Supplementary Information for "High pO₂ Floating Zone Single Crystal Growth of the Perovskite Nickelate PrNiO₃"

Hong Zheng ^{1,*}, Junjie Zhang ², Bixia Wang ¹, Daniel Phelan ¹, Matthew J. Krogstad ¹, Yang Ren ³, William Adam Phelan ⁴, Omar Chmaissem ^{1,5}, Bisham Poudel ⁵ and John F. Mitchell ¹

- ¹ Materials Science Division, Argonne National Laboratory, Argonne, IL 60439, USA; Zheng@anl.gov (H.Z.); bixia.wang@anl.gov (B.X.W.); krogstad@anl.gov (M.J.K.); mitchell@anl.gov (J.F.M.)
- ² Materials Science and Technology Division, Oak Ridge National laboratory, Oak Ridge, TN 37831, USA; zhangj4@ornl.gov
- ³ Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA; yren@anl.gov
- ⁴ Platform for the Accelerated Realization, Analysis and Discovery of Interface Materials (PARADIM), Department of chemistry, The Johns Hopkins University, Baltimore, MD 21218, USA; wphelan2@jhu.edu
- ⁵ Department of Physics, Northern Illinois University, Dekalb, IL 60115, USA
- * Correspondence: zheng@anl.gov

In the main text, we considered the single crystal X-ray diffraction patterns (Figure 5) in pseudocubic symmetry. In doing so, we considered twinned orthorhombic (space group *Pbnm*) and monoclinic ($P2_1/n$) structures. When twinned, there are six matrix transformations that relate these two space groups to the pseudocubic axes:

$$\mathbf{M} = \begin{bmatrix} -\frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & \frac{1}{2} & 0 \end{bmatrix}, \begin{bmatrix} \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{2} & 0 & -\frac{1}{2} \\ 0 & \frac{1}{2} & 0 \end{bmatrix}, \begin{bmatrix} 0 & \frac{1}{2} & -\frac{1}{2} \\ 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{2} \end{bmatrix}, \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{2} & 0 \\ -\frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{2} \end{bmatrix}, \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{2} & 0 \\ -\frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{2} \end{bmatrix}$$

such that $(\vec{a}, \vec{b}, \vec{c})_{pc} = (\vec{a}, \vec{b}, \vec{c})_{m,o} M$. The Miller indices transform by the same matrices such that $(h, k, l)_{pc} = (h, k, l)_{m,o} M$. The following reflection conditions exist for the Miller indices in the *Pbnm* space group: for 0kl, k=2n (where *n* is an integer); for h0l, h+l=2n; for h00, h=2n; for 0k0, k=2n; for 00l, l=2n. For the $P2_1/n$ space group, the 0kl condition is deleted, and all other conditions remain. When calculating the positions of systematic absences that are marked in Figure 5 of the main text, we transformed all allowed reflections for the *Pbnm* and $P2_1/n$ space groups to the pseudocubic coordinates using the above matrices.