

√
2× 3

√
2 (dotted lines) FCC lattices.
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The dependence of cN on SAW origin (type) for given N and tube size can be explained, at least
approximately, by a simple geometric argument. Since a higher degree of confinement leads to a
greater reduction in cN , it seems natural to attempt a scaling of ci

N by means of the following area ratio
or overlap:

ri =
a(Ai ∩ Atube)

a(Atube)
≤ 1,

where a(Ai ∩ Atube) is the area common to a tube cross section (a square in the present work) centered
at the SAW origin of type i (square in dotted line in Figure 15), and the tube cross section. The overlap
ri is the ratio of this area (small square in Figure 15) to the entire tube cross section. More highly
confined SAW origins (i.e., a corner, like type 1 in the 3× 3 restricted SC lattice) have lower values of
ri, while those close to the center of the tube have higher ri. Taking the SC lattice restricted by a 3× 3
tube (rightmost panel in Figure 4) as an illustrative example, the values of the overlap for the three
distinct types of origin are:

r1 =
1
4

r2 =
5

12
r3 =

25
36

.

tubeA

iA

i tubeA A∩

i

Figure 15. The overlap ri is defined as the area (small square) common to a tube cross section centered
at the origin of type i (dashed line) and the tube cross section (solid line), divided by the complete tube
cross section.

The overlap values for all SAW origin types in the SC and FCC lattices used in the present work are
reported in braces in the schemes of Figures 4 and 5. In fact, going back to the sketches, the labeling of
the distinct types of SAW origins is based on the overlap value of a given site: the lower the overlap
value, the lower the origin index. According to the definition, overlap values for the SC and FCC
lattices, confined in tube with direction type 〈100〉, are bounded between 0.25 (assigned always to
origin type 1) and 1. As can be seen in the reported area ratios of Figures 4 and 5 for a given tube size,
no two distinct origin types have the same overlap value. With respect to the confined 3

√
2× 3

√
2

FCC lattice, origin types 1, 2, 3, 4, 5 and 6 are characterized by area ratios (overlaps) of 9/36, 15/36,
16/36, 24/36, 25/36 and 36/36, respectively.

Based on the above, it is tempting to study the behavior of the curves
ci

N
ri (log-log plots in

Figure 16) versus N, where now the number of distinct SAW configurations for a given origin type is
divided by the corresponding overlap of that type. The comparison of the left panel of Figure 6 with
Figure 16 strongly suggests that this simple geometric argument does indeed successfully explain to
first order the dependence of cN on the type of SAW origin. Curves corresponding to different tube
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cross-sections and origin types seem to be brought closer together when they are scaled by the proper
overlap values.
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Figure 16. Log-log plot of the number of distinct SAW configurations scaled by the inverse overlap,
ci

N/ri, as a function of SAW steps, N, on confined SC (left panel) and FCC lattices (right panel) for
various origin types and tube cross-sections. Also shown for comparison are the corresponding results
for the unrestricted SAW (solid black line).

5. Conclusions

In this paper, we have evaluated the number and characteristic dimensions of SAWs of moderate
length on the simple and face centered cubic lattices restricted to a tube of square cross section oriented
along crystallographic directions of the type <100>. Both the number of restricted SAWs and their
average size (given by the average squared end-to-end distance) have also been fitted to the functional
form of scaling laws for unrestricted SAWs. This knowledge is an essential requirement for the
calculation of the entropy in dense packings of hard-sphere chains in restricted geometries and thus for
the understanding and prediction of their phase transitions under conditions of extreme confinement.
For example, according to the modeling work of Ref. [54], ordered morphologies of defective, coexisting
FCC crystals of different orientations are spontaneously formed in dense packings of hard-sphere
chains confined in a square tube. Such crystal morphologies are connected through structural
transitions driven solely by entropy.
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FCC Face Centered Cubic
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SAW Self-Avoiding Walk
SC Simple Cubic
CCE Characteristic Crystallographic Element (norm)
BCC Body Centered Cubic
PDF Probability Distribution Function
CDF Cumulative Distribution Function

Appendix A

Table A1. SC lattice, tube cross section 1.0× 1.0. The second column of the first table is the value of cN

for SAWs on the unrestricted SC lattice, included for comparison purposes.

Type 1 Multiplicity |O1| = 4

N cN Unrestricted cN

〈∣∣ωN
∣∣2〉

1 6 4 1.000
2 30 12 2.333
3 150 36 3.444
4 726 98 4.816
5 3534 274 6.051
6 16,926 702 7.977
7 81,390 1854 9.846
8 387,966 4614 12.56
9 1,853,886 11,778 15.20

10 8,809,878 28,914 18.73
11 41,934,150 72,394 22.19
12 198,842,742 176,310 26.59
13 943,974,510 435,346 30.98
14 4,468,911,678 1,055,730 36.29
15 21,175,146,054 2,584,026 41.66
16 100,121,875,974 6,249,358 47.94
17 473,730,252,102 15,208,438 54.34
18 2 237,723,684,094 36,724,294 61.60

Table A2. SC lattice, tube cross section 2.0× 2.0.

Type 1 Multiplicity
|O1| = 4 Type 2 Multiplicity

|O2| = 4 Type 3 Multiplicity
|O3| = 1

N cN

〈∣∣ωN
∣∣2〉 N cN

〈∣∣ωN
∣∣2〉 N cN

〈∣∣ωN
∣∣2〉

1 4 1.000 1 5 1.000 1 6 1.000
2 14 2.571 2 19 2.316 2 26 2.154
3 54 3.963 3 72 3.556 3 98 3.122
4 200 5.420 4 258 4.853 4 330 4.170
5 744 6.634 5 926 5.916 5 1130 5.120
6 2626 7.925 6 3 176 7.146 6 3746 6.388
7 9186 9.051 7 11,000 8.276 7 12,802 7.581
8 31,122 10.37 8 36 988 9.670 8 42,498 9.120
9 105,766 11.63 9 125,302 11.01 9 143,610 10.58

10 351,798 13.18 10 414,518 12.68 10 472,242 12.42
11 1,175,726 14.71 11 1,381,390 14.31 11 1 570,714 14.19
12 3 859,350 16.59 12 4 515,022 16.31 12 5 110,426 16.36
13 12,729,142 18.46 13 14,853,462 18.30 13 16,779,354 18.46
14 41,355,642 20.71 14 48,105,654 20.67 14 54,148,874 21.00
15 134,970,238 22.96 15 156,694,796 23.03 15 176,058,234 23.49
16 435,124,318 25.60 16 504,010,840 25.80 16 564,679,330 26.43
17 1,408,619,206 28.25 17 1,629,120,330 28.56 17 1,822,489,530 29.34
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Table A3. SC lattice, tube cross section 3.0× 3.0.

Type 1 Multiplicity
|O1| = 4 Type 2 Multiplicity

|O2| = 8 Type 3 Multiplicity
|O3| = 4

N cN

〈∣∣ωN
∣∣2〉 N cN

〈∣∣ωN
∣∣2〉 N cN

〈∣∣ωN
∣∣2〉

1 4 1.000 1 5 1.000 1 6 1.000
2 14 2.571 2 20 2.400 2 28 2.286
3 56 4.143 3 82 3.780 3 122 3.492
4 224 5.911 4 328 5.311 4 488 4.721
5 926 7.505 5 1336 6.683 5 1926 5.760
6 3738 9.179 6 5273 8.107 6 7328 6.885
7 15,056 10.64 7 20,813 9.331 7 28,132 7.896
8 59,092 12.09 8 80,282 10.61 8 106,004 9.068
9 230,254 13.36 9 309,654 11.76 9 403,470 10.17
10 881,850 14.65 10 1,175,480 13.02 10 1,512,774 11.46
11 3,367,124 15.84 11 4 466,712 14.20 11 5 715 168 12.70
12 12,712,194 17.13 12 16,770,216 15.54 12 21,299,430 14.15
13 47,952,018 18.38 13 63,066,644 16.85 13 79,832,758 15.55
14 179,317,400 19.77 14 234,827,439 18.33 14 295,630,770 17.18
15 670,507,498 21.17 15 875,986,779 19.80 15 1,099,932,734 18.77
16 2,488,658,374 22.73 16 3,239,657,890 21.47 16 4,049,793,742 20.60
17 9,239,393,494 24.31 17 12,003,817,994 23.13 17 14,972,474,238 22.38

Table A4. FCC lattice, tube cross section 0.5
√

2× 0.5
√

2. The second column of the first table is the
value of cN for SAWs on the unrestricted FCC lattice, included for comparison purposes.

Type 1 Multiplicity |O1| = 2

N cN Unrestricted cN

〈∣∣ωN
∣∣2〉

1 12 5 1.000
2 132 20 1.600
3 1404 68 2.471
4 14,700 208 3.904
5 152,532 624 5.776
6 1,573,716 1840 8.157
7 16,172,148 5360 11.07
8 165,697,044 15,488 14.56
9 1,693,773,924 44,608 18.61
10 17,281,929,564 128,192 23.22
11 176,064,704,412 368,064 28.39
12 1,791,455,071,068 1,056,000 34.13
13 18,208,650,297,396 3,028,992 40.43

Table A5. FCC lattice, tube cross section 1.0
√

2× 1.0
√

2.

Type 1 Multiplicity |O1| = 4 Type 2 Multiplicity |O2| = 4

N cN

〈∣∣ωN
∣∣2〉 N cN

〈∣∣ωN
∣∣2〉

1 5 1.000 1 12 1.000
2 39 2.256 2 72 1.556
3 248 3.113 3 392 2.265
4 1460 3.907 4 2176 3.199
5 8132 4.756 5 11,680 4.286
6 43,860 5.816 6 61,136 5.633
7 230,476 7.106 7 314,416 7.226
8 1,190,588 8.657 8 1,600,960 9.073
9 6,072,572 10.47 9 8,070,448 11.20

10 30,677,292 12.57 10 40,350,672 13.63
11 153,744,188 14.97 11 200,495,840 16.38
12 765,753,696 17.68 12 992,030,176 19.45
13 3,796,189,560 20.70 13 4 893,578,576 22.85



Polymers 2018, 10, 1394 19 of 25

Table A6. FCC lattice, tube cross section 1.5
√

2× 1.5
√

2.

Type 1 Multiplicity
|O1| = 2 Type 2 Multiplicity

|O2| = 4 Type 3 Multiplicity
|O3| = 2

N cN

〈∣∣ωN
∣∣2〉 N cN

〈∣∣ωN
∣∣2〉 N cN

〈∣∣ωN
∣∣2〉

1 5 1.000 1 8 1.000 1 12 1.000
2 39 2.256 2 62 2.097 2 101 1.941
3 317 3.738 3 487 3.234 3 736 2.707
4 2456 4.927 4 3643 4.223 4 5152 3.468
5 18,028 5.920 5 26,106 5.096 5 35,522 4.299
6 127,242 6.813 6 181,783 5.960 6 241,888 5.216
7 876,392 7.705 7 1,240,790 6.878 7 1,627,468 6.236
8 5,934,196 8.661 8 8,342,670 7.894 8 10,825,480 7.377
9 39,648,964 9.725 9 55,415,928 9.034 9 71,271,844 8.656

10 261,993,600 10.92 10 364,364,782 10.32 10 465,099,616 10.08
11 1,715,097,328 12.27 11 2,375,202,602 11.76 11 3,012,465,424 11.67
12 11,139,357,984 13.79 12 15,371,509,668 13.36 12 19,389,036,972 13.43
13 71,869,479,512 15.47 13 98,873,697,150 15.14 13 124,130,404,052 15.36

Table A7. FCC lattice, tube cross section 2.0
√

2× 2.0
√

2.

Type 1 Multiplicity |O1| = 4 Type 2 Multiplicity |O2| = 4

N cN

〈∣∣ωN
∣∣2〉 N cN

〈∣∣ωN
∣∣2〉

1 5 1.000 1 8 1.000
2 39 2.256 2 72 2.222
3 317 3.738 3 602 3.326
4 2707 5.402 4 5018 4.556
5 22,778 6.887 5 41,050 5.692
6 186,798 8.169 6 328,378 6.703
7 1,493,410 9.278 7 2 577,480 7.640
8 11,705,520 10.28 8 19,944,688 8.557
9 90,414,004 11.23 9 152,636,704 9.491
10 690,737,504 12.19 10 1 157,776,248 10.47
11 5,231,407,492 13.18 11 8,716,517,832 11.52
12 39,334,158,792 14.23 12 65,200,437,688 12.65
13 293,889,553,284 15.37 13 484,934,433,160 13.88

Type 3 Multiplicity |O3| = 4 Type 4 Multiplicity |O4| = 1

N cN

〈∣∣ωN
∣∣2〉 N cN

〈∣∣ωN
∣∣2〉

1 12 1.000 1 12 1.000
2 101 1.941 2 132 2.182
3 847 3.116 3 1152 2.958
4 6946 4.152 4 9144 3.636
5 55,498 5.088 5 70,400 4.353
6 435,926 5.985 6 536,376 5.144
7 3,379,684 6.879 7 4,071,072 6.012
8 25,926,400 7.797 8 30,796,856 6.961
9 197,133,924 8.763 9 231,952,920 7.991
10 1,487,560,076 9.795 10 1,738,210,872 9.107
11 11,150,268,460 10.91 11 12,958,623,176 10.31
12 83,085,654,372 12.11 12 96,129,954,888 11.61
13 615,859,395,980 13.41 13 709,838,117,576 13.02
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Table A8. FCC lattice, tube cross section 2.5
√

2× 2.5
√

2.

Type 1 Multiplicity |O1| = 2 Type 2 Multiplicity |O2| = 4

N cN

〈∣∣ωN
∣∣2〉 N cN

〈∣∣ωN
∣∣2〉

1 5 1.000 1 8 1.000
2 39 2.256 2 62 2.097
3 317 3.738 3 522 3.421
4 2707 5.402 4 4508 4.922
5 23,701 7.209 5 39,468 6.465
6 208,144 8.941 6 344,215 7.922
7 1,810,302 10.50 7 2 966 304 9.241
8 15,526,912 11.89 8 25,216,726 10.43
9 131,356,780 13.18 9 211,725,485 11.52

10 1,098,163,378 14.24 10 1,759,351 811 12.54
11 9,092,485,480 15.28 11 14,497,192,414 13.54
12 74,701,087,430 16.29 12 118,646,116,612 14.52
13 609,855,297,956 17.29 13 965,528,829,603 15.53

Type 3 Multiplicity |O3| = 4 Type 4 Multiplicity |O4| = 2

N cN

〈∣∣ωN
∣∣2〉 N cN

〈∣∣ωN
∣∣2〉

1 8 1.000 1 12 1.000
2 72 2.222 2 101 1.941
3 637 3.474 3 847 3.116
4 5557 4.763 4 7365 4.472
5 48,366 6.108 5 63,980 5.751
6 418,016 7.410 6 549,602 6.915
7 3,570,910 8.604 7 4,663,884 7.987
8 30,133,676 9.693 8 39,130,524 8.997
9 251,551,004 10.71 9 325,115,970 9.971

10 2,081,126,958 11.69 10 2,679,470,380 10.93
11 17,091,369,920 12.66 11 21,936,104,286 11.90
12 139,509,610,898 13.64 12 178,579,440,256 12.90
13 1,132,860,537,091 14.66 13 1,446,780,259,612 13.94

Type 5 Multiplicity |O5| = 4 Type 6 Multiplicity |O6| = 2

N cN

〈∣∣ωN
∣∣2〉 N cN

〈∣∣ωN
∣∣2〉

1 12 1.000 1 12 1.000
2 116 2.069 2 132 2.182
3 1044 3.176 3 1277 3.249
4 9138 4.292 4 11,348 4.143
5 78,471 5.355 5 96,462 4.951
6 664,057 6.347 6 802,244 5.743
7 5,558,369 7.293 7 6,601,488 6.553
8 46,127,001 8.218 8 54,022,204 7.400
9 380,120,277 9.144 9 440,478,598 8.292

10 3,113,966,985 10.09 10 3 580,119,048 9.236
11 25,377 886,728 11.06 11 29,005,342,540 10.24
12 205,863,958,205 12.08 12 234,222,195,762 11.29
13 1,662,935,723,189 13.14 13 1,885,131,153,122 12.41
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Table A9. FCC lattice, tube cross section 3.0
√

2× 3.0
√

2.

Type 1 Multiplicity |O1| = 4 Type 2 Multiplicity |O2| = 8

N cN

〈∣∣ωN
∣∣2〉 N cN

〈∣∣ωN
∣∣2〉

1 5 1.000 1 8 1.000
2 39 2.256 2 72 2.222
3 317 3.738 3 637 3.474
4 2707 5.402 4 5683 4.881
5 23,701 7.209 5 50,802 6.330
6 211,575 9.140 6 455,104 7.820
7 1,903,598 11.06 7 4,070,009 9.286
8 17,110,652 12.87 8 36,207,759 10.67
9 152,867,156 14.52 9 319,799,348 11.95

10 1,354,729,516 16.02 10 2,803,337,706 13.14
11 11,906,603,784 17.38 11 24,402,025,435 14.26
12 103,849,402,452 18.63 12 211,104,465,801 15.32
13 899,747,181,304 19.79 13 1,816,626,021,973 16.35

Type 3 Multiplicity |O3| = 4 Type 4 Multiplicity |O4| = 4

N cN

〈∣∣ωN
∣∣2〉 N cN

〈∣∣ωN
∣∣2〉

1 12 1.000 1 12 1.000
2 101 1.941 2 116 2.069
3 847 3.116 3 1100 3.313
4 7365 4.472 4 10,076 4.478
5 65,563 5.968 5 90,588 5.648
6 587,910 7.447 6 806,164 6.802
7 5,257,852 8.837 7 7,114,248 7.907
8 46,707,884 10.13 8 62,314,664 8.960
9 411,696,828 11.33 9 542,275,908 9.972

10 3,601,355,396 12.46 10 4,692,529,524 10.96
11 31,287,972,228 13.53 11 40,409,930,416 11.93
12 270,207,494,804 14.57 12 346,527,771,156 12.90
13 2,321,640,993,718 15.59 13 2,960,543,277,900 13.89

Type 5 Multiplicity |O5| = 4 Type 6 Multiplicity |O6| = 1

N cN

〈∣∣ωN
∣∣2〉 N cN

〈∣∣ωN
∣∣2〉

1 12 1.000 1 12 1.000
2 132 2.182 2 132 2.182
3 1277 3.249 3 1404 3.496
4 11,839 4.380 4 13,680 4.530
5 107,062 5.466 5 125,376 5.383
6 950,202 6.476 6 1,109,776 6.157
7 8,326,206 7.429 7 9,637,976 6.915
8 72,328,430 8.352 8 82,849,936 7.690
9 624,508,830 9.265 9 708,279,448 8.499

10 5,368,075,614 10.18 10 6,035,931,488 9.350
11 45,975,770,236 11.12 11 51,329,173,080 10.25
12 392,534,289,628 12.07 12 435,731,432,064 11.19
13 3,341,824,209,214 13.06 13 3,692,543,313,752 12.19
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