(Supplementary Information)

Facile NiO_x sol-gel synthesis depending on chain length of various solvents without catalyst for efficient hole charge transfer in perovskite solar cells

Byung Gi Kim, Woongsik Jang, and Dong Hwan Wang*

Solvents	Density (g/cm ³)	Boiling point (°C)	Molecular weight (g/mol)	Viscosity (Pa·s)	Chemical formula
1,2-Ethanediol (ET-OH)	1.11	197.3	62.07	1.61×10 ⁻²	$C_2H_6O_2$
1,4-Butanediol (B-OH)	1.02	230	90.12	84.9×10 ⁻³	$C_4H_{10}O_2$
1,5-Pentanediol (P-OH)	0.994	242	104.15	128×10^{-3}	$C_5H_{12}O_2$

Table S1. Basic properties of the three solvents used in NiO_x sol-gel synthesis.

Table S2. PCE (%) statistical data of perovskite solar cells based on NiOx via solvent.

Condition	Maximum PCE (%)	Minimum PCE (%)	Average PCE (%) of 20 unit cells
NiO _x via ET-OH	9.52	6.08	8.45
NiO _x via B-OH	11.74	10.50	11.14
NiO _x via P-OH	10.58	7.13	8.97

(a) ET-OH (b) B-OH (c) P-OH (d) ET-OH (e) B-OH (f) P-OH (e) B-OH (f) P-OH (f) P-OH (f) P-OH

Figure S1. Photographs of NiO_x via solvents ((a) ET-OH, (b) B-OH, and (c) P-OH) sol-gel solutions and ITO/ NiO_x via solvents ((d) ET-OH, (e) B-OH, and (f) P-OH) substrates.

Figure S2. Absorbance spectra of (a) ITO/NiO_x via solvents (ET-OH, B-OH, and P-OH) and (b) glass/NiO_x via solvents (ET-OH, B-OH, and P-OH)/MAPbI₃ based on air reference.

Figure S3. XRD patterns of glass/ITO/NiOx via solvents (ET-OH, B-OH, and P-OH).

Figure S4. The contact angle Images of water droplet (H_2O) on different surfaces; (a) glass /NiO_x via ET-OH, (b) glass /NiO_x via B-OH, and (c) glass /NiO_x via P-OH.

Figure S5. (a) Histogram of PCE (%) device performance for 20 perovskite solar cells fabricated under NiO_x via solvent control **(b)** Normalized PCE (%) of a perovskite solar cell containing HTLs of NiO_x via ET-OH (black) and B-OH (red) measured under ambient environmental conditions and standard AM 1.5 solar illumination.