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Abstract: The illustrative description of the field-induced peculiarities of the director reorientation
in the microsized nematic volumes under the effect of crossed magnetic B and electric E fields have
been proposed. The most interesting feature of such configuration is that the nematic phase becomes
unstable after applying the strong E. The theoretical analysis of the reorientational dynamics of the
director field provides an evidence for the appearance of the spatially periodic patterns in response to
applied large E directed at an angle α to B. The feature of this approach is that the periodic distortions
arise spontaneously from a homogeneously aligned nematic sample that ultimately induces a faster
response than in the uniform mode. The nonuniform rotational modes involve additional internal
elastic distortions of the conservative nematic system and, as a result, these deformations decrease
of the viscous contribution Uvis to the total energy U of the nematic phase. In turn, that decreasing
of Uvis leads to decrease of the effective rotational viscosity coefficient γeff(α). That is, a lower
value of γeff(α), which is less than one in the bulk nematic phase, gives the less relaxation time
τon(α) ∼ γeff(α), when α is bigger than the threshold value αth. The results obtained by Deuterium
NMR spectroscopy confirm theoretically obtained dependencies of τon(α) on α.
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1. Introduction

Liquid crystal (LC) materials have been referred to as a curious soft matter, but their impact on
current technology is very impressive. The original technological revolution brought by these LC
materials has been in the field of displays. The nature of the orientational relaxation process of the
director field n̂ to its equilibrium orientation n̂eq in a microsized nematic liquid crystal volume, which is
subjected to crossed magnetic B and electric E fields has been investigated both experimentally and
theoretically. The theoretical analysis is based on the hydrodynamic theory including both the director
motion and fluid flow, with appropriate boundary and initial conditions, whereas the experimental
progress in understanding both the structural and dynamic properties of LC materials is based on
the nuclear magnetic resonance (NMR) spectroscopy [1–4]. Recently, the time-resolved deuterium
NMR spectroscopic measurements of field-induced director reorientations have been performed [1–16].
Taking into account that the quadrupolar splitting is related to the angle α made by the director n with
the magnetic field B (see Figure 1a), deuterium NMR spectroscopy is found to be a powerful method
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to investigate the dynamic director reorientation in nematic films. When, for instance, the deuterated
4− α, α− d2 − pentyl − 4′ − cyanobiphenyl (5CB-d2) is subjected to crossed magnetic B and electric E
fields, a set of the time-resolved NMR spectra can be recorded during both the turned-on and turned-off
processes. When the large electric field E is turned-on at an angle α to B, the director moves from being
parallel to B to being parallel to E (the turned-on process), with the relaxation time τON. After removing
of E, the director relaxes back to being parallel to B (the turned-off process), with the relaxation time
τOFF. Results of these deuterium NMR measurements show that at the certain balance between E and
B, the values of τON(α) monotonically increase with increasing of the angle α, up to the maximum
value τON(max) [4,11]. With further growth of α, up to the right angle (α ∼ π

2 ), τON(α ∼ π
2 ) rapidly

decreases with a few milliseconds with respect to τON(max) [4,11]. Analysis of these experimental
results, based on the predictions of hydrodynamic theory including both the director motion and
fluid flow, provides an evidence that at the certain balance between E and B, in such nematic material,
in response to the suddenly applied E at the angles α > 60◦, the spatially periodic patterns in the
initially homogeneously aligned nematic domains may appear. These nonuniform rotational modes
involve additional internal elastic distortions of the conservative nematic system and, as a result,
these deformations decrease the viscous contribution Uvis to the total energy of the nematic phase.
In turn that decreasing of Uvis leads to decrease the effective rotational viscosity coefficient γeff(α)

and gives a faster response of the director rotation than for a uniform mode, as observed in NMR
experiment [4].

Figure 1. (a) The coordinate system used for analyzing the time-resolved NMR experiments and
theoretical analysis. The x-axis is taken as being parallel to the magnetic field B and both electrodes.
The electric field E and director n̂ make the angles α and θ, respectively, with the magnetic field B.
(b) Three regimes of a voltage pulses.

In this article, we describe the field-induced peculiarities of the director reorientation in the
microsized nematic volumes under the effect of crossed magnetic B and electric E fields. The most
interesting feature of such configuration is that the state of the nematic system becomes unstable after
applying the large (∼1 V/µm) electric field. When the misalignment of the director with respect to
the direction imposed by the aligning magnetic field is due to the thermal fluctuations with small
amplitudes, the reorientation caused by the strong E manifests itself by the growing of one particular
Fourier mode. In this case, the spectral line shape characterizing the initially aligned nematic
sample broadens with time-dependent splitting while the initial steady doublet with constant splitting
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progressively vanishes [4,11]. In this case the application of the large E gives rise to the appearance of
new doublet with vanishing amplitude that progressively grows with constant splitting so that the
total spectral intensity is transferred from the initial doublet to the new one, with half the quadrupolar
splitting. These results strongly suggest that the initial state is not homogeneous and perturbed by
thermal fluctuations. It is, therefore, necessary to analyze the nematic response to an initial state
exhibiting some thermal fluctuations of the director under the influence of the strong electric field.
Since anomalous changes of the spectral line shapes do not give any information about the average
director orientation, the additional numerical investigations of the system that include both the director
reorientation and fluid flow should be done.

The understanding of how both the crossed E and B and confinement influence the orientational
dynamics of the nematic films has relevance for several different areas of applied physics and
material science.

The layout of this article is as follows. In the next section we give the theoretical background to
the orientational dynamics of the nematics under the effect of the crossed electric and magnetic fields.
The experimental deuterium NMR study are described in Section 2.1. The field-induced peculiarities
in the dynamics of the director reorientation in confined nematic liquid crystals, both in the linear and
nonlinear approaches, are given in Section 2.2. The results for the simulation of the time-resolved 2H
spectra are described in Section 2.2. Our conclusions are given in Section 3.

Parts of this review contain extracts and adapted material from some of our previous primary
publications, which have been cited in figure captions and in the text (American Physical Society [11,17]
and Elsevier [18,19]).

2. Theoretical Treatment of the Orientational Dynamics of Nematics under the Effect of the
Crossed Electric and Magnetic Fields

The aim of this section is to show some useful routes not only for further examining of the validity
of theoretical treatment of the orientational dynamics in the microsized nematic volume under the
effect of crossed electric and magnetic fields, but also for analyzing the NMR spectra evolution in
these nematics. The theoretical analysis of the reorientational dynamics of nematic LCs based on
continuum theory have been carried out to complement the existing NMR spectroscopy experiments.
This analysis together with time-resolved and time-averaged NMR spectroscopy allows us to describe
with high accuracy the relaxation processes in thin nematic film in response to application or removing
of the electric field. In this section, we illustrate how the field-induced dynamic director reorientation
in thin nematic film under the influence of crossed electric and magnetic fields can be described in the
framework of the hydrodynamic theory which includes both the director motion and the fluid flow.

2.1. Deuterium Nuclear Magnetic Resonance Study

The dependence of the quadrupolar splitting ∆ν(θ) on the angle θ made by the director n̂ with
the magnetic field B of the NMR spectrometer is given by

∆ν(θ) = ∆ν0P2(cos θ), (1)

where ∆ν0 is the splitting when n̂ is parallel to B and P2(cos θ) is the second Legendre polynomial.
After applying or removing the electric field E, the director n̂ orientation is moving in the plane defined
by B and E. Thus, the value of the angle θ can be determined directly from Equation (1), by measuring
the quadrupolar splittings, ∆ν(θ) and ∆ν0 (see Figure 2). When the director moves from being parallel
to B, the splitting is decreased, pass through zero at the magic angle (θmag = 54.74◦) and then to
increase to one half of ∆ν0, when the director is parallel to E. As an example, a set of the time-resolved
NMR spectra of 5CB-d2 recorded during the turned-on and turned-off processes for α = 79.7◦ [4,11]
are shown in Figure 3a,b, respectively. In the turned-on process, the spectral intensity is transferred
from the initial doublet ∆ν0 to new ∆ν(θ), with half the quadrupolar splitting with time after about
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10 ms. In the turned-off process the ∆ν(θ) increases because the director moves from being at θ = 71.9◦

to 0, i.e., to being parallel to B. In turn, the time resolved deuterium NMR spectra give the time
dependent function for the quadrupolar splitting frequency ∆ν(θ)/∆ν0. Such ratios and Equation (1)
give the director orientation as a function of time during the turned-on and turned-off processes at
each angle α [4,11], as shown by the symbols in Figure 3a,b, respectively. Figure 3a shows that in the
case of turned-on process the director rotates from the initial angle θ0 = 0◦ and then aligns at the
limiting angle θ∞, whereas in the case of turned-off process, the director rotates back parallel to the
magnetic field B (shown in Figure 3b). In the later case, the relaxation time τOFF is less than in the
turned-on process.

(a) Turn-ON                         (b) Turn-OFF 
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Figure 2. Two sets of time-resolved deuterium NMR spectra for the turned-on (a) and turned-off (b)
experiments recorded for 5CB-d2 at 15 ◦C and α = 79.7◦ [11].

By fitting the ratio of the quadrupolar splitting frequencies ∆ν(θ)/∆ν0 as a function of time
and using the Equation (1), one can estimate the relaxation times τON(α) and τOFF(α) at each angle
α. Figure 4 (solid curves) shows the time dependent functions τON(α) = τM/

√
1 + 2ρ cos2 α + ρ2

and τOFF(α) = γ1/UM, obtained from the torque balance equation for a monodomain nematic [4].
Here ρ = UE/UM is the ratio of the anisotropic electric and magnetic energies, respectively, whereas γ1

is the rotational viscosity coefficient. Also the angle α dependent functions τON(α) and τOFF(α)

(both open and closed circles) [4,11], obtained from the best fits in Figure 3a,b, respectively, are shown
in Figure 4. It is also apparent that when α tends to 90◦, the angle α dependence of τON(α) is deviated
from the theoretical curve obtained from the torque balance equation for a monodomain nematic and
starts to decrease. When the values of the angle α are larger than about 80◦, then the spectral line shape
recorded with time shows the broadening and the director distribution is no longer monodomain.
In turn, when the values of α is larger than 89◦, the NMR spectra recorded during the relaxation of
the director distribution show the spectra change to powderlike spectral line shapes. Because the
anomalous changes of the spectral line shapes do not give any information about the average director
orientation, the experimental results discussed in this section has been limited to a region, with uniform
director orientation. Thus, the experimental explanation of the nonuniform director reorientation
under the effect of crossed magnetic B and electric E fields is beyond the scope of the present subject
and were discussed elsewhere. Dynamical peculiarities observed during the director reorientation in
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the microsized nematic volume subjected to strong electric field may be caused by the appearance of
stripes in the nematic sample. In the next section the theoretical analysis of the nonuniform director
reorientation in response to suddenly applied E will be discussed. The feature of this theoretical
approach is that the periodic distortions, in response to suddenly applied E, arise spontaneously
from a homogeneously aligned nematic sample that ultimately induces a faster response than in the
uniform mode. The nonuniform rotational modes involve additional internal elastic distortions of the
conservative nematic system and, as a result, these deformations decrease the viscous contribution
Uvis to the total energy U of the nematic phase. In turn, that decreasing of Uvis leads to decrease of the
effective rotational viscosity coefficient γeff(α). That is, a lower value of γeff(α), which is less than one
in the bulk nematic phase, gives the less relaxation time τon(α) ∼ γeff(α), when α is bigger than the
threshold value αth.
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Figure 3. Plot of the angle θ(t) vs. time t for the turned-on (a) and the turned-off (b) processes
obtained for a number of values of α [11]. The symbols were obtained from the time dependence of
∆ν(θ)/∆ν0(≡ P2(cos θ)), whereas the solid lines were obtained from the torque balance equation for a
monodomain nematic.
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Figure 4. Plot of the functions τON(α) and τOFF(α) (solid lines) vs. angle α, obtained from the
torque balance equation for a monodomain nematic, whereas the symbols indicate the relaxation times
obtained from the best-fits in Figure 3a,b, respectively.

2.2. Peculiarities in the Director Reorientation under the Effect of Crossed Electric and Magnetic Fields

The main goal of the present section is the description of the dynamical peculiarities in the
microsized nematic volume, composed of the deuterated 5CB-d2 molecules, in response to suddenly
applied E directed at an angle α to the magnetic field B. That theoretical analysis is based on the
predictions of the hydrodynamic theory which includes both the director motion and fluid flow.
Under certain circumstances that approach provides an evidence for the appearance of the spatially
periodic patterns in confined nematic volume in response to a suddenly applied large E directed at an
angle α to B. The novelty of this theory is that the periodic distortion emerges spontaneously from a
homogeneous state of the nematic system. It may induce a faster response than in the uniform mode,
because these periodic distortions produce a lower effective rotational viscosity (ERV) γeff(α) than in
the homogeneous state. This is due to the fact that the nonuniform rotational modes involve additional
internal elastic distortions Uelast of the conservative nematic system and, as a result, it causes the
decrease of the viscous contribution Uvis to the total energy Utot of the nematic system. That is, a lower
value of γeff(α) gives the less value of the relaxation time τON(α), when α is bigger than the threshold
value αth. When the values of α are less then αth, the dynamics of the director reorientation can be
described on the basis of the torque balance equation for a monodomain nematic, as observed in
experiments [4,11].

We are focused here on the dynamics of the director n̂ reorientation in confined nematic volume,
which is delimited by two horizontal and two lateral surfaces at mutual distances 2d and 2L on a
scale in the order of tens micrometers. In our calculations the choice of the width/length�1 allows us
to avoid the effect of the bounding lateral walls on the director reorientation inside the nematic cell.
We consider the coordinate system which assumes that the x-axis is directed parallel to B and both
electrodes (see Figure 1a), whereas the z-axis is directed perpendicular to these electrodes. The electric
field E and director n̂ make the angles α and θ, respectively, with the magnetic field B. According to our
task, the nematic system may be seen as two-dimensional, since the director is maintained within the
xz-plane (or in the yz plane) defined by two external fields, where î is the unit vector directed parallel
to the electrodes, k̂ is the unit normal vector, and ĵ = k̂× î. We can suppose that the components of the
director n̂ = nx î + nzk̂ = cos θ(x, z, t)î + sin θ(x, z, t)k̂ depend only on x, z-coordinates and the time t.

So, the goal of this section is to investigate the dynamical peculiarities observed during the
director reorientation in the microsized nematic volume confined between two transparent electrodes
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under the effect of crossed the strong electric E and magnetic B fields [11,18]. This problem will be
investigated in the framework of the Ericksen-Leslie theory [20,21], that includes both the director
motion and the fluid flow. Taking into account the width of the nematic film, one can assume the mass
density ρ to be constant across the nematic film, and thus we can deal with an incompressible fluid.
The incompressibility condition ∆ · v = 0 assumes that

∂xu + ∂zw = 0, (2)

where u and w are the components of the vector v = vx(x, z, t)î + vz(x, z, t)k̂ = u(x, z, t)î + w(x, z, t)k̂,
and ∂xu = ∂u

∂x . The hydrodynamic equations describing the reorientation of the director field n̂
in microsized 2D nematic phase can be derived from the torque and linear momentum balance
equations [11,18] as

Tvis + Telast + Tel + Tmag = 0, (3)

and

ρ
dv
dt

= ∇ · σ, (4)

respectively. Here Tvis = δRvis

δn̂,t
× n̂ is the viscous, Telast = δΨelast

δn̂ × n̂ is the elastic, Tel =
δΨel
δn̂ × n̂

is the electric and Tmg =
δΨmg

δn̂ × n̂ is the magnetic torques exerted on the director, respectively,
whereas σ denotes the full stress tensor (ST), and dv

dt is the material derivative of the velocity v. Here,
Rvis = α1 (n̂ ·M · n̂)2 +γ1 (n̂,t −W · n̂)2 + 2γ2 (n̂,t −W · n̂) · (M · n̂− (n̂ ·M · n̂) n̂)+ α4M : M+(α5 +

α6) (n̂ ·M ·M · n̂)2 is the viscous contribution to the Rayleigh dissipation function, whereas α1, ..., α6 are
the Leslie viscosity coefficients, γ1 = α3 − α2 is the rotational viscosity coefficient, γ2 = α3 + α2 is the
viscosity coefficient which characterizes the contribution to the torque due to a shear velocity gradient,
M = 1

2
[
∇v + (∇v)T] and W = 1

2
[
∇v− (∇v)T] are the symmetric and asymmetric contributions

to the rate of strain tensor, respectively, and n̂,t = dn̂
dt is the material derivative of the director

n̂. In the case of 2D nematic system, when the director moves from being parallel to B to being
parallel to E, the elastic energy density can be written as Ψelast =

1
2

[
K1 (∇ · n̂)2 + K3 (n̂×∇× n̂)2

]
,

where K1 and K3 are the splay and bend elastic constants, respectively. In turn, the electric and
magnetic energy densities are Ψel = − 1

2 ε0εa (n̂ · E)2 and Ψmag = − 1
2

χa
µ0

(n̂ · B)2, where ε0, µ0,
χa and εa are the dielectric permittivity, magnetic constant, magnetic and dielectric anisotropy
of the nematic sample, respectively. In our case the full ST can be written in the form
σij = Pδij + ρvivj − σvis

ij , where P is the hydrostatic pressure in the nematic film, δij is the Kronecker

delta function, and σvis
ij = α1nknl Mklninj + α2ni Nj + α3njNi + α4Mij + α5nink Mkj + α6njnk Mki is the

viscous contribution to the stress tensor. Here N = n̂,t −W · n̂ is the Leslie vector.
Note that the director dynamics in the monodomain nematic, both with and without accounting

the backflow, has been investigated earlier in Refs. [4,12]. However, our main goal is the understanding
of how both the crossed E and B, as well as the confinement are responsible for appearance
of the periodic distortion emerging spontaneously from the homogeneous state of the nematic
phase [10,17–19,22–27]. The theoretical study of the periodic structures in the nematic phase imposed
by the strong E has been commonly associated with the wavelength corresponding to the mode of
fastest growth [11,17–19,25–27]. Analysis of the numerical results for the turned-on process in the
microsized nematic volume provides the evidence for the appearance of the spatially periodic patterns,
only in response to the suddenly applied strong electric field E� Eth, directed practically orthogonal
to the magnetic field B [11,17–19,25–27].

“It has been shown that for a certain balance among the electric, magnetic, elastic and viscous
torques there is the threshold value of the amplitude of the thermal fluctuations of the director
n̂ = n̂0 + δn̂ which provides the nonuniform rotation mode rather than the uniform one, whereas the
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lower value of the amplitude dominates the uniform mode. So, in the case of E � Eth, the nematic
system is suddenly placed far from equilibrium and any small perturbation in the initially uniform
alignment will begin to grow exponentially [11,17,18,22,23,27] with a rate being inversely proportional
to some ERV during the backflow reorientation process. It responds by creating distortion which
maximizes the rate at which the nematic lowers its total free energy. In this configuration the thermal
fluctuations with small amplitudes n̂ = n̂0 + δn̂ (δn̂ � 1) manifest themselves by the growing
fluctuations with the wavelength corresponding to the fastest growing of distortions. Physically,
this means that the periodic distortion emerging spontaneously from the homogeneous state may
induce the faster response than in the uniform mode. The nonuniform rotation modes involve
additional internal elastic distortions that are absent in the uniform rotation mode. This leads to a
compromise that determines the wavelength of the fastest-growing periodic structure in the nematic
film. The large-amplitude distortions lead to the increase of the elastic energy of the conservative
nematic system and, as a result, it causes the decrease of the viscous contribution to the total energy of
the LC system. In turn, as n̂2 = n̂2

0 = 1, then in the linear approximation (n̂0 · δn̂) = 0, that is δn̂ ⊥ n̂0.
Since initially the director is aligned parallel to B, at which n̂ remains parallel to n̂0, so, there is only one
δn̂z-component of the vector δn̂. Therefore, it is a good assumption that a small-amplitude distortion
which will be modulated in the z-direction (see Figure 1a), and all physical quantities depend only on
x and z coordinates, and in the case of the planar geometry both the thermal fluctuation of the director
δn̂ = (0, 0, δnz) and velocity v = (vx, 0, vz) = (u, 0, w) fields are in the xz plane.” [18].

2.2.1. Theoretical Analysis in Case of the Linear Balance Equations

For the case of 2D nematic system in which the inertial term is negligible the linear momentum
balance equation can be written as [11,18,26]

η5∂xxu + η1∂zzu + η4∂xzw + α3∂z∂tδnz − ∂xP = 0,

η2∂xxw + η6∂xzu + 2η3∂zzw + α2∂x∂tδnz − ∂zP = 0,
(5)

whereas the torque balance equation reads in the form

γ1∂tδnz + α2∂xw + α3∂zu + ε0εaE2 cos 2αδnz+
χa

µ0
B2δnz − K1∂zzδnz − K3∂xxδnz = 0.

(6)

Here ∂t = ∂/∂t, ∂x = ∂/∂x, ∂xz = ∂2/∂x∂z, whereas η1 = 1
2 (α4 + α3 + α6), η2 = 1

2 (α4 + α5 − α2),
η3 = 1

2 α4, η5 = 1
2 (α4 + α6 − α3), and η6 = 1

2 (α2 + α4 + α5) are six temperature dependent
viscous coefficients.

In the case of the linearized 2D nematic system, the dynamics of the thermal fluctuation δnz under
the effect of crossed E and B fields can be obtained by solving the system of the linear differential
Equations (5) and (6) with the appropriate boundary and initial conditions. By means of transmittance
of the torque balance to the bounding surfaces, one can obtain the boundary conditions for the thermal
fluctuation δnz. In our case it can be written as [11,18]

(∂zδnz)z=0,d =
W
K1

∆n. (7)

HereW is the anchoring strength, ∆n = ns − e, ns is the director orientation on the bounding surfaces,
e is the easy axis orientation, and d is the film thickness, respectively. Note that the velocities u and w
on both electrodes have to satisfy the boundary conditions (case of free boundaries)

w (z = 0, d) = 0,

∂zu (z = 0, d) = 0.
(8)
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In turn, the initial conditions both for δnz and v can be written in the form

δnz (t = 0) = n0,

v (t = 0) = 0,
(9)

respectively.
In order to observe the formation of the spatially periodic patterns, excited by electric E and

magnetic B fields, we assume a harmonic dependencies along x and z axes both for the thermal
fluctuation and velocity [11,18]

δnz = n0 sin (qxx) sin (qzz) exp (st) ,

u = v0qz sin (qxx) cos (qzz) exp (st) ,

w = −v0qx cos (qxx) sin (qzz) exp (st) ,

(10)

where n0 ≡ δn (t = 0), v0 ≡ v (t = 0).
In that case, the linearized torque balance Equation (6) takes the form

A1v0 −A2n0 = 0, (11)

whereas the linearized linear momentum balance Equation (5) can be written as

A3v0 −A4n0 = 0, (12)

where A1 = 1
d
(
α2q2

x − α3q2
z
)
, A2 = −B − K1

d q2
z −

K3
d q2

x − γ1s, A3 = 1
d2

(
η1q4

z + η8q2
zq2

x + η2q4
x
)

and

A4 = 1
d
(
α3q2

z − α2q2
x
)

s = −A1s, whereas B = ε0εaE2 cos 2α + χa
µ0

B2 =
(

U
Uth

)2
λ1 cos 2α + λ2,

λ1 = ε0εa
Uth
K1

, λ2 = χa
µ0

(Bd)2

K1
are two parameters of the nematic system, Uth = π

√
K1

ε0εa
is the threshold

voltage, and η8 = η5 − η6 − η4 + α4 is the viscosity coefficient of the nematic system.
In our case the components of the velocity v = uî + wk̂ have to satisfy the boundary conditions

w (z = 0, 1) = 0,

∂zu (z = 0, 1) = 0,
(13)

whereas the boundary conditions on both electrodes for director fluctuation δn̂ take the form [11,18]

K1

Wd
qz = tan (qzz)z=0,1 . (14)

Substituting Equation (12) into Equation (11) and solving them yields

s (qx, qz) = −
B + K31q2

x + q2
z

γeff

(
K1

d2

)
, (15)

and one can calculate the ERV coefficient as

γeff = γ1

[
1−

(
α3q2

z − α2q2
x
)2

η1q4
z + η2q4

x + η8q2
zq2

x

]
, (16)

where K31 = K3
K1

, ηi = ηi/γ1 (i = 1, ..., 8) and αi = αi/γ1 (i = 2, 3) are the dimensionless elastic and
viscous coefficients, respectively. Notice that the linearized analysis is valid as long as the amplitude
of the response δnz is sufficiently small. Having obtained from Equation (15) the growth rate s (qx, qz),
one can determine the value of the angle α which provides a periodic response for the nematic phase

at applied electric field E above threshold value Eth = π
d

√
K1

ε0εa
.
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For further analysis the values of the splay K1 = 8.7 pN and bend K3 = 10.2 pN elastic constants
for 5CB at temperature T = 300 K and density 103 kg/m3, as well as the dielectric constants ε‖ = 19.5
and ε⊥ = 8 [11], has been used. In turn, the rotational viscosity [11] γ1 ∼ 0.072 Pa s, together with the
measured data for all Leslie coefficients are used at the same temperature.

It should be noted that the NMR measurements were made with deuterated 5CB-d2 nematic
sample of the thickness of 194.7 µm using a JEOL Lambda 300 spectrometer [4], which has a magnetic
flux density B of 7.05 T. The values of voltages in our calculations is varied between 20 and 200 V.
The last value of U was chosen to be equal to the value used in the NMR spectroscopy experiment [4].
So, the values of the dimensionless parameters λ1 and λ2 were estimated to be equal to 47,418 and
5486, respectively. The values of the anchoring strengthsW for 5CB is varied in the range from 10−5

to 10−6 J/m2 [11]. The calculation of the root of Equation (14) yields the minimal qmin
z = 0, at z = 0,

whereas at z = 1 the minimal qmin
z has to satisfy the following equation:

κqmin
z = tan

(
qmin

z

)
, (17)

where κ = K1/(Wd). The calculated values of the dimensionless coefficient κ are equal to 0.044 for the
value ofW = 10−6 J/m2 (case I), and 0.0044 for the value ofW = 10−5 J/m2 (case II), respectively.
These values of K1/(Wd) provide the minimal values of the dimensionless wavelengths qmin ≡ qmin

z ,
which are equal to ∆ = π + δ, where δ = 0.1434 in case I and 0.01434 in case II, respectively. Note that
in the limiting case of strong anchoring, whenW → ∞, lim ∆W→∞ = π.

“Having obtained the values of qmin = ∆ (case I), one can calculate, by using of Equation (15),
the dimensionless growth rate s (qxd/π) /s (0) vs. the dimensionless wavelength qxd/π under
the effect of the electric field E. Calculations of the dimensionless growth rate s (qxd/π) /s (0) vs.
dimensionless wavelength qxd/π, for two voltages U = 20 V (Figure 5a) and U = 50 V (Figure 5b)
applied across the nematic film, for a number of values of the angle α: 0.157 (∼ 9◦)(curve (1));
0.471 (∼ 27◦)(curve (2)); 0.785 (∼ 45◦)(curve (3)); 1.257 (∼ 72◦)(curve (4)), and 1.57 (∼ 90◦)(curve (5)),
respectively, are shown in Figure 5a,b [11,18]. The main result of this calculations is that the periodic
response appear for the high value of the voltage U ≥ 50 V, when for each value of the angle
α > 70◦ there is an optimal dimensionless wavelength qmax

x corresponding to the fastest growth of
the distortion. For instance, in case I, and when the voltage U = 50 V, the strong periodic distortion
emerging spontaneously from the homogeneous state by the strong E may induce faster than in the
uniform mode only for the high values of the angle α ∼ 65◦ and higher. Calculations of the dimensional
growth rate s (qxd/π) (in s−1) vs. qxd/π, under the effect of both the voltage U = 200 V and the
magnetic field B ∼ 7.05 T, for a number of values of the angle α (same as in Figure 5), are shown in
Figure 6. The main result of this calculation is that the periodic response appears only for the values of
α ≡ αth ∼ 45◦ and higher, and for each value of the angle α > αth there exist an optimal dimensionless
wavelength qmax

x corresponding to the fastest growth of the distortion. This means that the threshold
value of the angle αth, at which a periodic structure in the homogeneously aligned nematic film under
the effect of crossed electric and magnetic fields begins to form, decreases with increasing the voltage
applied across the LC film. Calculations show that for such nematic film, with thickness ∼200 µm,
the character of the anchoring conditions (strong or weak) has a weak effect on the growth rate s and
the dimensionless wavelength qmax ≡ qmax

x (see Figure 7a). Note that when α tends to 90◦, then the
value of the optimal qmax ≡ qmax

x , corresponding to the fastest growth of the distortion (see Figure 7b),
increases slightly (see Table 1). Having obtained the values of qmax (α), corresponding to each value of
α, one can calculate the effective viscosity [18]

γeff (α,W) /γ1 = 1−

(
α3∆2 − α2qmax (α)2

)2

η1∆4 + η2qmax (α)4 + η8∆2qmax (α)2 (18)
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as a function of both the angle α and the anchoring strengthW . In the limiting case of qmax = 0 the
ERV coefficient γeff(0) is equal to

γeff (0) = γ1

[
1− α3

2η1

(
1 +

γ2

γ1

)]
, (19)

which agrees with the result reported in the literature [22]. Calculations of the dimensionless ERV
coefficient γeff (α,W) /γ1 as the function of both the angle α and the anchoring strengthW are shown
in Figure 8. It is evident that when α tends to be 90◦, then the value of the optimal qmax ≡ qmax

x ,
corresponding to the fastest growth of the distortion, providing the lower ERV coefficient γeff (α)

being less than one in the bulk nematic phase. Physically, this means that the periodic distortion
emerging spontaneously from a homogeneous state may induce a faster response than in the uniform
mode. The nonuniform rotation modes involve additional internal elastic distortions that are absent
in the uniform rotation mode. This leads to a compromise that determines the wavelength of the
fastest-growing periodic structure in the nematic film. In turn, the large-amplitude distortions
modulated in the x direction lead to the increase of the elastic energy of the conservative nematic
system and, as a result, it causes the decrease of the viscous contribution to the total energy of the LC
system. Both Figures 5 and 6 show that there is a certain threshold value of the angle αth which provides
the periodic distortion emerging spontaneously. That is, when α is close to a right angle (see curves (4)
and (5) in Figure 6), the value of γ1 in Equations (5) and (6) should be replaced by γeff. That is, the lower
value of γeff (α,W) initiates another dynamics of the director reorientation in the nematic film under
the effect of crossed electric and magnetic fields. In turn, since τon (α,W) ∼ γeff (α,W) [22], the lower
value of γeff will reduce the relaxation time, as observed experimentally by using the time-resolved
deuterium NMR spectroscopy [4].” [18].

0 2 4 6 8 10
0.2

0.4

0.6

0.8

1.0 U=20 V

 

 

S
(q

xd
/

)/S
(0

)

qxd/

(a) 1
2

3
4
5

Case I

0 2 4 6 8 10

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

5

4

3

2
1

U=50 V

 

 

S
(q

xd/
)/S

(0
)

qxd/

(b)

Case I

Figure 5. Plot of the dimensionless growth rate s (qxd/π) /s (0) vs. dimensionless wavelength qxd/π

for a number of values of the voltage (a) U = 20 V and (b) U = 50 V [18], and for a number of values
of the angle α: 0.157 (∼9◦) (curve (1)); 0.471 (∼27◦) (curve (2)); 0.785 (∼45◦) (curve (3)); 1.257 (∼72◦)
(curve (4)), and 1.57 (∼ 90◦) (curve (5)), respectively.
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Figure 6. Plot of the growth rate s (qxd/π) in s−1 vs. dimensionless wavelength qxd/π under the
effect of the voltage U = 200 V, calculated for a number of values of the angle α [11], same as in Figure 5.
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Figure 7. (a) Plot of the growth rate s (qxd/π) vs. dimensionless wavelength qxd/π obtained for a
number of values of the anchoring strengthW [11,18]: cases I (curve 1) and II (curve 2), as well as for the
case of the strong anchoring (curve 3), respectively. (b) Same as Figure 6, but for a number of values of
the angle α: 1.22 (∼70◦)(curve (1)); 1.29 (∼74◦)(curve (2)); 1.36 (∼78◦)(curve (3)); 1.43 (∼82◦)(curve (4)),
and 1.50 (∼86◦)(curve (5)), respectively.

Table 1. The optimal values of the dimensionless wavelength qmax
x (α) as a function of both the angle α

and the anchoring strengthW [18].

α (◦) qmax (α) (Strong) qmax (α) (Case I) qmax (α) (Case II)

74 20.5 20.6 21.3
78 20.96 21.3 21.7
82 21.8 22.0 22.6
86 22.1 22.2 22.9
90 23.0 23.2 23.6
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Figure 8. Plot of the dimensionless ERV coefficient γeff (α,W) /γ1 vs. the angle α for a number of
values of the anchoring strengthW [18].

2.2.2. Theoretical Analysis in Case of the Nonlinear Balance Equations

The dimensionless torque balance and the dimensionless linear balance momentum equations
describing the orientational dynamics of the nematic phase under the influence of strong electric field
E can be written in the form (for details, see the Ref. [19])

θ,τ = δ1

[(
sin2 θ + K31 cos2 θ

)
θ,xx +

(
cos2 θ + K31 sin2 θ

)
θ,zz

]
+

δ1

[
(K31 − 1) sin 2θθ,xz +

1
2
(1− K31) sin 2θ

(
θ2

,x − θ2
,z

)]
+

δ1 (K31 − 1) cos 2θθ,xθ,z +
1
2

E2
(z) sin 2 (α− θ) +

1
2
(ψ,xx + ψ,zz)− ψ,zθ,x + ψ,xθ,z + γ

[
sin 2θψ,xz +

1
2
(ψ,xx − ψ,zz)

]
,

(20)

δ2

[
(∆ψ),τ + ψ,z (∆ψ),x − ψ,x (∆ψ),z

]
= L̂ψ +F , (21)

where v = u (x, z, τ) î + w (x, z, τ) k̂ is the dimensionless velocity, which can be expressed by means of
the dimensionless stream function ψ (x, z,τ) as u = ∂ψ

∂z and w = − ∂ψ
∂x , respectively. Here u ≡ u (x, z, τ)

and w ≡ w (x, z, τ) are the dimensionless components of the vector v, the operator L̂ψ and the function

F are listed in the Appendix of Ref. [19], ∆ψ = ψ,xx + ψ,zz, τ = ε0εa
γ1

(
V
2d

)2
t is the dimensionless

time, γ1 and γ2 are two rotational viscosity coefficients (RVCs), δ1 = 4K1
ε0εaV2 , δ2 = ρε0εaV2

4γ2
1

, γ = γ2
γ1

,

and K31 = K3
K1

are four parameters of the nematic system. It should be noted that the overbars
in the space variables x and z have been (and will be) eliminated in the last as well as in the
following equations.

In our case the electric field E = Ex î + Ezk̂ = E (z) cos αî + E (z) sin αk̂ is applied across the
nematic film and makes the angle α with the electrodes. Note that in our case the value of the angle α

is close to the value of the right angle. In turn, the dimensionless electric field E(z) satisfies the basic
equation of electrostatics for dielectrics [19]

∂

∂z

[(
ε⊥
εa

+ sin2 θ

)
E(z) sin α + δ2θ,z sin 2θ

]
= 0,

1 =
∫ 1

−1
E(z)dz,

(22)
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where E(z) = 2dE(z)
V , and V is the voltage applied across the cell. Consider now the microsized

nematic volume confined between two transparent electrodes when the director is weakly anchored at
the bounding surfaces and the anchoring energy can be written in the form [11] Wan = 1

2 A sin2 ∆θ,
where ∆θ = θs − θ0, θs and θ0 are the pretilt angles of the surface director n̂s and the easy axis n̂0,
respectively. In order to elucidate the role of the thermal fluctuations in maintaining of the spatially
periodic patterns in the nematic film under the effect of the strong E, we have performed a numerical
study of Equations (20)–(22) with an appropriate boundary conditions for the angle θ. In the first case,
it reads as (hereafter referred to as case A)

θ,z(−10 < x < 10, z = ±1) = ±δ3θ(−10 < x < 10, z = ±1),

θ(x = ±10,−1 < z < 1) = 0,
(23)

where δ3 = Ad
K1

, whereas in the second case, with the strong anchoring condition for the angle θ, it reads
as (hereafter referred to as case B)

θ (−10 < x < 10, z = ±1) = 0, θ (x = ±10,−1 < z < 1) = 0, (24)

respectively. The velocity on these electrodes has to satisfy the no-slip boundary conditions, i.e.,

v−10<x<10,z=±1 = vx=±10,−1<z<1 = 0. (25)

With aim to observe the formation of the spatially periodic patterns emerging spontaneously from
homogeneous state under the effect of the strong E, the appropriate initial condition was written in the
form [19]

θ(x, z, 0) = θ0 cos(qxx) cos(qzz). (26)

So, the initial condition in the form of Equation (26) defines the thermal fluctuations of the
director with amplitude θ0 and wavelengths qx and qz of an individual Fourier components of the
modulation. In the case A, the wavelengths qx and qz of an individual Fourier components are
described as qx = π

20 (2k + 1), where k = 0, 1, 2, ... and qz = ∓ (ffi3 cot qz)z=±1, whereas in the case B,
as qα = π

2 (2k + 1), where α = x, z and k = 0, 1, 2, ....

Switched-on Process in the Positive Sense

When a strong electric field E is applied in the positive sense at the angle α close to the right angle
to the transparent electrodes, the director moves from being parallel to the direction preferred by the
surfaces to being parallel to E (the turned-on process), because dielectric anisotropy is positive for all
cyanobiphenyls. Now the evolution of the director n̂ to its final distribution across the microsized
nematic volume under the effect of E can be obtained by solving the nonlinear partial differential
Equations (20)–(22) with appropriate boundary (23)–(25) and initial (26) conditions. For the case of
deuterated 5CB-d2, at the temperature 300K corresponding to nematic phase, the mass density is equal
to ∼ 103 kg/m3 and the set of δ-parameters, which is involved in Equations (20)–(23), takes values [19]
δ1 = 8.6× 10−6, δ2 = 0.19, and δ3 = 19.5.

“It has been shown in the recent analysis of the numerical results for the turned- on
process [19,25,27] that for a certain balance among the electric, elastic, and viscous torques there
is the threshold value of the amplitude θ0 of the thermal fluctuations of the director over the LC sample
which provides the nonuniform rotation mode rather than the uniform one, whereas for the lower
value of θ0 the uniform mode dominates. It has been shown, for instance for the case of 5CB and the
angle α = 1.57 (∼89.96◦), that the periodic response appears only for the values of the amplitude θ0

more than 0.01 (∼1.1◦), whereas for the lower values of θ0 the certain balance of the torques provides
only the uniform rotation mode. These nonlinear partial differential Equations (20)–(22), together with



Crystals 2019, 9, 262 15 of 23

the boundary conditions both for the angle θ (Equation (23)) and the velocity v (Equation (25)), and the
initial condition (Equation (26)), has been solved by using both the relaxation [28] and the sweep [29]
methods. The relaxation criterion ε = |

(
θ(n+1) (τ)− θ(n) (τ)

)
/θ(n) (τ) | for calculating procedure was

chosen to be equal to 5×10−4, and the numerical procedure was then carried out until a prescribed
accuracy was achieved. Here n is the iteration number.” [19].

The relaxation both of the angle θ (x, z = 0,τ) (Figure 9a) and the velocity components
w(x, z = 0, τ) and u(x, z = 0, τ) (Figure 9b) of the vector v = uî + wk̂ to their final distributions along
the length of the dimensionless nematic film (−10 ≤ x ≤ 10), for a number of dimensionless times
τ = 2 (∼12 ms), 4 (∼24 ms), 6 (∼36 ms), 8 (∼48 ms), and 10 (∼60 ms), are shown in Figure 9a,b [19],

respectively. The values of the dimensionless time
(

τ = ε0εa
γ1

(
V
2d

)2
t
)

are accounted after turned- on

the electric field. The time propagation of the angle θ (x, z = 0,τ) along the length of the dimensionless
nematic film (−10 ≤ x ≤ 10) with the value of the amplitude θ0 = 0.01 (∼ 1.1◦) is characterized by
the well- developed periodic structure with the lattice points at x = ±2.175 and ±5.83 (case A).
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Figure 9. Plot of the evolution of the polar angle θ (x, z = 0,τ) (a) and the velocity field
v = u (x, z = 0,τ) î + w (x, z = 0,τ) k̂ (b) to their equilibrium distributions along the length of the
dimensionless nematic cell (−10 ≤ x ≤ 10) [19], for a number of dimensionless times τ =2, 4, 6, 8,
and 10, respectively. In both cases (a) and (b) the evolutions are shown during the turned-on process
(E > 0), whereas the solid (curves 1) and the dash dotted (curves 2) lines are the calculated results for
the vertical w (x, z = 0,τ) and horizontal u (x, z = 0,τ) components of v, respectively.

It should be pointed out that the velocity field in that case has a weak effect on the director′s
dynamics, and the distribution of the angle θ (x, z = 0,τ) along the length of the dimensionless nematic
film (−10 ≤ x ≤ 10), with and without accounting the backflow v practically does not distinguish
each other. This means that the role of the viscous and elastic forces becomes negligible in comparison
to the electric contribution. The evolution of the director field in the nematic film under the effect of
the strong E directed practically perpendicular to the electrodes was obtained by solving the nonlinear
partial differential Equations (20)–(22), with appropriate boundary condition (Equation (23) (case A) or
(Equation (24) (case B)) for the angle θ and with the initial condition (Equation (26)). For both cases
A and B, and for the values of θ0 = 0.01 (∼1.1◦) and α = 1.57, the time propagation of the angle
θ (x, z = 0,τ) profile along the x-axis (−10 ≤ x ≤ 10) is characterized by well-developed periodic
structure with the lattice points at x = ±2.175 and ±5.83 (case A) (Figure 10a) and x = ±2.19 and
±5.80 (case B) (Figure 10b), respectively. Physically, this means that the character of the anchoring
to the bounding surfaces does not influence the final maintaining of the spatially periodic patterns
(see Figure 10).
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Figure 10. Plot of the evolution of the polar angle θ (x, z = 0,τ) to its equilibrium distribution along the
length of the dimensionless nematic film (−10 ≤ x ≤ 10), for a number of dimensionless times τ = 2
(∼12 ms), 6 (∼36 ms), 8 (∼48 ms), 12 (∼72 ms), and 20 (∼0.12 s) [19], respectively. (a) shows the case B,
while (b) shows the case A during the turned-on process (E > 0. In all these cases θ0 = 0.01 (∼1.1◦)
and α = 1.57 (∼89.96◦)).

It should be noted that in our case the optimal dimensionless wavelengths qx and qz provide the
minimal values of the total energy [19] W = Welast + We, where

2
δ1

Welast =
∫

dxdz
[(

(θON
eq,x)

2 + (θON
eq,z)

2
) (

sin2 θON
eq + K31 cos2 θON

eq

)]
+
∫

dxdz (K31 − 1) sin 2θON
eq θON

eq,xθON
eq,z

(27)

is the elastic contribution to the total energy, whereas

2We = −
∫

dxdzE2
(

θON
eq

)
cos2

(
θON

eq (x, z)− α
)

(28)

is the electric contribution to the total energy. In this turned-off case, the equilibrium distribution
of the angle θON

eq (x, z) along the length of the dimensionless nematic film is achieved after the
dimensionless time term τ = 12. It is also shown that only for the values of qx = 0.785, qz = 64.336,
α = 1.57, and θ0 = 0.01 (∼ 1.1◦) and higher the solution shows that the periodic structure may appear
spontaneously from homogeneous nematic phase under the effect of the strong electric field E and
above mentioned boundary and initial conditions. These values of qx and qz provide the minimal
values of the total energy W.

Switched-off Process

After removing the electric field, the director relaxes back to the direction preferred by the surfaces
(the turned-off process). Now the reorientation of the director to its equilibrium distribution across
the nematic film under the effect of the long-range elastic interactions and the anchoring force can be
obtained by solving the nonlinear partial differential Equations (20) and (21), for the case of E = 0,
with appropriate boundary conditions Equation (23) (case A) or strong Equation (24) (case B) for the
angle θ. The initial condition is taken in the form [19]

θ(x, z, 0) = θON
eq (x, z), (29)

where θON
eq is defined as an equilibrium distribution of the director across the nematic film obtained

during the turned-on process and at the value of the angle α = 1.57.
“Figure 11 shows the relaxation of the polar angle θ (x, z = 0,τ) during the turned-off process to

its equilibrium distribution along the length of the dimensionless nematic film (−10 ≤ x ≤ 10) [17] for
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two cases, A (Figure 11a,b), respectively, and for a number of dimensionless times τ =2 (22) (∼12 ms),
6 (26) (∼36 ms), 8 (28) (∼48 ms), 12 (32) (∼72 ms) and 20 (40) (∼0.12 s). Here in our notation the first

value means the dimensionless (τ = ε0εa
γ1

(
V
2d

)2
t) time after turning- off the electric field, whereas

the second value means the total time after starting the process. It is shown that after the time
τ ∼18 (∼0.108 s), when the electric field is removed, the director slowly relaxes back to the direction
preferred by surfaces and that process is characterized by the complex destruction of the initially
periodic structure (see Figure 11), especially in the vicinity of the lattice points. Our calculations show
that the director slowly relaxes back to the direction preferred by surfaces, and the angle θ → 0 only
after time τR ∼ 400 (2.4 s). Physically, this means that the role of elastic, viscous and anchoring forces
becomes comparable.” [19].
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Figure 11. Plot of the evolution of the polar angle θ (x, z = 0,τ) to its equilibrium distribution along
the length of the dimensionless nematic film (−10 ≤ x ≤ 10) and for a number of dimensionless times
τ =2 (22), 6 (26), 8 (28), 12 (32) and 20 (40) [17], respectively. (a) shows the case B, while (b) shows the
case A, respectively, during the turned-off process (E = 0).

Switched-on Process in the Negative Sense

When the strong electric field E is applied again but in the negative sense at the angle α ∼ −π
2

(see Figure 1b), the director moves from being parallel to n̂OFF to being parallel to the electric field.
Here n̂OFF is the final orientation of the director after the time term τOFF, when the electric field was
removed. Now the relaxation of the director in the microsized nematic volume under the effect of the
strong electric field E can be obtained by solving the nonlinear partial differential Equations (20)–(22),
with the appropriate boundary Equations (23)–(25) and initial conditions.

“In that case the initial condition is taken in the form [19]

θ(x, z, 0) = θOFF(x, z), (30)

where θOFF(x, z) is defined as the final distribution of the director across the nematic film obtained
during the turned-off process, when the electric field was removed. Two different scenarios of
relaxation of the director n̂ to its equilibrium distribution across the nematic film under the effect of
strong E directed in the negative sense at the angle α = −1.57 to the transparent electrodes are shown
in Figures 12 and 13 [19]. These evolutions are shown for two time sequences, first, for τ = 0 (248),
2 (250), 4 (252), 6 (254) and 8 (256) (see Figure 12), whereas, second, for τ = 0 (250), 2 (252), 4 (254),
6 (256) and 8 (258) (see Figure 13), respectively. Here the first value means the dimensionless time
after turning-on the process in the negative sense, whereas the second value means the total time
after starting the process. In these two cases (Figures 12 and 13) the electric field is turned- on again
after the dimensionless time terms τ =248 (∼1.488 s) and τ =250 (∼1.5 s), respectively. So, in these
cases the electric field was removed during τOFF =228 (20 ≤ τ ≤ 248) and 230 (20 ≤ τ ≤ 250)
dimensionless units, respectively. The main result of these calculations is that the final maintaining
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of the spatially periodic patterns, at α = −1.57, is possible only when the electric field was removed
during 228 dimensionless time units or 20 ≤ τOFF ≤ 248 (0.12 s ≤ tOFF ≤ 1.488 s) (see Figure 12),
whereas in the case of the longer delaying of turning -on the electric field, for instance, during
230 dimensionless time units, the certain balance among the electric, elastic, and viscous torques
provides only the uniform mode (see Figure 13). Physically, this means that the further removing
of the strong electric field leads both to the further decreasing of the value of the amplitude θ0 and
to the destruction of the periodic structure. Later, when the strong E is applied again, but in the
negative sense, the director is reoriented as a monodomain nematic. This result confirms the previous
suggestion that there exists the thereshold value of the amplitude θ0 which provides the nonuniform
rotation mode rather than the uniform one, whereas the lower value of θ0 dominates the uniform
mode [11]. Notice that in both these cases the final maintaining of the spatially periodic (Figure 12) and
monodomain (Figure 13) structures are achieved after the same dimensionless time 8 (∼48 ms).” [19].
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Figure 12. Plot of the evolution of the polar angle θ (x, z = 0,τ) to its equilibrium distribution along
the length of the dimensionless nematic film (−10 ≤ x ≤ 10) for a number of dimensionless times
τ = 0(248), 2 (250), 4 (252), 6 (254), and 8 (256), respectively. (a) shows the case B, while (b) shows the
case A during the turned-on process in the negative sense (E < 0) [19]. In all these cases θ0 = 0.01
(∼1.1◦) and α = −1.57 (∼−89.96◦)).
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Figure 13. The same as in Figure 12, but plot of the evolution of the polar angle θ (x, z = 0,τ) to its
equilibrium distribution along the length of the dimensionless nematic film (−10 ≤ x ≤ 10), for a
number of dimensionless times τ = 0 (250), 2 (252), 4 (254), 6 (256), and 8 (258) [19], respectively.

Thus, this theoretical analysis, based on the hydrodynamic theory including both the director
motion and fluid flow, provides evidence for the appearance of spatially periodic patterns in response
to the large E directed at the angle α to B, when α is bigger than the threshold value αth. When the
value of α is less then αth, the director′s dynamics can be described by the torque balance equation for
a monodomain nematic. Notice that our calculation predicts that the dynamic periodic order emerges
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spontaneously from the homogeneous state only due to thermal fluctuations, without any initial local
misalignment of the director.

2.3. Simulation of the Time-Resolved 2H Spectra

One of the prime advantages in using NMR spectroscopy to determine the director orientation is
that the form of the spectrum is also influenced by the distribution of the director with respect to the
magnetic field. In other words, we can see from the spectrum whether the sample is a monodomain
or not, and if not then the form of the director distribution can be determined given the aid of some
theoretical prediction for the distribution function. So, when the director field is inhomogeneous,
the NMR spectrum is a superposition of the elementary doublets I(ν, θ) weighted by the probability
density f (θ) of finding a director with orientation θ. Accordingly, the full spectrum is given by [4]

I(ν) =
∫ π

−π
f (θ)I(ν, θ) sin θdθ, (31)

where I(ν, θ) denotes the shape of a spectral line centred at either ν+(θ) or ν−(θ) and with a linewidth
σ(θ). For the simple model with Gaussian lineshapes the form of the elementary doublet associated
with the orientation θ is defined by

I(ν, θ) = ∑
±

1√
2πσ(θ)

exp

[
− (ν− ν±(θ))

2

2σ2(θ)

]
, (32)

where the angular dependent resonance frequency is

ν± = ν0 ±
∆ν0

2
P2(cos θ). (33)

In the spectral simulations it is convenient to set the central frequency, ν0, coming from the Zeeman
splitting to zero. The linewidth form σ is defined as

σ(θ) = σ0 + σ2P2(cos θ) + σ4P4(cos θ), (34)

where P2L(cos θ) (L = 1, 2) are the Legendre polynomials of rank L. There are a number of mechanisms
which contribute to the width of a spectral line for deuterons. One of them is the deviation of the
director distribution from a monodomain. Consider here for illustration a simple form [4,6]

f (θ) =
ξ

2
√
[ξ − (ξ − 1) cos2 θ]

3
. (35)

This function f (θ) is normalized in the range between −π and π, and the parameter ξ controls the
uniformity of the director distribution prior to the application of the electric field; when ξ is unity,
the director is randomly distributed and as ξ −→ ∞, the distribution tends to the Dirac delta function.

Having obtained the evolution of the angle θ (x, z = 0,τ), for instance, during the turned-off
process (E = 0) along the length of the dimensionless nematic film (−10 ≤ x ≤ 10) and for a number
of dimensionless times τ =2 (22), 6 (26), 8 (28), 12 (32) and 20 (40) (see Figure 11), respectively, we can
calculate the evolution of the spectra I(ν) during the turned-off process. Calculated time-resolved
2H spectra I(ν) for a turned-off process in 5CB nematic film at 14.8 ◦C shows nonuniform director
relaxation from being almost parallel to the electric field (U = 200 V) to being parallel to the magnetic
field (B = 7.05 T), for a number of dimensionless times τ = 2 (22), 6 (26), 8 (28), 12 (32) and 20 (40) [17],
respectively, as shown in Figure 14. Here were used σ0 = 1.14, σ2 = 0.523, and σ4 = 1.14 kHz [17],
respectively. The spectral range used in the simulation is taken to be −40 kHz ≤ ν ≤ 40 kHz.



Crystals 2019, 9, 262 20 of 23

-40 -20 0 20 40
0.0
0.5
1.0

-40 -20 0 20 40
0.0
0.5
1.0

-40 -20 0 20 40
0.0
0.5
1.0

-40 -20 0 20 40
0.0
0.5
1.0

-40 -20 0 20 40
0.0
0.5
1.0

-40 -20 0 20 40
0.0
0.5
1.0

(kHz)

0(a)

4

N
M

R
 s

pe
ct

ra

8

12

16

20
-40 -20 0 20 40

0.0
0.5
1.0

-40 -20 0 20 40
0.0
0.5
1.0

-40 -20 0 20 40
0.0
0.5
1.0

-40 -20 0 20 40
0.0
0.5
1.0
-40 -20 0 20 40

0.0
0.5
1.0

-40 -20 0 20 40
0.0
0.5
1.0

 

 

 

20

 

 

 

0(b)

 

 

 

4

 

 

(kHz)

8

 

 

 

N
M

R
 s

pe
ct

ra

12

 

 

 

16

Figure 14. The deuterium NMR spectra I(ν) of 5CB-d2 calculated for a number of times τ = 0, 4, 12, 16,
and 20, both for the case of strong (a) and weak (b) anchoring, respectively. In both sets of spectra the
solid lines show the turned-off process (E = 0) [17].

“Such reorientation during the turned-off process has a typical NMR signature: the initial
quadrupolar doublet characterizing the initially aligned nematic sample gives rise to an additional
broad doublet with time-dependent splitting while simultaneously the initial doublet with constant
splitting progressively vanishes (see in the Figure 14 during the first time terms up to 10 (∼13 ms)).
In this case, removing of the strong electric field gives rise to the appearance of a new doublet that
progressively grows with constant splitting so that the total spectral intensity is essentially transferred
from the initial doublet to the new one, with double quadrupolar splitting. These results strongly
suggest that the nonuniform director distribution relaxes to the uniform one, parallel to the magnetic
field.” [17].

The simulated (case I) and measured (case II) spectra are compared in Figure 15. The solid curves
in Figure 15 show a series of time-resolved deuterium NMR spectra of 5CB-d2 for the turned-off
alignment processes recorded at 15 ◦C for α = 89.7◦, whereas the dotted curves show the series of I(ν)
for the turned-off alignment process obtained theoretically. At 5.2 ms (τ = 4) after the electric field
was removed the spectrum is still almost identical with its initial form. In case I, at 10.4 ms (τ = 8),
after removing the electric field, the dominant spectral lines are sharper indicating that the director is
now aligned close to the magnetic field, whereas in case II there is still a small amount of the nematic
for which the director is aligned close to its initial form. After 13 ms (τ = 10), in both cases I and
II, the director continues to move towards the magnetic field direction which finally was achieved
after 15.6 ms (τ = 12), after removing of the electric field. The results of comparison show that the
complete reorientation of the director′s field in both cases I and II occurs approximately in the same
time and the director distribution starts and finishes in a uniform state but between these two extremes
the distribution is markedly, at least in case I, nonuniform. So, the theoretical analysis, based on the
predictions of hydrodynamic theory including both the director motion and fluid flow, provides an
evidence for the appearance of the spatially periodic patterns in response of the suddenly applied
electric field and provides the reasonable description of both the director′s and spectral evolution.
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Figure 15. The deuterium NMR spectra I(ν) of 5CB-d2 calculated (dotted curves) and measured (solid
curves) for the turned-off process at 14.8 ◦C.

3. Conclusions

In this article we describe some illustrative seminal studies of the field-induced peculiarities in
the director reorientation for low molar mass nematics encapsulated in the microsized nematic volume.
The most interesting feature of such configuration is that the state of the LC system becomes unstable
after applying the strong electric field E. The theoretical analysis of the reorientational dynamics in the
microsized nematic volume, based on continuum theory, which includes both the director motion and
the fluid flow, provides an evidence for the appearance of spatially periodic patterns in response to a
suddenly applied large electric field E directed at the angle α to the magnetic field B. The novelty of this
approach is that the periodic distortion arises spontaneously from a homogeneously aligned nematic
sample that ultimately induces a faster response than in the uniform mode. The nonuniform rotational
modes involve additional internal elastic distortions of the conservative nematic system and, as a
result, these deformations decrease the viscous contribution Uvis to the total energy U of the nematic
phase. In turn, that decreasing of Uvis leads to decrease of the effective rotational viscosity coefficient
γeff(α). That is, a lower value of γeff(α), which is less than one in the bulk nematic phase, gives the less
relaxation time τon(α) ∼ γeff(α), when α is bigger than the threshold value αth. The results obtained by
Deuterium NMR spectroscopy confirm theoretically obtained dependencies of τon(α) on α. When the
values of α are less then αth, the director reorientation can be described by the torque balance equation
for a monodomain nematic, as observed in experiments [4,11].
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