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Abstract: The mixing Gibbs energy ∆gm for the flower-micelle phase of amphiphilic random and
periodic (including alternating) copolymers was formulated on the basis of the lattice model.
The formulated ∆gm predicts (1) the inverse proportionality of the aggregation number to the
degree of polymerization of the copolymer, (2) the increase of the critical micelle concentration with
decreasing the hydrophobe content, and (3) the crossover from the micellization to the liquid–liquid
phase separation as the hydrophobe content increases. The transition from the uni-core flower
micelle to the multi-core flower necklace as the degree of polymerization increases was also implicitly
indicated by the theory. These theoretical results were compared with experimental results for
amphiphilic random and alternating copolymers reported so far.

Keywords: amphiphilic polymers; random copolymers; alternating copolymers; flower micelles;
flower necklaces; vesicle

1. Introduction

Borisov and Halperin [1–5] proposed theoretical models of flower micelles, flower necklaces,
and bouquets of polymer micelles formed by amphiphilic periodic copolymers composed of
hydrophilic and hydrophobic monomer units in aqueous solutions. They assumed that the main
chain of the periodic copolymer is perfectly flexible, and all hydrophobes in the copolymer chain are
included in the hydrophobic core(s) of the micelle.

Afterward, experimental studies on amphiphilic random and periodic (including alternating)
copolymers bearing hydrophobic side chains demonstrated the formation of flower micelles and
flower necklaces in aqueous solutions [6–11]. However, experimental results indicated that not all
hydrophobic side chains on the copolymer chain are included in the hydrophobic core(s) of the micelle,
being different from the Borisov–Halperin model, and that the loop-chain size is determined by
the main-chain stiffness rather than the content and sequence of the hydrophobic side chain on the
copolymer chain. Thus, we need a new theory to discuss the micellization behavior of such flower
micelles and flower necklaces.

The present paper proposes a lattice-model theory for dilute aqueous solutions of amphiphilic
random and periodic copolymers bearing hydrophobic linear side chains, which can be regarded
as graft copolymer chains bearing hydrophobic graft (side) chains to demonstrate the formation
of the flower micelle. Recently, Sato and Takahashi [12] presented a similar lattice-model theory
for amphiphilic block copolymer solutions to discuss the competition between micellization and
liquid–liquid phase separation in the solutions. The present theory is the random and periodic
copolymer version of this theory.
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2. Theory

Let us consider the graft copolymer illustrated in Figure 1a. The main chain and graft chains
consist of PM units and P′G units, respectively. The mole fraction of the branch units on the main chain is
denoted as x, and the distribution of the branch units along the main chain is assumed to be random or
periodic (not block-like). The total number of the graft-chain units per copolymer chain is PG = xPMP′G,
and the total degree of polymerization of the graft copolymer chain is P = PM + PG = PM(1 + xP′G).
It is assumed that the main-chain and graft-chain units as well as the solvent S molecule occupy lattice
sites with a common size a.
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medium. As a result, the m copolymer chains construct a flower micelle illustrated in Figure 1b; m is 
the copolymer-chain aggregation number of the micelle. Only graft chains attaching to roots of the 
loops can enter the hydrophobic core, and the remaining graft chains are outside the core. 
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Figure 1. Schematic diagrams of the graft copolymer chain (a), the flower micelle formed by the
copolymer chain (b), and the radial concentration profiles of the main-chain and graft-chain units in
the flower micelle (c). In Panel b, the flower micelle is constructed by m copolymer chains. In Panel a,
blue and green circles are referred to as the main chain, and red circles as the graft chain. In Panels a
and b, blue circles are called the A unit, and red and green circles as the B unit to discuss the mixing
enthalpy (cf. Equations (9)–(11)).

If the graft-chain unit is sufficiently hydrophobic, graft chains of the copolymer tend to aggregate
to form a hydrophobic core, and the main chain tends to form loop chains in aqueous medium.
As a result, the m copolymer chains construct a flower micelle illustrated in Figure 1b; m is the
copolymer-chain aggregation number of the micelle. Only graft chains attaching to roots of the loops
can enter the hydrophobic core, and the remaining graft chains are outside the core.

According to the wormlike chain model [13–15], the ring closure probability of the chain rapidly
diminishes to zero at the chain contour length reducing to ca. 1.6q, where q is the persistence length.
This means that the main chain portion shorter than 1.6q cannot form the loop because of the chain
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stiffness. In what follows, we consider the flower micelle consisting of loop chains with this “minimum
loop size” [6]. The number of main-chain units per the minimum loop chain Ploop, and the number of
loop chains per chain nloop are calculated by

Ploop =
1.6q

a
, nloop =

PM

Ploop
(1)

The numbers of graft chains included in the hydrophobic core and outside of the core, xcPM and
xsPM, respectively, are calculated by

xcPM = λnloop, xs = x− xc (2)

where λ is the number of side chains included in the core at each root of the loop. (Figure 1b illustrates
the case of λ = 1). It has been assumed in Equation (2) that nloop is much larger than unity.

In the previous paper [12], we regarded the spherical micelle formed by di-block copolymer
chains as a thermodynamic phase, assuming that the aggregation number of the micelle is sufficiently
large. Similarly, the present study regards the flower micelle as a thermodynamic phase to demonstrate
the micellization of the graft copolymer in a selective solvent. Furthermore, we use a simple model for
the flower micellar phase, of which radial concentration profiles (volume fractions) of the main-chain
and graft-chain units are given by

φM =


0, 0 ≤ r < Rcore

φM,s, Rcore ≤ r < R
0, R ≤ r

, φG =


φG,c, 0 ≤ r < Rcore

φG,s, Rcore ≤ r < R
0, R ≤ r

(3)

(cf. Figure 1c). Here, Rcore and R are the radii of the micelle core and the whole micelle, respectively,
and the solvent volume fraction is given by φS = 1 − φM − φG at each radial distance r. Furthermore,
using the wormlike chain model, Rcore

2 and the mean square distance from the end to the midpoint of
the loop 〈Rloop

2〉 (cf. Figure 1c) are expressed in terms of the persistence lengths of the graft chain (qG)
and of the copolymer main chain (q), respectively, by [15]

(Rcore/a)2 = (2qG/a)P′G − 2(qG/a)2
(

1− e−P′Ga/qG
)

(4)

〈Rloop
2〉

a2 =
Ploop

2√
42.5− 32

3

(
aPloop/2q

)
+ 16

(
aPloop/2q

)2
(5)

(cf. Appendix A). The radius R of the whole micelle is calculated by

R = Rcore + 〈Rloop
2〉1/2

(6)

The average volume fraction φP of the copolymer in the flower micelle phase is given by

φP =
3a3Pm
4πR3 (7)

and the volume fractions φM,s, φG,s, and φG,c are related to φP by

φM,s =
R3PMφP

(R3 − Rcore3)P
, φG,s =

R3xsPMP′G
(R3 − Rcore3)P

φP, φG,c =
R3xcPMP′G

Rcore3P
φP (8)
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From the last equation for φG,c in Equation (8), it can be seen that φP must be equal to or less than
PRcore

3/xcPMP′GR3, because φG,c does not exceed unity. Furthermore, since m must be larger than
unity, PM must be smaller than 4πR3φP/3a3(1 + xP′G) from Equation (7).

For amphiphilic random or periodic copolymers, the ionizable group or hydrophilic
side-chain group of each hydrophilic monomer unit is substituted by the hydrophobic graft
chain. Thus, the branch unit in the main chain (green circles in Figure 1a,b) may be hydrophobic,
having interaction parameters much different from those of the non-branch unit (i.e., the hydrophilic
monomer unit) in the main chain but similar to those of the graft-chain unit. We refer to the non-branch
unit in the main chain as the A unit and to the graft-chain unit as well as the branch unit in the main
chain as the B unit, neglecting the difference in the interaction between the graft-chain unit and the
branch unit in the main chain. The volume fractions of the A and B units in the shell and core phases
are given by

φA,s =
R3(1− x)PM

(R3 − Rcore3)P
φP, φB,s =

R3(x + xsP′G)PM

(R3 − Rcore3)P
φP, φB,c =

R3xcP′GPM

Rcore3P
φP (9)

and the mole fractions of the A and B units in the copolymer chain are written as

xA = (1− x)
PM

P
, xB,s =

(
x + xsP′G

)PM

P
, xB,c = xcP′G

PM

P
, xA + xB,s + xB,c = 1 (10)

where xB,s and xB,c are the mole fractions of the B unit in the shell and core regions, respectively.
The solvent volume fractions in the shell and core regions are given by φS,s = 1 − φA,s − φB,s and
φS,c = 1 − φB,c, respectively.

We apply the Flory–Huggins theory [16] to the flower micelle phase to formulate the mixing Gibbs
energy per lattice site ∆gm of the micelle phase, which consists of the mixing entropy ∆S, the mixing
enthalpy ∆H, and the interfacial Gibbs energy 4πRcore

2γ (γ: the interfacial tension between the core
and shell regions of the micelle). The formulation method is described in Appendix B. The final result
is written as

∆gm
kBT =

(
−T∆S + ∆H + 4πRcore

2γ
kBT

)
/ 4πR3

3a3

= φP
P ln(κφP) + R3−Rc

3

R3 φS,s ln φS,s + Rc
3

R3 φS,c ln φS,c

+[xAφS,sχAS + (xB,sφS,s + xB,cφS,c)χBS − xA(xB,s + xB,c − φB,s)χAB]φP

+ 3(Rcore/a)2

(R/a)3
a2

kBT γ

(11)

where χAS, χBS, and χAB are the interaction parameters between S and A, between S and B, and between
A and B, respectively, κ is defined by Equation (B11), and (a2/kBT)γ is calculated by Equation (B13)
with Equation (B14). The term ln κ includes the conformational entropy loss at the formation of the
flower micelle.

When the graft copolymer solution is homogeneous, the mixing Gibbs energy per lattice site ∆gh
is given by [16]

∆gh
kBT

= (1− φP) ln(1− φP) +
φP

P
ln φP + χ(1− φP)φP (12)

with the average interaction parameter χ between the graft copolymer chain and solvent,
defined by [17]

χ ≡ xAχAS + (1− xA)χBS − xA(1− xA)χAB. (13)

3. Results and Discussion

Because we did not consider above the interaction among flower micellar phases in the
solution, the following discussion is limited to dilute solutions of random and periodic copolymers.
Ueda et al. [9] reported the molecular weight dependence of the micellization behavior for the
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amphiphilic alternating copolymer of sodium maleate and dodecyl vinyl ether, P(MAL/C12), in dilute
aqueous solutions including 0.05 M NaCl. First, we examine theoretically the micellization behavior of
an alternating copolymer mimicking P(MAL/C12).

In the lattice theory, the choice of the unit lattice site is rather arbitrary. Here, we assume the
main-chain portion (the C2 unit) of maleate or dodecyl vinyl ether monomer unit is chosen as the
unit lattice site. Then, the hydrophobic dodecyl side chain is assumed to occupy six lattice sites,
i.e., P′G = 6. (The carboxy group and the ether oxygen atom in the maleate and dodecyl vinyl ether
monomer units are not considered explicitly; they are assumed to be included in the main-chain
portions). In aqueous solutions, a strong electrostatic repulsion acts among maleate units (the A unit),
while a hydrophobic attraction acts among the C2 units of the dodecyl group (the B unit). The strong
electrostatic repulsion and hydrophobic attraction are expressed using a negative χAS and positive
χBS, respectively. (To account for the long range electrostatic interaction, the unit lattice site may have
to be larger than the C2 unit, but the following results do not essentially change by the choice of the
unit lattice site). Since we here focus on the amphiphilicity of the graft copolymer, we assume χAB to
be zero, as in the previous study [12]. (The change of the χAB value may be compensated by adjusting
values of χAS and χBS).

Figure 2 shows the copolymer concentration dependences of ∆gm (red curve) and ∆gh (black curve)
calculated by Equations (11) and (12). We have chosen PM = 50, x = 0.5, χAS =−15, χBS = 3, and χAB = 0
(χ = 0.75). All remaining parameters included in Equation (11) can be calculated from a = 0.25 nm
(the contour length per the main-chain monomer (C2) units), and q = 3 nm, qG = 0.53 nm, and λ = 3
determined previously [9]. We can draw a common tangent (the thin line) to the dilute side of the
black curve and red curve. (It is seen that the black curve has a downward convex shape around
φP = 0, if it is enlarged). The copolymer volume fractions at the two points of contact of the common
tangent, denoted as φP,d and φP,m, are binodal concentrations of the coexisting dilute and micellar
phases, respectively. The tangent line is below the common tangent line (the thin broken line) for the
thick black curve for ∆gh, indicating that the micellization is thermodynamically more stable than the
phase separation into two homogeneous phases.
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Similar curves for ∆gm and ∆gh were obtained for different PM, and the volume fraction φP,m of
the equilibrium micellar phase were determined by the above method. The aggregation number m of
the copolymer chains per micelle can be calculated from Equation (7), i.e.,

m =
4πR3

3a3P
φP,m (14)

Figure 3 shows the degree of polymerization PM dependence of m such obtained as well as the product
mPM (the number of monomer units per micelle) at the interaction parameters identical to those in
Figure 2. It is seen that m is inversely proportional to PM, and the product mPM is independent of PM.
(Because P is proportional to PM and R is independent of PM, the inverse proportionality of m to PM

comes from the PM independence of φP,m calculated from the comparison between of the ∆gm and
∆gh curves). This relation was observed experimentally for P(MAL/C12) in 0.05 M aqueous NaCl
solution [9] as well as for a random copolymer of poly(ethylene glycol) methyl ether methacrylate and
dodecyl methacrylate, P(PEGMA/DMA), in water [18]; however, for P(PEGMA/DMA) with x = 0.5,
the constant mPM is slightly larger than 300. The value of mPM changes by values of q, λ, and the
interaction parameters. It is noted that the formulation of ∆gm in the previous section can apply both
to periodic and random copolymers.

When PM approaches 300 in Figure 3, m tends to unity, and φP,d corresponding to the
critical micelle concentration (cmc) of the coexisting dilute phase becomes very low (not shown).
That is, when PM approaches 300, the flower micelle is formed by one copolymer chain (the unimer
micelle), and the cmc tends to zero. This situation resembles the liquid–liquid phase separation
in a homopolymer polymer solution with an infinitely high-molecular-weight polymer, where the
polymer volume fraction at the critical point is predicted to be zero by the conventional
Flory–Huggins theory [16].
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interaction parameters identical to those in Figure 2.

When the same calculation of m is performed where PM > 300, the inverse proportionality of m to
PM still holds even if PM exceeds 300, as indicated by the dashed line in Figure 3. However, because the
aggregation number is less than unity, some portion of the main chain is not included in the flower
micelle at PM > 300. For example, at PM = 600 where m = 0.5, half of the main chain is not included
in the flower micelle. This half main-chain portion may form another flower micelle. As a result,
the whole copolymer chain forms a double-core flower necklace. (Strictly speaking, the double-core
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flower necklace needs a bridge chain connecting two unit flowers, so that PM must be slightly larger
than 600 to form the double-core flower necklace). In fact, Ueda et al. [9] reported the transition from
the flower micelle to the flower necklace at PM exceeding 300.

The flower micelle is formed also by amphiphilic random copolymers with hydrophobic dodecyl
side chains of x < 0.5 in aqueous solutions. Next, we examine the hydrophobic monomer content
dependence of the micellization for an aqueous solution of an amphiphilic random copolymer,
calculated in the same way from the ∆gm and ∆gh curves as in Figure 2. The number λ of side
chains included in the core at each root of the loop appearing in Equation (2) may be dependent on the
monomer content x. In the limit of x = 1/Ploop, each loop chain has only one hydrophobic side chain
on average. Thus, λ = 1 at x = 1/Ploop. When x increases, λ may first increase from unity and approach
an asymptotic value. For a given value of λ, φP,d and φP,m of the coexisting dilute and micellar phases
can be calculated as functions of x from the curves of ∆gm and ∆gh as mentioned above.

Figure 4 shows φP,d and φP,m obtained for the amphiphilic random copolymer with a PM of 50 and
the same interaction parameters used in Figures 2 and 3, in the x-φP phase diagram. The x dependence
of λ used is shown in the insert of Figure 4. When x is decreased from 0.5, φP,d (cmc) increases, and the
copolymer in a dilute solution (φP < 0.08) transforms from the flower micelle to the random coil at
passing the bimodal curve for φP,d (cmc). At x < 1/Ploop, the loop size of the flower micelle should be
larger than the minimum size given by Equation (1). We do not discuss such a loose flower micelle here.
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On the other hand, when x increases from 0.5, the ∆gh – φP curve goes down relative to the
∆gm – φP curve, and as shown in Figure 5, at x = 0.524, we can draw a common tangent (the thin line)
to the dilute and concentrated sides of the black curve (∆gh) and the red curve (∆gm). When x > 0.524,
the phase separation into dilute and concentrated homogeneous phases with concentrations φP,d and
φP,c becomes thermodynamically more stable than the micellization. As a result, the phase gap in
the x-φP phase diagram is abruptly enlarged when x > 0.524, as shown in Figure 4. To the best of my
knowledge, there have hitherto been no reports of the corresponding crossover from micellization to
liquid–liquid phase separation as the hydrophobic content x increases.
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Eisenberg et al. [19] investigated the random copolymer of styrene and methacrylic acid with
x ~0.8, which was first dissolved in dioxane or tetrahydrofuran (THF), followed by the addition of
water, and observed “large compound micelles” and “bowl-shaped aggregates” by transmission
electronic microscopy (TEM). Here, the “large compound micelle” is the large homogeneous
polymer-rich spheres, corresponding to the droplet of the concentrated homogeneous phase formed
by the liquid–liquid phase separation, predicted in Figure 4, and a “bowl-shaped aggregate”
may be formed from the concentrated-phase droplet in which solvent bubbles are trapped [19].
Wang et al. [20] reported the formation of uniform colloidal spheres by an amphiphilic random
copolymer, poly{2-[4-(phenylazo)phenoxy]ethyl acrylate-co-acrylic acid}, where x = 0.5 in THF–water
mixtures with high water concentrations. This may be another example of the liquid–liquid
phase separation of the amphiphilic random copolymer in solution. Zhang et al. [21] studied
the self-association of amphiphilic graft (periodic) copolymers in a hypothetical solution of the
two-dimensional space by the self-consistent field theory. Although they assumed perfect flexibility
and comparable chain lengths of the main and graft chains, being different conditions from the present
study, they observed a “large compound micelle” at higher graft density (i.e., higher hydrophobic
content x) under weaker amphiphilicity (cf. Figure 8a in [21], where the graft chain number = 5).

Yusa et al. [22] found a transition from the unimer micelle to the single random coil chain
of a random copolymer of hydrophilic sodium 2-(acrylamido)-2-methylpropanesulfonate and
hydrophobic 11-acrylamidoundecanoic acid (AmU) where x = 0.5 in 0.1 M aqueous NaCl solution by
changing pH. At pH = 3, where the carboxy group is not ionized, AmU was strongly hydrophobic,
and the copolymer formed a unimer micelle with m = 1. The degree of polymerization PM of the
copolymer sample (= 475) was slightly larger than 300 (cf. Figure 3), maybe due to the difference in the
parameters, e.g., P’G and λ, from those used in Figure 3. On the other hand, at pH = 9, where the carboxy
group of AmU is ionized, the copolymer was transformed to a random coil. In Figure 2, the ∆gm curve
goes up and the ∆gh has no inflection point when χBS is decreased from 3, i.e., AmU becomes more
hydrophilic. As a result, the random coil conformation in the homogeneous phase becomes more
stable than the flower micelle, which is consistent with Yusa et al.’s finding. The transition from the
unimer micelle to the single random coil chain by decreasing x, predicted in Figure 4, was reported by
Fujimoto and Sato [11].

Recently, several authors have reported that amphiphilic random copolymers form vesicles in
dilute solutions [23–26], which was not considered in the present study. Zhu and Liu [24] investigated
vinyl polymers bearing L-glutamic acid moieties and dodecyl groups in the random sequence to find
the vesicle in water at a high hydrophobic content x (>0.75). Their random copolymer samples possess
low degrees of polymerization (<36). For these samples to form the flower micelle, nloop should be less
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than 2 and one loop chain should bear many hydrophobes. The present theory may not be able to be
applied to such random copolymers.

Tian et al. [25] observed vesicles as well as hollow tubes and wormlike rods formed by
poly(hydroxyethyl methacrylate) (PHEMA) partially and randomly modified by the hydrophobic
2-diazo-1,2-naphthoquinone in solution. These copolymer samples were dissolved in dimethyl-
formamide, followed by the addition of water, and finally dialyzed against water to form the vesicle.
Because even PHEMA is insoluble in water, the vesicle formed must not be in the thermodynamically
stable state, which cannot be treated in the present statistical thermodynamic theory.

Ghosh et al. [26] reported that an amphiphilic random copolymer of hydrophilic tri(oxyethylene)
methacrylamide and hydrophobic n-octyl methacrylate exhibited a thermally induced vesicle to
spherical micelle transition. However, it should be noted that the illustration of the spherical micelle
by these authors (cf. Scheme 1 in [26]) was inconsistent with the experimental TEM observation of
spherical aggregates (diameter in the range of 70–80 nm) at 60 ◦C. In the illustration, the hydrophilic
and hydrophobic side chains were in the coronal and core regions of the micelle, respectively, and the
whole copolymer main chain was confined to the corona-core interface. If this is the case, the diameter
of the micelle must be equal to twice the sum of the hydrophilic and hydrophobic side chain lengths.
Even if the side chains are fully extended, such an estimated diameter is as small as 6 nm, which is
much smaller than the diameter of the spherical aggregate at 60 ◦C. Thus, the spherical aggregate
at 60 ◦C may not be the spherical micelle indicated in their illustration, but the phase-separated
concentrated phase droplet, because both kinds of side chains are hydrophobic at 60 ◦C above the
lower critical solution temperature [26].

4. Conclusions

The flower micelle formed by amphiphilic random and periodic copolymers in solution was
regarded as a thermodynamic phase to formulate the mixing Gibbs energy. The formulated mixing
Gibbs energy of the micelle was compared with that of the homogeneous phase to calculate (1) the
aggregation number m of the micelle as a function of the degree of polymerization PM of the copolymer
chain, (2) the cmc as a function of the hydrophobic content x, and (3) the crossover x from micellization
to liquid–liquid phase separation.

The above theoretical results were compared with experimental results for amphiphilic random
and alternating copolymers reported previously. Prediction (1) was confirmed experimentally [9,18],
and the experimentally observed transition from the uni-core flower micelle to the multi-core flower
necklace [9] was also consistent with the present theory. The “large compound micelle” previously
observed for amphiphilic random copolymers [19,20] may correspond to the concentrated-phase
droplets produced by liquid–liquid phase separation, which was predicted to occur in this theory.
The transition from the unimer micelle to the single random coil chain [11,22] was also predicted by
this theory.

The limitation of the present theory was also discussed. The present theory may not be able to be
applied to amphiphilic random copolymers of low degrees of polymerization and high hydrophobic
contents [24], nor to frozen micelles that are not in a thermodynamic equilibrium state [25].

Acknowledgments: I thank Dr. Daichi Ida at Kyoto University for calculating Equation (A4) in Appendix A.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A. Mean Square Distance from the End to the Midpoint of the Loop

The mean square distance from the end to the midpoint of the loop 〈Rloop〉 (cf. Figure 1c) near
the rod and coil limits is calculated using the wormlike chain model. Yamakawa and Stockmayer [13]
formulated 〈Rloop

2〉 for the wormlike chain near the rod limit. Their result is written as

〈Rloop
2〉 = [2q(I3/2I2)NK]

2(NK << 1) (A1)
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where q and NK is the persistence length and the Kuhn statistical segment number, respectively,
and I2 and I3 are calculated by

I2 ≡
∫ π

θ/2

1√
C− cos ω

dω, I3 ≡
1

2I2

∫ π

θ/2

sin ω√
C− cos ω

dω (A2)

with the angle θ formed by the tangent vectors at both chain ends and a constant C determined
by the equation

I1 ≡
∫ π

θ/2

cos ω√
C− cos ω

dω = 0 (A3)

Near the rod limit, the energetically most stable loop conformation gives us the results, θ = 1.7208,
C = 0.6522, I2 = 3.29, and I3 = 2.58.

Using the first Daniels approximation, we can calculate 〈Rloop
2〉 near the coil limit as [27]

〈Rloop
2〉 = (2q)2

(
1
4

NK +
1

12

)
(NK >> 1) (A4)

Equation (5) in the text is the interpolation of 〈Rloop
2〉 given by Equations (A1) and (A4) near rod and

coil limits by use of the Padé approximation.

Appendix B. Mixing the Gibbs Energy of the Flower Micelle Phase

To calculate the mixing entropy of the flower micelle phase, we counted the number Ω of
arrangements of m graft copolymer chains into the concentric spherical lattice with the inner and
outer spherical radii Rcore and R, respectively, shown in Figure 1c in the text. Each main chain of the
graft copolymer may form loops, trains, and tails on the core–shell interface, but we assume that both
hydrophilicity of the main chain and hydrophobicity of the graft-chain are so strong that both train
and tail chains are negligibly short.

The first unit of the main chain in the first copolymer chain must be located at one of the lattice
sites on the core–shell interface. The number of such lattice sites is given by Nintf = 4π (Rcore/a)2.
The number ω′i of lattice sites where the first unit of the i-th copolymer chain is given by

ω′ i = Nintf f ′ i−1, f ′ i−1 = 1−
nloop

Nintf
(i− 1)(1 ≤ i ≤ m) (B1)

where f ’i−1 is the probability of the vacancy for the lattice site on the core–shell interface when first
units of i – 1 copolymer chains have been already arranged.

The flower micelle contains mnloop loop chains and mxsPM graft chains in the shell region. The first
unit of the first copolymer chain is identical with the first unit of the first loop chain, and the last
unit of the first loop chain must be located in the neighboring site of the first one of the same loop
chain on the core–shell interface. Furthermore, the loop chain cannot be located in the core region,
i.e., the core–shell interface acts as a reflecting barrier. The first loop chain possesses xsPloop graft
chains with the degree of polymerization P’G. Thus, the number of arrangements ωs,1 of the first loop
chain is given by [12,28]

ωs,1 =
(z− 1)Ploop(√

π/3
)

Ploop
G(0; aPloop/2q)(z− 1)xsPloopP′G (B2)

where G(0,aPloop/2q) is the ring closure probability. Shimada and Yamakawa [14] proposed
an expression of the probability for the wormlike chain as

G(0; aPloop/2q) =
28.01(

aPloop/2q
)5 exp

[
− 7.027

aPloop/2q
+ 0.492

(
aPloop/2q

)]
(B3)
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Similarly, the number of arrangements ωs,i of the i-th loop chain is given by

ωs,j = ωs,1 fs,j−1
Ploop(1 + xsP′G), fs,j−1 = 1− φM,s + φG,s

mnloop
(j− 1)

(
1 ≤ j ≤ mnloop

)
(B4)

Here, f s,j−1 is the probability of the vacancy for the lattice site in the shell region when j – 1 loop chains
have been already arranged. The core region of the flower micelle consists of mxcPM graft chains.
Numbers of arrangements ωc,1 and ωc,i of the first and i-th graft chains in the core region are written as

ωc,1 =
(z− 1)P′G−1(√

π/3
)

P′G
, ωc,k = ωc,1 fc,k−1

P′G , fc,k−1 = 1− φG,c

λmnloop
(k− 1)

(
1 ≤ k ≤ λmnloop

)
(B5)

where f c,k−1 is the probability of the vacancy for the lattice site in the core region when k − 1 graft
chains have been already arranged.

Using the above results, the number of arrangements Ω of the total m graft copolymer chains on
the concentric spherical lattice is calculated by

Ω =
m

∏
i = 1

ω′ i

mnloop

∏
j = 1

ωs,j

λmnloop

∏
k = 1

ωc,k (B6)

or

ln Ω = m ln
[

Nintf

(
ωs,1ωc,1

λ
)nloop

]
+

m

∑
i = 1

ln f ′ i−1 +

mnloop

∑
j = 1

ln
[

fs,j−1
Ploop(1 + xsP′G) fc,j−1

λP′G
]

(B7)

The numbers of arrangements of the uniform bulk copolymer (ΩP) and the bulk solvent (ΩS) are
given respectively by [16]

ln ΩP = m ln(mPωP,1
nloop) +

m

∑
i = 1

ln f ′P,i−1 +

mnloop

∑
j = 1

ln fP,j−1, ln ΩS = 0 (B8)

where
ωP,1 = (z− 1)Ploop(1 + xP′G), f ′P,i−1 = 1− i− 1

m
, fP,j−1 = 1− j− 1

mnloop
(B9)

Therefore, the entropy of mixing ∆S in the micellar phase is given by

∆S
mkB

= 1
m (ln Ω− ln ΩP − ln ΩS)

= − ln κ − ln φP − nloop

[
Ploop(1 + xsP′G)

φS,s
1−φS,s

ln φS,s + λP′G
φS,c

1−φS,c
ln φS,c

] (B10)

where φS = 1 − φM − φG, kB is the Boltzmann constant, and κ is defined by

κ ≡ (R/a)3

3(Rcore/a)2

[
πPloopP′Gλ

9G(0; l̃loop)

]nloop

(B11)

To obtain Equation (B10), we used Equation (5) in the text, approximated f ’i−1 ≈ f ’P,i−1,
and replaced the summations with respect to j in Equations (B7) and (B8) by integrations on the
assumption of mnloop >> 1. The parameter κ can be calculated from P’G, Ploop, and 2q/a using
Equations (3), (4) and (B3).

At calculating the mixing enthalpy ∆H of the micelle phase and the interfacial tension γ between
the core and shell regions of the flower micelle, we assume that the branch units in the main chain
have the same interaction parameters as those of the graft-chain units. In what follows, the non-branch
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unit in the main chain is referred to as the A unit, and the graft-chain unit as well as the branch unit in
the main chain are referred to as the B unit. Under the mean-field approximation [16], ∆H is given by

∆H
mPkBT

= xAφS,sχAS + (xB,sφS,s + xB,cφS,c)χBS − xA(xB,s + xB,c − φB,s)χAB (B12)

where χαβ (α, β = S, A, B) is the interaction parameter between species α and β (S stands for the solvent;
the definition of χαβ is slightly different from that of [16]), and xA, xB,s, and xB,c are the mole fractions
of the A and B units (existing in the shell and core regions) defined by Equation (8).

Noolandi and Hong [17] formulated the interfacial tension γ between the core and shell regions
of the spherical micelle. We may extend their result to γ for the flower micelle, where the asymptotic
volume fractions of the A and B units are φA,s and φB,s in the shell region and 0 and φB,c in the core
region, respectively. The result is given by

a2

kBT
γ =

√
φA,s + φB,s + φB,c

3
{ f [

1
2

φA,s,
1
2
(φB,s + φB,c)]−

1
2
[ f (φA,s, φB,s) + f (0, φB,c)]} (B13)

where the function f (x, y) is defined by

f (x, y) ≡ [ln(1− x− y) + χASx + χBSy](1− x− y) + χABxy (B14)

There is one more interface between the shell and solvent regions in Figure 1, but this interface is not
so sharp that we did not consider its interfacial Gibbs energy.

Flory [29] extended the Flory–Huggins theory [16] to solutions of a semiflxible polymer with
energetically unfavorable “bend” conformations and demonstrated that the equilibrium degree of the
bending of the chain is independent of the polymer concentration. This result indicates that the chain
stiffness does not contribute to the mixing Gibbs energy ∆G because of the cancelation of the bending
energy in the solution and bulk states. Therefore, the above formulations of ∆S and ∆H can be applied
to semiflexible polymer solutions.
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