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Abstract: A relatively new approach to the design of photocatalytic and gas sensing materials is to
use the shape-controlled nanocrystals with well-defined facets exposed to light or gas molecules.
An abrupt increase in a number of papers on the synthesis and characterization of metal oxide
semiconductors such as a TiO2, α-Fe2O3, Cu2O of low-dimensionality, applied to surface-controlled
photocatalysis and gas sensing, has been recently observed. The aim of this paper is to review the
work performed in this field of research. Here, the focus is on the mechanism and processes that
affect the growth of nanocrystals, their morphological, electrical, and optical properties and finally
their photocatalytic as well as gas sensing performance.
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1. Introduction

Inorganic single crystals of metal oxides with highly reactive surfaces play a particularly
important role in photocatalysis [1–6], photoelectrochemistry including hydrogen generation by water
splitting [7] and, quite recently, gas sensors [8–14]. A brilliant idea to expose highly reactive facets of
well-defined crystals to external stimuli such as light, gas, or organic pollutants in order to enhance the
efficiency of processes governed by the surface chemistry has been exploited for a long time [15–23].
However, its practical realization has been greatly accelerated with the advent of nanotechnology [7,24].
Since 2008, when Yang et al. [25] published the results on micrometer sized, well-defined TiO2 single
crystals with a high percentage of reactive facets, one can observe a dramatically increased number of
papers devoted to facet engineering of surface and interface design, especially in the application to
photocatalytic materials [26–28].

Single crystals are usually terminated with the low Miller index facets that allow minimizing their
surface energy. During the crystal growth, the rate, at which the high Miller index facets evolve, is very
fast, eliminating them in the final state. Wulff theorem [29] predicts the most thermodynamically
favored shapes of large enough single crystal nanoparticles. It states that a given crystallographic facet
appears at a distance di from the center of particle which is proportional to its surface energy γi (di/γi

= const). Therefore, the shape is determined by the facets that remain at a low distance from the center
of a nanoparticle, being at the same time—the low energy ones.

Thus, the high energy facets, being unstable, are rarely exposed. However, a surface atomic
structure plays an important role in many processes governed by adsorption and particularly
chemisorption as shown in Figure 1. In many applications, such as photocatalysis and gas sensing, less
chemically stable and more active facets are the most sought for because, due to a different arrangement
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of atoms leading to a high concentration of dangling bonds, they facilitate, e.g., the separation of
photoinduced charges in photocatalysis and adsorption of gas molecules necessary for gas sensing.

Crystals 2019, 8, x; doi:  

Crystals 2018, 8, x; doi: FOR PEER REVIEW 

separation of photoinduced charges in photocatalysis and adsorption of gas molecules necessary for 
gas sensing.  

 
Figure 1. Mechanism of facet-dependent photocatalysis and (bio)chemical sensing for specifically 
shaped metal oxide semiconductor (MOS), Red—reduction, Ox—oxidation processes. 

Figure 1 illustrates the idea of the facet-dependent photocatalysis and (bio)chemical sensing of 
metal oxide semiconductor (MOS) using as an example anatase TiO2 crystals that are normally 
dominated by the thermodynamically stable {101} facets (more than 94% according to the Wulff 
construction [30]) rather than much more reactive {001} facets. However, an exposure of the more 
reactive {001} facets has a tremendous impact on both photocatalysis and gas sensing mechanism.  

Photocatalysis requires a control over three basic steps, as shown in Figure 1—left, concerning 
the charge, electrons e-, and holes h+: 

1. generation upon photoexcitation, 
2. transfer to the surface of the photocatalytic crystal, 
3. participation in redox reactions taking place at the active surface. 

Charge kinetics in all these processes decides about the overall efficiency of the photocatalysis 
while in the case of shape-controlled crystals, the transfer of electrons and holes to different facets 
may help in avoiding too fast recombination, being detrimental to the efficiency of the process. 
However, as explained later, in Section 4, the exposed facets may affect the photocatalytic 
performance through multiple effects. 

Gas sensing by metal oxide semiconductors, MOS, is usually based on the changes in the 
electrical resistance caused by at least two consecutive processes of chemisorption, as shown in 
Figure 1—right. As gas sensors usually operate in the air atmosphere, the first process involves 
adsorption of oxygen according to the reaction proposed by Barsan and Weimar [31]: 

α
βαβ −− ↔+⋅+ S

gas OSeO22
 (1) 

where: 𝑂  is a chemisorbed oxygen ion with: 𝛼 = 1 for singly ionized oxygen species, 𝛼 = 2 for 
doubly ionized oxygen species, 𝛽 = 1 for atomic forms, 𝛽 = 2 for molecular ions, S represents a 
surface site onto which oxygen can be adsorbed and e− is an electron from the conduction band that 
is captured at the surface and provides the negative charge to the adsorbed oxygen ion. This leads to 
an overall increase in the sensor’s resistance for n-type and a decrease for p-type semiconductors.  

The second process of reaction of the reducing (CO) gases with the pre-adsorbed oxygen, 
described as [31]:  𝛽 ∙ 𝐶𝑂 + 𝑂 ⇌ 𝛽 ∙ 𝐶𝑂 + 𝛼𝑒 + 𝑆 (2) 

results in the opposite changes in the electrical resistance. Receptor function of a sensor, associated 
with electrical charge transfer processes, might be affected by the exposure of certain crystal facets. 
A detailed description of surface-controlled gas sensing processes can be found in Section 5.  

It is worth noting that the facets of high surface energy may not be stable while they are exposed 
to the aggressive chemical compounds or undergo the thermal treatment [26]. Stability issue is very 
important to such an extent that it seems necessary to perform in situ measurements or to apply the 

Figure 1. Mechanism of facet-dependent photocatalysis and (bio)chemical sensing for specifically
shaped metal oxide semiconductor (MOS), Red—reduction, Ox—oxidation processes.

Figure 1 illustrates the idea of the facet-dependent photocatalysis and (bio)chemical sensing
of metal oxide semiconductor (MOS) using as an example anatase TiO2 crystals that are normally
dominated by the thermodynamically stable {101} facets (more than 94% according to the Wulff
construction [30]) rather than much more reactive {001} facets. However, an exposure of the more
reactive {001} facets has a tremendous impact on both photocatalysis and gas sensing mechanism.

Photocatalysis requires a control over three basic steps, as shown in Figure 1—left, concerning the
charge, electrons e−, and holes h+:

1. generation upon photoexcitation,
2. transfer to the surface of the photocatalytic crystal,
3. participation in redox reactions taking place at the active surface.

Charge kinetics in all these processes decides about the overall efficiency of the photocatalysis
while in the case of shape-controlled crystals, the transfer of electrons and holes to different facets may
help in avoiding too fast recombination, being detrimental to the efficiency of the process. However, as
explained later, in Section 4, the exposed facets may affect the photocatalytic performance through
multiple effects.

Gas sensing by metal oxide semiconductors, MOS, is usually based on the changes in the electrical
resistance caused by at least two consecutive processes of chemisorption, as shown in Figure 1—right.
As gas sensors usually operate in the air atmosphere, the first process involves adsorption of oxygen
according to the reaction proposed by Barsan and Weimar [31]:

β

2
Ogas

2 + α·e− + S↔ O−α
βS (1)

where: O−α
βS is a chemisorbed oxygen ion with: α = 1 for singly ionized oxygen species, α = 2 for

doubly ionized oxygen species, β = 1 for atomic forms, β = 2 for molecular ions, S represents a surface
site onto which oxygen can be adsorbed and e− is an electron from the conduction band that is captured
at the surface and provides the negative charge to the adsorbed oxygen ion. This leads to an overall
increase in the sensor’s resistance for n-type and a decrease for p-type semiconductors.

The second process of reaction of the reducing (CO) gases with the pre-adsorbed oxygen,
described as [31]:

β·CO + O−α
βS 
 β·COgas

2 + αe− + S (2)

results in the opposite changes in the electrical resistance. Receptor function of a sensor, associated
with electrical charge transfer processes, might be affected by the exposure of certain crystal facets.
A detailed description of surface-controlled gas sensing processes can be found in Section 5.



Crystals 2019, 9, 163 3 of 51

It is worth noting that the facets of high surface energy may not be stable while they are exposed
to the aggressive chemical compounds or undergo the thermal treatment [26]. Stability issue is very
important to such an extent that it seems necessary to perform in situ measurements or to apply the
operando techniques in order to monitor the changes in the surface properties during photocatalysis
and gas sensing [26].

There are many excellent reviews covering the topic of surface engineering and shape-controlled
crystals in application to photocatalysis [5,27,32]. As far as gas sensing is concerned, this number is
greatly reduced [8,9,33,34]. To the best of our knowledge, there are no such surveys treating at the
same time both photocatalytic and gas sensing applications.

This review is mostly devoted to the following case-studies: TiO2—anatase, α-Fe2O3—hematite
and Cu2O. Their common feature is that they appear as good candidates for both photocatalysis and
gas sensing.

2. Basic Properties of Chosen Metal Oxides

Basic properties of TiO2—anatase, α-Fe2O3—hematite and Cu2O are listed in Table 1.
Titanium dioxide, TiO2 crystallizes in three polymorphic forms: tetragonal anatase and rutile or

orthorhombic brookite. Among them, the most thermodynamically stable and thus common in the
environment is rutile. The other two polymorphic forms, namely anatase, and brookite are metastable
and transform irreversibly into rutile upon heating [35,36]. Pure and stoichiometric titanium dioxide
exhibits an insulating behavior at room temperature. In its non-stoichiometric form, TiO2 represents
an n-type semiconductor.

TiO2-anatase is a very unique material for photocatalysis and photoelectrochemical hydrogen
generation. Its chemical stability and exceptional resistivity to corrosion and photocorrosion
are well-known and widely-exploited features that could provide excellent performance in these
applications. TiO2-anatase can be further characterized by non-toxicity, high transmittance for
infrared radiation (the band gap of anatase is 3.2 eV), as well as excellent stability under reducing
atmosphere. However, the electronic properties of TiO2 such as a wide-bandgap and high electrical
resistivity [36], create a serious obstacle from the practical point of view. Modification of both
the band gap and the electrical conductivity is necessary to provide a better match to the light
spectrum and improve current-voltage characteristics of photoanodes in the photoelectrochemical
cells. The efficiency of the photocatalytic and photoelectrochemical processes is critically dependent
upon the above-mentioned factors.

Microcrystalline TiO2 is a bulk defect sensor working at very high temperatures (1000–1400 K).
The gas sensing mechanism is governed by the thermodynamics of point defects such as doubly ionized
oxygen vacancies and the equilibrium reactions between these point defects in the bulk and an oxygen
partial pressure in the surrounding atmosphere. Recently, one can observe an increasing interest in
modified nanosized TiO2 for gas sensing. There is a big number of publications undertaking the issue
of TiO2 in a form of nanotubes [20,37,38], nanofibers [39], nanowires [21], and nanopowders [40,41]
that exhibit promising gas sensing features.

Recently, the shape-controlled TiO2 nanocrystals terminated with different crystal facets have
been reported [9,15,25,42]. Naturally occurring TiO2 nanocrystals expose low energy {101} facets.
These crystallographic planes are characterized by the lowest surface energy of 0.49 Jm−2 related
to the lowest atomic planar density of 5.1611 nm−2 and the lowest density of dangling bonds of
10.3222 nm−2 as compared to highly energetic {001} facets (see Table 1). It has been demonstrated that
the activity of a facet is strongly dependent on the type of photocatalytic reactions and the related
catalytic mechanisms. For example, the activity of anatase TiO2 facets in degradation of dyes has been
discovered to follow the order: {001} > {010} > {101} [43] while a different order {010} > {101} > {001}
has been established for the photocatalytic H2 evolution [44,45].
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Iron (III) oxide has four polymorphs: α-Fe2O3, β-Fe2O3, γ-Fe2O3, and ε-Fe2O3 [46,47]. In nature,
only α-Fe2O3 and γ-Fe2O3 occur in a highly crystalline form. Known as hematite, α-Fe2O3 is the most
stable iron oxide under ambient atmosphere. Hematite crystallizes in the trigonal system consisting
of iron atoms surrounded by six oxygen atoms in corundum arrangement (Table 1). Its moderate
band gap of about 2.2 eV corresponds to a visible range of the light spectrum which makes it a good
candidate for water photodecomposition.

Table 1. Bulk and surface properties of TiO2, α-Fe2O3, and Cu2O.

Properties TiO2 α-Fe2O3 Cu2O

bulk

crystal lattice [24] anatase hematite cuprite

crystal system [24] tetragonal trigonal cubic

space group [24] I4I/amd (141) R-3C (167) Pn-3 m (224)

lattice parameters [24,48]
a = b = 0.3785 nm

c = 0.9513 nm
α = β = γ = 90◦

a = b = 0.5038 nm
c = 1.3772 nm
α = β = 90◦

γ = 120◦

a = 0.4270 nm
α = β = γ = 90◦

cell volume [nm3] [24,48] 0.1362 0.3027 0.0778

the atomic separation [nm] [48–50] Ti-O 0.194
O-O 0.279

Fe-O 0.194
Fe-Fe 0.290

Cu-O 0.184
O-O 0.368

Cu-Cu 3.01

band gap [eV] [8,24] 3.2 2.2 2.2

formula weight [gmol−1] 79.9 159.7 143.1

density [gcm−3] [48,51,52] 3.79 5.24 5.75

conductivity n-type n-type p-type

refractive index [53–55]
nord = 2.5612
next = 2.4880

(λ = 589.3 nm)

2.6580
(λ = 2.5 µm)

2.2620
(λ = 2.5 µm)

surface

surface energy [Jm−2] [30,56–62]
(001) 0.98 1.53
(100) 0.58 1.37 1.194
(101) 0.49 1.31 28.80
(111) 0.677
(012) 1.06 0.80
(104) 1.45

atomic planar
density [nm−2] [8]

(001) 6.9821 4.5494
(100) 5.7651 10.997
(101) 5.1611
(110) 7.7618
(111) 6.3375
(113) 7.3047
(012) 5.7651

dangling bonds
density [nm−2] [8]

(001) 20.9463 13.6482
(100) 11.5302 21.954
(101) 10.3222 7.7618
(110) 6.3375
(111)
(113) 21.9147
(012) 17.3953
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Its low cost, abundance, environmental friendliness, high corrosion resistance, and excellent
adhesion to the substrate contributes significantly to numerous applications, i.e., in photocatalytic
degradation and electrode materials, heavy metal removal from the water/wastewater and water
splitting. It has been used as a humidity sensor since the 1960s of the last century [63]. Generally,
α-Fe2O3 shows n-type behavior because it has a tendency to become oxygen-deficient with oxygen
vacancies. However, annealing in oxygen and the presence of cationic impurities result in
a p-type conductivity. Various α-Fe2O3 nanomaterials such as nanoparticles [64,65], nanorods [66],
nanowires [22], nanotubes [67], nanobelts [23], nanoflakes [68], nanodendrites, as well as solid and
hollow spindles [69] have been successfully prepared.

The most frequently exposed {001} facet of α-Fe2O3, is terminated by Fe or O atoms only, whereas
another low-index facet, {100}, contains both Fe and O atoms [70,71]. By using the solvothermal
method, Lu and coworkers synthesized 27 nm-thick Fe2O3 nanodiscs bound by {001} facets [71].
By comparing the packing density of Fe3+ and O2− for {001}, {100}, and {010} facets (Table 2), it could
be clearly concluded that {001} facet exhibits the highest packing density of O2− and that is why it is
the most stable and the most exposed among other facets [69,71].

Table 2. Packing density of Fe3+ and O2− for various facets of α-Fe2O3 nanodiscs [71].

{100} {010} {001}

Fe3+ 2.89 nm−2 2.89 nm−2 9.11 nm−2

O2− 5.78 nm−2 5.78 nm−2 13.8 nm−2

Cuprous oxide (Cu2O) crystalizes in a cubic crystal structure (space group of Pn3m) with a unit
cell length of 0.4270 nm. Cu2O is a nonstoichiometric, defect p-type semiconductor of a direct band
gap of about 2.2 eV [8,24]. It is widely applied as an active element of catalytic oxidation of CO,
water–gas shift reaction, CO hydrogenation reaction, partial oxidation of propylene, organic synthesis,
photocatalysis, and photoelectrocatalysis [72].

In the studies of shape-controlled Cu2O nanocrystals one can distinguish between three basic
forms: cubes, octahedra, and rhombic dodecahedra, enclosed by the {100}, {111}, and {110} facets,
respectively. All the surface Cu atoms are fully exposed in the case of {110} facets, while the {111}
facet contains some exposed and some sub-surface Cu atoms. Only partially exposed Cu atoms are
available in the case of the {100} facet of Cu2O, which is also reflected in the experimental results,
showing the low reactivity of {100}-facet bounded nanocubes. Performance of {111}-faceted octahedral
Cu2O nanoparticles surpasses largely that of other morphologically different Cu2O nanoparticles [8].

Cuprous oxide Cu2O can operate as a gas sensor at relatively low temperatures [73,74].
The conductivity of Cu2O is mainly determined by the hole carrier density of the inter-granular contact
region. The exposed crystal facets, size, and specific surface area of Cu2O could play a significant role
in gas sensing. So far, cuprous oxides of different shapes, e.g., flower-like [75], cubes [76], wires [77],
concave [78] were investigated as benzene, NO2, CO, and H2S gas sensors [33,75–78]. It is worth noting
that during H2S detection, a reversible reaction between the cuprous oxide and hydrogen sulfide Cu2S
formation may occur. Due to the phase transformation, a highly electrical conductive path is being
formed, thus enhancing the electrical conductance [79].

3. Growth and Morphology of Metal Oxide Nanocrystals

In the case of growth of nanomaterials both: the top-down and bottom-up strategies exist.
The bottom-up strategy is the most appropriate when one considers the synthesis of size and shape-
controlled metal oxide nanocrystals. Bottom-up synthesis of nanocrystals is quite a complex process
that consists of two steps: nucleation and growth. The formation mechanism and shape evolution
begin with the nucleation process, whereby nuclei act as seeds for the nanoparticle growth [24,80,81].
Within the classical nucleation theory, CNT, according to the definition given by Mullein [82],
the nucleation is treated as a thermodynamic process driven by supersaturation of the bulk solution
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and governed by the total free energy ∆G. Nucleation can be homogeneous when the nuclei are
generated uniformly from the parent phase or heterogeneous if other material components may
contribute to the process. In principle, the nucleation rate, subsequent aggregation/agglomeration,
Ostwald ripening and other mechanisms occurring between the preformed nuclei, affect the size and
number of growing nanoparticles. The thermodynamic and kinetic growth conditions, taking into
account the temperature, pH of the solution, surfactants/capping agents, etc., determine their shape.
However, it is extremely difficult to indicate the predominant role each of these processes play in the
final morphology of metal oxide nanocrystals.

According to the classical nucleation theory, CNT, two processes take place simultaneously:
(1) the surface reaction and (2) the monomers diffusion to the surface. Its main assumption is the
existence of the critical radius, above which particles will form and grow.

Control of crystals morphology relies on many factors including its internal structure and the
external growth conditions. Nevertheless, the final shape and growth direction are a consequence of
the minimization of the surface energies.

Over the last several decades, with the development of particle synthesis methods, various
theories regarding the growth pathways have been proposed. They can be divided into two categories:
(a) diffusion and (b) aggregative growth [24,80,83].

The first one involves the following steps:

• diffusion of monomers to the surface, where they are adsorbed,
• surface reaction,
• byproducts desorption and diffusion into the bulk solution.

In this case, the following models can be distinguished: LaMer and Finke [80,84],
Ostwald ripening [24,80], and interparticle growth [80].

Aggregative growth model describes the coalescence of initially formed primary particles and
their following attachment [83]. The internal structure of as-formed particles can be random or ordered.
Here, the following issues should be considered: evolution of the size distribution (formation of
monodisperse polycrystalline colloids) and diffusion-limited or reaction-limited aggregation, where the
rate of aggregation is affected by the rate of collisions due to the Brownian motion.

In order to enable evolution of particularly shaped nanocrystals, manipulation of the growth rate
of certain facets is necessary. The following factors contributing to the shape manipulation have been
reported [81]:

• reaction time,
• temperature,
• pressure,
• pH,
• concentration and type of capping agents (ions, surfactants, reducing agents, ligands, etc.).

The surface energy can be modified by the use of different methods of synthesis, reaction time or
the nature of the surfactants [81,85]. Reaction temperature and pressure affect the rate of nucleation
and growth of nanoparticles. Altering the pH affects the state of chemical species in the solution
and coordination bonding with ions in the precursor. A solvent with the different functional groups
provides various coordinations with the precursors. It is worth noting that nanocrystals can interact
with each other by van der Waals forces [86] or by repulsive electrostatic interactions. Therefore,
in order to prevent instability of the surface structure, the adsorption of surface ligands has been
carried out. By adding the surfactants or additives, the surface tension is reduced. Capping agents or
surface ions may prevent aggregation, which results in small particles formation.

Bottom-up strategy includes many methods such as physical (i.e., molecular beam epitaxy,
evaporation) [87–89], wet-chemical (sol-gel, co-precipitation) [90–92], and hybrid route (i.e., sonochemical,
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electrochemical) [93–95]. Among them, the sol-gel and solvothermal/ hydrothermal methods are the
most widely used to tailor the shape-controlled crystals.

Sol-gel synthesis is one of the most-established methods to obtain metal oxide nanocrystals [90,96,97].
It is based on hydrolysis and polycondensation reactions involving mainly metal alkoxides [M(OR)3] as
molecules to obtain oxides. The reaction pathway for the production of metal oxide in this method includes:

• solvolysis (hydrolysis or alcoholysis); production of the metal hydroxide solution described as
a sol,

• condensation; formation of three-dimensional gels (metal–oxygen–metal interlocked network),
• drying process; depending on the mode of drying conversion to xerogel or aerogel

The nature of metal precursor and solvent plays a remarkable role in the synthesis of metal oxide
nanocrystals. The aqueous sol-gel route is highly recommended for the synthesis of bulk metal oxides
rather than their analogs in the form of nanomaterials. In this case, the synthesis steps (solvolysis,
condensation, and drying) can undergo simultaneously, resulting in difficulty in controlling particle
morphology. In a nonaqueous sol-gel process, organic solvents not only serve as oxygen suppliers but
also offer a tool for tuning the morphology, surface properties, particle size, and composition of the
final oxide material. For the fabrication of metal oxide nanocrystals, the surfactant-controlled strategy
permits a control over the shape during their growth.

In the solvothermal method, the reactants are placed in an autoclave filled with water or
organic compounds to carry out the reaction under high temperature and pressure conditions. If the
nonaqueous solvents are utilized as the reaction medium, it is termed a “solvothermal method”;
whereas when preparation is carried out in the presence of water, the term: “a hydrothermal process”
is introduced. Typical steps in the solvothermal process are as follows: premixing, reaction and
post-processing. Precise control of the hydrothermal/solvothermal process is the key factor that
enables the synthesis of various nanostructured inorganic materials.

The most important factors affecting the obtained polyhedral crystals based on TiO2, Fe2O3,

and Cu2O are collected in Tables 3–5 and described in Sections 3.1–3.3.

3.1. TiO2 (Anatase)

Morphology and structure of TiO2 nanoparticles can be effectively controlled by the surfactants
as shown in Table 3.

In papers [25,42,98–102] the synthesis of TiO2 nanocrystals with different shapes such as rods,
cubes (truncated cubes), sheets, cuboids (truncated cuboid), octahedra (truncated octahedra), and bars
by using a simple hydrothermal/solvothermal and wet-chemical route employing different capping
agents has been demonstrated. Special surfactants that passivate the highly active facets are usually
employed to direct the crystal growth.

Hydrofluoric acid was used as the first capping agent to obtain shape-controlled anatase
nanocrystals with a high contribution of {001} planes [9,28,102,103]. Density functional theory (DFT)
was used [25] to confirm that F− ions constitute the best choice for decreasing the surface energy of
{001} facets and make them more stable than {101} facets.

Hydrofluoric acid is an environmentally unfriendly and highly corrosive chemical. Recently, TiO2

nanocrystals with the exposed reactive facets and different shapes have been synthesized by applying
a fluorine-free strategy. The use of 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]) as F−

source has also been extensively studied because it is more environmentally friendly than HF [101,104].
This ionic liquid plays a dual function: F− ions stabilize {001} while [bmim]− capping on {100} facets
provides TiO2 nanocrystals in the shape of cuboids.

An interesting example of a fluorine-free strategy is the replacements of F− ions by amines. In [98]
it has been shown that the varying ratio of the bridging ligand (tetramethylammonium hydroxide
(TBAH)) to capping agent (diethanolamine (DEA)) concentrations allows nanocrystals with different
shapes to be obtained. When the bridging ligand concentration decreases, the morphology follows the
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ellipsoids→ rods→ capsules→ cuboids→ sheets sequence. The hydrolysis rate of the precursor is
determined by TBAH amount while DEA concentration is responsible for lowering the surface energy
of {001} facets. We have recently reported [105] that the hydrothermal method based on the varying
ratio of TBAH to DEA concentrations could be successfully applied to obtain TiO2 nanocrystals of
different shapes.

On the other hand, oleic acid and oleylamine (OLEA) surfactants are commonly used as capping
agents in the shape-controlled synthesis. They have different binding strength to control the growth
of the TiO2 nanocrystals. Oleic acid, similarly to F− ions, stabilizes high energy {001} facets whereas
OLEA capping promotes the growth of {101} facets. In the presence of water vapor, a simple variation
of the oleic acid/OLEA molar ratio enables a fine control of the growth rate of TiO2 nanocrystals [104].

A slightly different approach has been presented for obtaining nanobelts. As shown in Table 3,
TiO2 in the shape of nanowires was obtained as a first step by the hydrothermal method using
commercial TiO2 powder and NaOH solution. The next step was calcination of the precursor [106,107]
or its hydrothermal synthesis to obtain nanobelts [43].
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Table 3. Comparison of synthesis methods and application of various facet-dependent TiO2.

Synthesis
Method Ion Source Other Reagents Reaction

Condition
Capping
Agents Ligand/(hkl) Exposed

Facets Application Ref.

rod
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n/a

promising
photocatalyst [100]

wet-chemical TTIP TMAO 80-100 ◦C/6-12 h Oleic acid n/a n/a - [108]

truncated cube
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truncated cube  

 

 

hydrothermal TTIP DEA, TBAH 225 °C/24 h DEA DEA/(001) 
(101) 
(100) 
(001) 

photocatalysis [98] 

cube  

 

 

hydrothermal 

TBT acetic acid, 
H2O 180 °C/24 h [bmin][BF4] 

F−/(001) 
[bmim]+/(10

0) 

(001) 
(100) 

sodium ion 
battery anodes 

[101] 

TBT - 160 °C/20 h OLEA, NH3, 
HF 

NH3 and 
HF/(111) 

(101) 
(011) 
(111) 

DSSC devices [109] 

TiF4 H2O2, H2O 180 °C/2 h n/a n/a (001) 
n/a 

photocatalysis [110] 

wet-chemical TiCl4 H2O 90 °C/4.5 h CNC n/a n/a --- [101] 

hydrothermal TTIP DEA, TBAH 225 ◦C/24 h DEA DEA/(001)
(101)
(100)
(001)

photocatalysis [98]
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Table 3. Cont.

Synthesis
Method Ion Source Other Reagents Reaction

Condition
Capping
Agents Ligand/(hkl) Exposed

Facets Application Ref.

cube

 

Crystals 2018, 8, x; doi: FOR PEER REVIEW 

truncated cube  

 

 

hydrothermal TTIP DEA, TBAH 225 °C/24 h DEA DEA/(001) 
(101) 
(100) 
(001) 

photocatalysis [98] 

cube  

 

 

hydrothermal 

TBT acetic acid, 
H2O 180 °C/24 h [bmin][BF4] 

F−/(001) 
[bmim]+/(10

0) 

(001) 
(100) 

sodium ion 
battery anodes 

[101] 

TBT - 160 °C/20 h OLEA, NH3, 
HF 

NH3 and 
HF/(111) 

(101) 
(011) 
(111) 

DSSC devices [109] 

TiF4 H2O2, H2O 180 °C/2 h n/a n/a (001) 
n/a 

photocatalysis [110] 

wet-chemical TiCl4 H2O 90 °C/4.5 h CNC n/a n/a --- [101] 

hydrothermal

TBT acetic acid, H2O 180 ◦C/24 h [bmin][BF4] F−/(001)
[bmim]+/(100)

(001)
(100)

sodium ion
battery anodes [101]

TBT - 160 ◦C/20 h OLEA, NH3, HF NH3 and
HF/(111)

(101)
(011)
(111)

DSSC devices [109]

TiF4 H2O2, H2O 180 ◦C/2 h n/a n/a (001)
n/a photocatalysis [110]

wet-chemical TiCl4 H2O 90 ◦C/4.5 h CNC n/a n/a — [101]

sheet

 

Crystals 2018, 8, x; doi: FOR PEER REVIEW 

sheet  

 

 

solvothermal 
H2O, acetic 

acid [Na][BF4] 200 °C/24h F−/(001) 
H2O, acetic 

acid 
(001) 
(101) 

promising 
photocatalyst [104] 

hydrothermal 

TTIP TBAH 225 °C/24 h DEA DEA/(001) (100) 
(001) 

photocatalysis [98] 

TiF4 H2O 180 °C/20 h HF F−/(001) 
(001) 
(101) - [25] 

TTIP H2O 180 °C/24 h HF F−/(001) (001) 
(101) 

photocatalysis [102] 

TBOT H2O 180 °C/24 h HF F−/(001) 
(001) 
(101) gas sensors [9] 

TTIP H2O 200 °C/24 h HF n/a (001) 
(101) photocatalysis [28] 

TBOT H2O 180 °C/2 h HF F−/(001) 
(001) 
(101) H2 production [103] 

TBOT HCl, H2O 150-180 °C /24 h (NH4)2TiF6 F−/(001) 
(001) 
(101) 

promising 
photocatalyst [110] 

TiCl3 H2O 180 °C/24 h NH4F F-/(001) 
(001) 
(101) gas sensors [111] 

solvothermal H2O, acetic acid [Na][BF4] 200 ◦C/24h F−/(001) H2O, acetic acid (001)
(101)

promising
photocatalyst [104]
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Table 3. Cont.

Synthesis
Method Ion Source Other Reagents Reaction

Condition
Capping
Agents Ligand/(hkl) Exposed

Facets Application Ref.

hydrothermal

TTIP TBAH 225 ◦C/24 h DEA DEA/(001) (100)
(001) photocatalysis [98]

TiF4 H2O 180 ◦C/20 h HF F−/(001) (001)
(101) - [25]

TTIP H2O 180 ◦C/24 h HF F−/(001) (001)
(101) photocatalysis [102]

TBOT H2O 180 ◦C/24 h HF F−/(001) (001)
(101) gas sensors [9]

TTIP H2O 200 ◦C/24 h HF n/a (001)
(101) photocatalysis [28]

TBOT H2O 180 ◦C/2 h HF F−/(001) (001)
(101) H2 production [103]

TBOT HCl, H2O 150-180 ◦C /24 h (NH4)2TiF6 F−/(001) (001)
(101)

promising
photocatalyst [110]

TiCl3 H2O 180 ◦C/24 h NH4F F−/(001) (001)
(101) gas sensors [111]

TiCl3 NiCl2 180 ◦C/2 h NH4F F−/(001) (001)
(101) gas sensors [112]

truncated cuboid

 

Crystals 2018, 8, x; doi: FOR PEER REVIEW 

TiCl3 NiCl2 180 °C/2 h NH4F F−/(001) (001) 
(101) 

gas sensors [112] 

truncated cuboid   

 

 

hydrothermal 

TTIP DEA, TBAH 225 °C/24 h DEA DEA/(001) 
(101) 
(100) 
(001) 

photocatalysis [98] 

solution of 
TTIP in 2-
propanol 

TBAH 180 °C/10 h DVMT Si-OH/(001) (100) 
(001) 

--- [99] 

cuboid   

 

 

hydrothermal TiCl4 H2O 160 °C/14 h HCl, HF, F−/(001) 
Cl−/(100) 

(001) 
(100) --- [113] 

solvothermal TTIP acetic acid, 
H2O 200 °C/24 h [bmim][BF4] 

F−/(001), 
[bmim]+/(10

0) 

(001) 
(100) 

promising 
photocatalyst [104] 

wet-chemical TiCl4 ethanol, NH3 0 °C/5 h - n/a n/a photocatalysis [114] 

hydrothermal
TTIP DEA, TBAH 225 ◦C/24 h DEA DEA/(001)

(101)
(100)
(001)

photocatalysis [98]

solution of TTIP
in 2-propanol TBAH 180 ◦C/10 h DVMT Si-OH/(001) (100)

(001) — [99]
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Table 3. Cont.

Synthesis
Method Ion Source Other Reagents Reaction

Condition
Capping
Agents Ligand/(hkl) Exposed

Facets Application Ref.

cuboid

 

Crystals 2018, 8, x; doi: FOR PEER REVIEW 

TiCl3 NiCl2 180 °C/2 h NH4F F−/(001) (001) 
(101) 

gas sensors [112] 

truncated cuboid   

 

 

hydrothermal 

TTIP DEA, TBAH 225 °C/24 h DEA DEA/(001) 
(101) 
(100) 
(001) 

photocatalysis [98] 

solution of 
TTIP in 2-
propanol 

TBAH 180 °C/10 h DVMT Si-OH/(001) (100) 
(001) 

--- [99] 

cuboid   

 

 

hydrothermal TiCl4 H2O 160 °C/14 h HCl, HF, F−/(001) 
Cl−/(100) 

(001) 
(100) --- [113] 

solvothermal TTIP acetic acid, 
H2O 200 °C/24 h [bmim][BF4] 

F−/(001), 
[bmim]+/(10

0) 

(001) 
(100) 

promising 
photocatalyst [104] 

wet-chemical TiCl4 ethanol, NH3 0 °C/5 h - n/a n/a photocatalysis [114] 

hydrothermal TiCl4 H2O 160 ◦C/14 h HCl, HF, F−/(001)
Cl−/(100)

(001)
(100) — [113]

solvothermal TTIP acetic acid, H2O 200 ◦C/24 h [bmim][BF4] F−/(001),
[bmim]+/(100)

(001)
(100)

promising
photocatalyst [104]

wet-chemical TiCl4 ethanol, NH3 0 ◦C/5 h - n/a n/a photocatalysis [114]

truncated octahedra
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truncated octahedra   

 

 

wet-chemical TiCl4 H2O, 
n-heptane 100 °C/24 h AOT RSO3−/(101) (101) 

(001) 
biomedical 

applications 
[115] 

hydrothermal 

KTNWs H2O 200 °C/16 h urea CO32−/(001) (101) 
(001) 

photocatalysis [116] 

TTIP H2O 160 °C/10 h CH2O2 CH2O2/(101) 
(101) 
(001) photocatalysis [117] 

TBOT ethanol 180 °C/18 h Oleic acid, 
OLEA 

Oleic 
acid/(001) 

OLEA/(101) 

(101) 
(001) - [118] 

ATNWs H2O, NH4F 200 °C/24 h NH4F F−/(001) (101) 
(001) 

photocatalysis [42] 

TBOT oleic acid, 
NaF 250 °C/24 h oleic acid, F− 

F−/(001) 
oleic acid- 

n/a 

(101) 
(001) 

photocatalysis [119] 

wet-chemical TiCl4
H2O,

n-heptane 100 ◦C/24 h AOT RSO3
−/(101) (101)

(001)
biomedical

applications [115]

hydrothermal

KTNWs H2O 200 ◦C/16 h urea CO3
2−/(001)

(101)
(001) photocatalysis [116]

TTIP H2O 160 ◦C/10 h CH2O2 CH2O2/(101) (101)
(001) photocatalysis [117]

TBOT ethanol 180 ◦C/18 h Oleic acid,
OLEA

Oleic acid/(001)
OLEA/(101)

(101)
(001) - [118]

ATNWs H2O, NH4F 200 ◦C/24 h NH4F F−/(001) (101)
(001) photocatalysis [42]

TBOT oleic acid, NaF 250 ◦C/24 h oleic acid, F− F−/(001)
oleic acid- n/a

(101)
(001) photocatalysis [119]
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Table 3. Cont.

Synthesis
Method Ion Source Other Reagents Reaction

Condition
Capping
Agents Ligand/(hkl) Exposed

Facets Application Ref.

octahedra

 

Crystals 2018, 8, x; doi: FOR PEER REVIEW 

octahedra   

 

 

hydrothermal 

KTNWs H2O 170 °C/4 h - - (101) photocatalysis 
DSSC devices 

[43] 

KTNWs H2O 200 °C/16 h NH4Cl NH4+/n/a (101) photocatalysis [116] 

TBOT 
Oleic acid, 

OLEA, 
ethanol 

180 °C/18 h Oleic acid, 
OLEA 

Oleic 
acid/(001) 

OLEA/(101) 
(101) - [118] 

belt  
 

 

hydrothermal P25 NaOH 180 °C/24 h   (101) gas sensors [106] 

hydrothermal

KTNWs H2O 170 ◦C/4 h - - (101) photocatalysis
DSSC devices [43]

KTNWs H2O 200 ◦C/16 h NH4Cl NH4
+/n/a (101) photocatalysis [116]

TBOT Oleic acid,
OLEA, ethanol 180 ◦C/18 h Oleic acid,

OLEA
Oleic acid/(001)

OLEA/(101) (101) - [118]

belt
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octahedra   

 

 

hydrothermal 

KTNWs H2O 170 °C/4 h - - (101) photocatalysis 
DSSC devices 

[43] 

KTNWs H2O 200 °C/16 h NH4Cl NH4+/n/a (101) photocatalysis [116] 

TBOT 
Oleic acid, 

OLEA, 
ethanol 

180 °C/18 h Oleic acid, 
OLEA 

Oleic 
acid/(001) 

OLEA/(101) 
(101) - [118] 

belt  
 

 

hydrothermal P25 NaOH 180 °C/24 h   (101) gas sensors [106] 
hydrothermal

P25 NaOH 180 ◦C/24 h (101) gas sensors [106]

HTiO3 H2O 170 ◦C/24 h (010)
(101)

photocatalysis
DSSC devices [43]

TiO2 powder NaOH 200 ◦C/24 h (101) photocatalysis [107]

TBAH—tetramethylammonium hydroxide, TTIP—titanium(IV) isopropoxide, DVMT—the acid-delaminated vermiculite, KTNWs—K-titanate nanowires, TBOT—titanium butoxide,
CTAB—hexadecyltrimethylammonium bromide, ATNWs—ammonium-exchanged titanate nanowires, PVA—polyvinyl alcohol, NaTNWs—Na-titanate nanowires, TBT—tetrabutyl
titanate, AOT—Sodium bis(2-ethylhexyl) sulfosuccinate, P25—commercial TiO2 powder, OLEA—Oleylamine, DSSC—Dye-Sensitized Solar Cell, TMAO—trimethylamino-N-oxide
dihydrate, DEA—diethanolamine, PTA—peroxo titanic acid, CNC—cellulose nanocrystal, [bmin][BF4]—1-butyl-3-methylimidazolium tetrafluoroborate.
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3.2. α-Fe2O3 (Hematite)

The shape of nanocrystals based on hematite (α-Fe2O3) can be easily modeled because the lattice
planes with low Miller indices have similar energy values. One of the possible ways of changing the
morphology of α-Fe2O3 is to use the selective adsorption of ions (Table 4). During crystallization
of this oxide, metal ions interact with the lattice planes of different atomic configuration, changing
their surface energy. In literature, this process is known as metal-ion mediated route. The preferred
direction of crystal growth of α-Fe2O3 can be changed by selection of the ions [120]. The selective
adsorption of Zn2+ on the surface of the growing hematite determines the formation of cubes [120–123].
On the other hand, when Cu2+ ions are used, it is possible to obtain a thorhombic and concave
shape [122–124] whereas a plane structure can be fabricated by applying Al3+ ions [123,125]. Liu et
al. [125] claimed that irrespective of the salt solution containing the appropriate ion, but under alkali
condition, it is possible to obtain hexagonal nanoplates. Moreover, Al3+ ion will be mostly left in
the solution. In our studies [126] it has been demonstrated that the application of Zn2+ and Al3+ to
the ion-mediated hydrothermal route is the reason for the formation of α-Fe2O3 with cubic and disc
structures, respectively. However, the incorporation of ions into the crystal lattice of nanocrystals
is observed. Therefore, using this technique one should take into account the effect of the phase
composition on the properties of the obtained materials.

On the other hand, the presence of the specific ligands or surfactants also affects the growth
of nanomaterials with well-defined facets. The most typical ligands are OLEA and OA (oleic
acid) [127–129]. The first one is responsible for stabilization of nanocrystals, while the second by
selective adsorption on {104} planes affects reduction of the surface energy and directed crystal growth.
The whole process of crystal growth under these conditions may be attributed to the aggregation and
Ostwald ripening. Moreover, Rashid et al. [128] claim that oleate anions as capping agents inhibit the
formation of Fe-O-Fe bonds due to the strong covalent interaction between them and Fe3+.

Gao et al. [121] compared the above-mentioned techniques: the metal-ion mediated route and
application of surfactants/capping agents (hydrazine (N2H4) and carboxymethyl cellulose). It was
found out that N2H4 had the ability to reduce iron oxidation state from 3+ to 2+, so in the solution,
an additional “free” ion was present and acted in a similar way as Ni2+ or Zn2+ did.
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Table 4. Comparison of synthesis methods and application of various facet-dependent α-Fe2O3.

Synthesis Method Ion Source Ion
Additive Exposed Facets Reaction Condition Application Ref.

cube
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Table 4. Comparison of synthesis methods and application of various facet-dependent α-Fe2O3. 

Synthesis Method Ion Source Ion Additive Exposed Facets Reaction Condition Application Ref. 

 cube 

 

 

hydrothermal 

Fe(C2H2O2)2 - 
{102} 
{012} 
{112} 

180 °C/2 h 
photocatalytic 

degradation of RhB [127] 

FeCl3*6H2O - 
{102} 
{012} 
{112} 

180 °C/4–12 h 
can be used for 

magnetic properties [128] 

K3[Fe(CN)6] Ni2+, Zn2+ 
{012} 
{10−2} 
{1-12} 

160 °C/6 h - [121] 

Fe(NO3)3 Zn2+ {014} 
{104} 160 °C/16 h lithium-ion batteries [122] 

Fe(NO3)3*9H2O Zn2+ {104} 
{−1−10} 160 °C/16 h magnetic properties [120] 

FeCl3*6H2O - n/a 160 °C/24 h photocatalytic 
degradation of RhB [130] 

Fe(NO3)3*9H2O Zn2+ {012} 160 °C/6 h photocatalytic 
degradation of RhB [123] 

hydrothermal

Fe(C2H2O2)2 -
{102}
{012}
{112}

180 ◦C/2 h photocatalytic
degradation of RhB [127]

FeCl3*6H2O -
{102}
{012}
{112}

180 ◦C/4–12 h can be used for
magnetic properties [128]

K3[Fe(CN)6] Ni2+, Zn2+
{012}

{10−2}
{1-12}

160 ◦C/6 h - [121]

Fe(NO3)3 Zn2+ {014}
{104} 160 ◦C/16 h lithium-ion batteries [122]

Fe(NO3)3*9H2O Zn2+ {104}
{−1−10} 160 ◦C/16 h magnetic properties [120]

FeCl3*6H2O - n/a 160 ◦C/24 h photocatalytic
degradation of RhB [130]

Fe(NO3)3*9H2O Zn2+ {012} 160 ◦C/6 h photocatalytic
degradation of RhB [123]

Fe(NO3)3*9H2O Na+ {102}
{104} 200 ◦C/24 h photocatalytic

O2 evolution [32]

cuboid
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Fe(NO3)3*9H2O Na+ {102} 
{104} 200 °C/24 h photocatalytic O2 

evolution [32] 

 cuboid 

 

 

hydrothermal FeCl3*6H2O - {010} 
{001} 180 °C/4 h lithium-ion batteries [131] 

 thorhombic 

 

 

hydrothermal 

Fe(NO3)3 Cu2+ {−102} 
{012} 160 °C/16 h lithium ion batteries [122] 

Fe(NO3)3*9H2O Cu2+ {−102} 
{012} 160 °C/16 h magnetic properties [120] 

Fe(NO3)3*9H2O Cu2+ {104} 160 °C/6 h photocatalytic 
degradation of RhB [123] 

 polyhedron 
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Table 4. Cont.

Synthesis Method Ion Source Ion
Additive Exposed Facets Reaction Condition Application Ref.

hydrothermal FeCl3*6H2O - {010}
{001} 180 ◦C/4 h lithium-ion batteries [131]

thorhombic
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Fe(NO3)3*9H2O Na+ {102} 
{104} 200 °C/24 h photocatalytic O2 

evolution [32] 

 cuboid 

 

 

hydrothermal FeCl3*6H2O - {010} 
{001} 180 °C/4 h lithium-ion batteries [131] 

 thorhombic 

 

 

hydrothermal 

Fe(NO3)3 Cu2+ {−102} 
{012} 160 °C/16 h lithium ion batteries [122] 

Fe(NO3)3*9H2O Cu2+ {−102} 
{012} 160 °C/16 h magnetic properties [120] 

Fe(NO3)3*9H2O Cu2+ {104} 160 °C/6 h photocatalytic 
degradation of RhB [123] 

 polyhedron 

 

 

hydrothermal

Fe(NO3)3 Cu2+ {−102}
{012} 160 ◦C/16 h lithium ion batteries [122]

Fe(NO3)3*9H2O Cu2+ {−102}
{012} 160 ◦C/16 h magnetic properties [120]

Fe(NO3)3*9H2O Cu2+ {104} 160 ◦C/6 h photocatalytic
degradation of RhB [123]

polyhedron
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Fe(NO3)3*9H2O Na+ {102} 
{104} 200 °C/24 h photocatalytic O2 

evolution [32] 

 cuboid 

 

 

hydrothermal FeCl3*6H2O - {010} 
{001} 180 °C/4 h lithium-ion batteries [131] 

 thorhombic 

 

 

hydrothermal 

Fe(NO3)3 Cu2+ {−102} 
{012} 160 °C/16 h lithium ion batteries [122] 

Fe(NO3)3*9H2O Cu2+ {−102} 
{012} 160 °C/16 h magnetic properties [120] 

Fe(NO3)3*9H2O Cu2+ {104} 160 °C/6 h photocatalytic 
degradation of RhB [123] 

 polyhedron 

 

 

hydrothermal

FeCl3*6H2O - {104} 120 ◦C/12 h humidity sensors [132]

Fe(acac)3 Na+ {012} 180 ◦C/24 h
CO conversion,

acetone and
methanol sensing

[129]

K3[Fe(CN)6] Cu2+ {104} 160 ◦C/6 h - [133]

FeCl3*6H2O - {104} 180 ◦C/8 h lithium storage [133]

FeCl3 Na+
{100}
{011}
{111}

200–230 ◦C/0.5 h
potentially exhibits
good properties in
future gas sensor

[134]
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Table 4. Cont.

rhombohedron
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hydrothermal 

FeCl3*6H2O - {104} 120 °C/12 h humidity sensors  [132] 

Fe(acac)3 Na+ {012} 180 °C/24 h 
CO conversion, 

acetone and 
methanol sensing 

[129] 

K3[Fe(CN)6] Cu2+ {104} 160 °C/6 h - [133] 

FeCl3*6H2O - {104} 180 °C/8 h lithium storage [133] 

FeCl3 Na+ 
{100} 
{011} 
{111} 

200–230 °C/0.5 h 
potentially exhibits 
good properties in 
future gas sensor 

[134] 

 rhombohedron 

 

 

hydrothermal 
FeCl3*6H2O - {104} 220 °C/24 h  electrochemical 

sensor for H2O2 [135] 

FeCl3*6H2O - {104} 150 °C/75 min lithium storage [136] 

 octahedron 

 

 

microwave assisted FeCl3*6H2O - n/a 150 °C/2 h lithium storage [93] 

hydrothermal
FeCl3*6H2O - {104} 220 ◦C/24 h electrochemical

sensor for H2O2
[135]

FeCl3*6H2O - {104} 150 ◦C/75 min lithium storage [136]

octahedron
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hydrothermal 

FeCl3*6H2O - {104} 120 °C/12 h humidity sensors  [132] 

Fe(acac)3 Na+ {012} 180 °C/24 h 
CO conversion, 

acetone and 
methanol sensing 

[129] 

K3[Fe(CN)6] Cu2+ {104} 160 °C/6 h - [133] 

FeCl3*6H2O - {104} 180 °C/8 h lithium storage [133] 

FeCl3 Na+ 
{100} 
{011} 
{111} 

200–230 °C/0.5 h 
potentially exhibits 
good properties in 
future gas sensor 

[134] 

 rhombohedron 

 

 

hydrothermal 
FeCl3*6H2O - {104} 220 °C/24 h  electrochemical 

sensor for H2O2 [135] 

FeCl3*6H2O - {104} 150 °C/75 min lithium storage [136] 

 octahedron 

 

 

microwave assisted FeCl3*6H2O - n/a 150 °C/2 h lithium storage [93] 
microwave assisted FeCl3*6H2O - n/a 150 ◦C/2 h lithium storage [93]

hydrothermal
FeCl3 Na+ {012}

{104} 220 ◦C/48 h photocatalytic
O2 evolution [32]

FeCl3*6H2O - {104}
{112} 220◦ C/24 h electrochemical

sensor for H2O2
[137]

plate
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hydrothermal 
FeCl3 Na+ {012} 

{104} 220 °C/48 h photocatalytic O2 
evolution 

[32] 

FeCl3*6H2O - {104} 
{112} 220° C/24 h electrochemical 

sensor for H2O2 
[137] 

 plate 

 

 

hydrothermal 

Fe(acac)3 - {001} 
{012} 180 °C/24 h 

CO conversion, 
acetone and 

methanol sesning 
[129] 

FeCl3*6H2O Na+ {001} 200 °C/22 h lithium-ion batteries [131] 

Fe(NO3)3*9H2O Al3+ {110} 160 °C/6 h photocatalytic 
degradation of RhB [123] 

Fe(NO3)3 Al3+ {001} 160 °C/16 h magnetic properties [125] 

FeCl3 Na+ n/a 140 °C–200 °C/0.5 h photocatalytic 
degradation of MB [94] 

 concave 
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Table 4. Cont.

hydrothermal

Fe(acac)3 - {001}
{012} 180 ◦C/24 h

CO conversion,
acetone and

methanol sesning
[129]

FeCl3*6H2O Na+ {001} 200 ◦C/22 h lithium-ion batteries [131]

Fe(NO3)3*9H2O Al3+ {110} 160 ◦C/6 h photocatalytic
degradation of RhB [123]

Fe(NO3)3 Al3+ {001} 160 ◦C/16 h magnetic properties [125]

FeCl3 Na+ n/a 140 ◦C–200 ◦C/0.5 h photocatalytic
degradation of MB [94]

concave
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hydrothermal 
FeCl3 Na+ {012} 
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3.3. Cu2O

In contrast to TiO2 and Fe2O3 facet-dependent nanocrystals, variously shaped copper oxide
materials can be synthesized in a simpler way (Table 5). The most widely used technique to control the
exposed facets is a wet-chemical route carried out at moderate temperature (approximately 55◦/60 ◦C)
for a short period of time (from 5 to 120 min) [18,138,139]. Nevertheless, capping reagent applied to
the solution system is a crucial factor.

The presence of sulfosuccinate ions (AOT) [16] in solution affects crystal growth along <111>
direction. It is possible that negatively charged oxygen atoms in the AOT interact with positively
charged copper ions along <111> direction. A strong reducing agent like hydrazine (N2H2) [138,140]
promotes generation of a big number of nuclei. With a small addition of N2H2 (approximately 0.1 mL)
the cubic form becomes favorable, however, when the amount of hydrazine increases to 2.8 mL,
the octahedral shapes are formed [138]. Polyvinyl pyrrolidone, PVP adsorbs at high index facets
such as {111} [76,141,142]. Truncated octahedra composed of eight {111} planes and six {100} facets
can be obtained when the concentration of PVP is moderate (1.5 mM). With the increasing amount
of PVP during synthesis, the area ratio of {111} and {100} exposed facets increases, to reach finally
an octahedral structure (PVP~4.5 mM). This is due to the strong interaction between the oxygen and/or
nitrogen atoms of PVP and {111} facets. In many papers, the use of sodium dodecyl sulfate (SDS) as
a capping reagent has been reported [138,143–146], however the mechanism of its selective adsorption
is unclear. Its properties are supposed to be similar to those of AOT [147]. New possibilities in Cu2O
structure formation appear with the use of KBr. Liu et al. [148] demonstrated that the bromide ions
can adsorb on {100} crystals facets and reduce their surface energy.

On the other hand, copper can easily undergo redox reaction and change its oxidation state
according to the:

Cu↔ Cu1+ ↔ Cu2+ (3)

Therefore, to obtain a specific form, a reducing agent is used, the most popular being: glucose [139–141,149],
ascorbic acid (AA) [16,76,142,150] and hydroxylamine hydrochloride (NH2OH*HCl) [138,143,144]
or hydrazine [90].

However, more complex morphologies are expected by controlling the experimental parameters
such as temperature and pressure [16,76,144].
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Table 5. Comparison of synthesis methods and application of various facet-dependent Cu2O.

Synthesis Method Ion Source Reaction Condition Capping Reagent/
Reducing Agent Application Ref.
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wet-chemical

CuCl2*2H2O 55 ◦C/3 h PVP/AA photocatalytic activity on the
decomposition of methylene orange [142]

Cu(Ac)2 150 ◦C/12 h N2H4/glucose

• degradation of
organic pollutants

• photodecomposition of
methylene orange

[152]
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3.4. Geometrical Considerations

For differently shaped nanocrystals it is possible to predict theoretically the contribution of the
exposed facets corresponding to particular forms. This very useful approach is based totally on
geometrical considerations as shown in Table 6 for TiO2.

Table 6. Formulas enabling calculations of the percentage of exposed facets.

Shape Theoretical % of Exposed Facets Scheme

rod [98]
S{100}% = c

c+h ·100%
S{101}% = 100%− S{100}%
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average a, b, c, and h values can be evaluated by measuring the size of particles in TEM or SEM 
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The R parameter given by Equation (4) was calculated based on Figure 2a,b [154]. 
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For differently shaped nanocrystals it is possible to predict theoretically the contribution of the 
exposed facets corresponding to particular forms. This very useful approach is based totally on 
geometrical considerations as shown in Table 6 for TiO2. 

Table 6. Formulas enabling calculations of the percentage of exposed facets. 

Shape Theoretical % of Exposed Facets Scheme 

rod [98] 
𝑆 100 % = 𝑐𝑐 + ℎ 100% 𝑆 101 % = 100% 𝑆 100 % 

 

truncated cube 
[98] 

𝑆 001 % = 𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜃 + 𝑏𝑎 2 + 2 𝑏 ∙ 𝑐𝑎2 ∙ 𝑐𝑜𝑠𝜃 1 100% 

 𝑆 100 % = 2𝑐 ∙ 𝑐𝑜𝑠𝜃2𝑐 ∙ 𝑐𝑜𝑠𝜃 + 𝑏 + 𝑎2𝑏 𝑐𝑜𝑠𝜃 1 100% 

 𝑆 101 % = 100% 𝑆 001 𝑆 100  

 

sheet/truncated 
bipyramid [1] 

𝑆 001 = 𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜃 + 𝑏𝑎 2 1 100% 

𝑆 101 % = 100% 𝑆 001  
 

1 θ—Theoretical value for the angle between the {001} and {101} facets of anatase equal to 68.3°. 
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average a, b, c, and h values can be evaluated by measuring the size of particles in TEM or SEM 
images while θ is the theoretical value for the angle between the {001} and {101} facets of anatase. 
Formulas enabling calculations of the percentage of exposed facets are included in Table 6. 

Experimental verification of the geometrical models can be done, e.g., by Raman spectroscopy 
as proposed by Tian et al. [153] for anatase TiO2. Based on the relationship between the intensities of 
Raman vibrational modes Eg and A1g the percentage of {001} facets can be calculated. The Eg mode is 
assigned to the symmetric stretching vibrations of O-Ti-O, while A1g is caused by asymmetric bending 
of O-Ti-O. Decreased intensity of Eg Raman mode and increased intensity of A1g signifies higher 
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1 θ—Theoretical value for the angle between the {001} and {101} facets of anatase equal to 68.3◦.

The geometrical model of anatase TiO2 single crystal developed by Yu and co-workers [1] enables
to calculate the percentage of exposed {101} and {001} facets for nanocrystals in a form of sheet and
truncated bipyramid. The percentage of the exposed facets for rod and truncated cube nanocrystals
was also determined by similar geometrical models proposed by Roy et al. [98]. The average a, b, c,
and h values can be evaluated by measuring the size of particles in TEM or SEM images while θ is
the theoretical value for the angle between the {001} and {101} facets of anatase. Formulas enabling
calculations of the percentage of exposed facets are included in Table 6.

Experimental verification of the geometrical models can be done, e.g., by Raman spectroscopy
as proposed by Tian et al. [153] for anatase TiO2. Based on the relationship between the intensities of
Raman vibrational modes Eg and A1g the percentage of {001} facets can be calculated. The Eg mode is
assigned to the symmetric stretching vibrations of O-Ti-O, while A1g is caused by asymmetric bending
of O-Ti-O. Decreased intensity of Eg Raman mode and increased intensity of A1g signifies higher
percentage of {001} facets being exposed.

For other metal oxides such as Cu2O, the ratio of the growth rates of {100} to {111} planes can be
systematically increased as indicated by the following formula:

R =
V{100}
V{111}

=
a
b
=

hcosθ

hsin(θ + α)
=

cosθ

sin(θ + α)
=

cosθ

sin(θ + 32.25◦)
(4)

The R parameter given by Equation (4) was calculated based on Figure 2a,b [154].
The theoretical value of angle α is 32.25◦ and θ is variable. For θ = 0◦, the calculated R is 1.73, what

corresponds to the octahedron shape, while for θ = 90◦ (cube structure) R = 0.58 [155]. This method
makes it possible to design particular polyhedral architectures.

The above geometric model has been verified experimentally by Zhang et al. [156]. It was found
that the increasing amount of PVP, despite the fact it is claimed to be non-ionic, affects the final shape.
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By selective adsorption of PVP on high index facets {111} the shape evolution of the Cu2O nanocrystals
in particular direction was reported (Figure 3).
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4. Photocatalytic Activity

In a typical photocatalytic process, fast generation and transfer of charge carriers to the reaction
sites play an important role in the conversion of solar to chemical energy. The photocatalytic activity
depends on the ability of the catalyst to generate electron-hole pairs, which, after separation into
individual electric charges, participate in redox reactions, e.g.,

h+ + H2O→ H+ + •OH (oxidation) (5)

e− + O2 → O2•− (reduction) (6)

The resulting free radicals, such as •OH and O2•− are very active in secondary reactions, leading to,
among others, decomposition of organic molecules [157,158]. It has been demonstrated recently [44,159] that
particular design of interfaces and surfaces in shape controlled micro/nanocrystals can significantly improve
the photocatalytic performance. The most direct effect of the exposed facets is related to the dangling bonds
and low-coordinated atoms at terraces, steps, kinks, adatoms, and vacancies [5].

As shown in Figure 4, the mechanism of photocatalysis of facet-engineered surfaces and interfaces
is largely affected by the following steps:

I. electron e− and hole h+ excitation into the corresponding conduction CB and valence VB
bands on particular crystal facets
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II. transport and separation resulting in accumulation of photogenerated charge carriers on
different facets

III. adsorption and activation of reactant molecules on facets with a different arrangement of atoms
IV. charge transfer to different facets where particular molecules are adsorbed
V. tunable efficiency of redox reactions.

As far as step I is being considered, the surface facets of semiconductors may possess different
electronic band structures, caused by their atomic arrangements. The shift of CB and VB energy
levels by surface states would allow for better adaptation to the reduction and oxidation potentials of
photogenerated carriers, respectively.

Step II is involved in the dependence of charge transfer and separation on crystal orientation
driven by the internal electric field.

In step III, the structural features affect the adsorption and activation of the reactant molecules,
varying photocatalytic activity, and selectivity. Selectivity of the photocatalytic processes is also
provided by the charge transfer to different facets where particular molecules are adsorbed (step IV).

Finally, in step V one can take advantage of differences in surface electronic band structures for
various facets thus tuning the redox capabilities to particular processes [160].

Such tuning abilities have been demonstrated for certain metal oxides such as SnO2, WO3 and
Bi2O3 that suffer from too low energy of the conduction band minimum [161]. The upward shift of
CB provided by {002} facets in the case of WO3, allows to fulfill the condition ECB>ERED for hydrogen
evolution process to take place [162].

When additives are used to control the growth process, it is very important that obtained materials
were of high purity, which provides a significant amount of active sites necessary for the redox reaction.
Therefore, the surfactant used should be characterized by easy solubility and degradability during or
immediately after synthesis (washing with solutions of a specified composition and pH or annealing
at elevated temperatures). For example, Chanda et al. [148] used an ethanol solution to remove SDS.
To confirm the removal of adsorbed species from the surfaces, Fourier transform infrared spectroscopy
(FTIR) measurements were performed before and after washing. The absence of the bands assigned to
organic compounds of capping reagent proves cleaning efficiency. On the other hand, Jiang et al. [163]
elevated temperature to about 400 ◦C, not only to crystallize the material but also to completely remove
the residues of the tetramethylammonium hydroxide (TMAH) additive.

It is worth noting that during synthesis some ions from the capping agent can be embedded in
the crystal network of the material, so they cannot be removed [120,125]. Therefore, the influence of
the doping agent should be taken into photocatalytic activity consideration.

In conclusion, increasing the percentage of active crystallographic facets helps to develop
highly efficient photocatalytic materials based on the following metal oxide micro- and nanocrystals:
SnO2 [163], WO3 [162,164], Bi2O3 [165,166], BiVO4 [167,168], anatase TiO2 [15,28,42,98,99,102],
α-Fe2O3 [32,123,124], and Cu2O [16,18,72,90]. Nevertheless, a synergetic effect of various surfaces of
semiconducting crystals has been exploited as well.

Examples of improved photocatalytic performance are given below for TiO2—anatase,
α-Fe2O3—hematite and Cu2O.
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charge separation.

4.1. TiO2 (Anatase)

The studies of facet-dependent photocatalytic activity of TiO2—anatase date back to 2008 when
it has been established by Yang et al. [25] that the crystals with dominant {001} facet in general
exhibit higher reactivity as compared to {101} ones. This phenomenon has been initially explained
by theoretical simulations of the behavior of low coordination Ti5c centers that at high concentration,
increase the surface energy. The example of synergy of the coexisting two facets {101} and {001} has
been demonstrated experimentally [45,169,170]. This effect has been attributed to an efficient charge
separation, i.e., electrons transfer to {101} facets while holes—to {001} facets [171]. Ye et al. [111] prepared
two crystals: one containing two facets {101} and {001} while in the second one {101} was replaced by
{010}. This replacement resulted in a dramatic deterioration of both oxidation and reduction photocatalytic
activities as shown in Figure 5a,b attributed to the inhibition of electron-hole separation. Direct proof of
the increased recombination rate has been obtained from the photoluminescence PL signal associated with
2-hydroxy terephthalic acid (TAOH) from the reaction of terephthalic acid (TA) with •OH (Figure 5a) and
transformation percentage of nitroblue tetrazolium (NBT) from the reaction of NBT with O2•− (Figure 5b).

The influence of the percentage of highly reactive facets on the photocatalytic activity of TiO2

anatase crystals has been studied by Roy et al. [98] and on the hydrogen production—by Liu et al. [15].
Figure 5c illustrates how the degradation rate of methyl orange MO and methylene blue MB depend
on the shape of TiO2—anatase nanocrystals. Figure 5d relates the shape of nanocrystals to the real
contribution of {100}, {001} and {101} facets. The synergetic effect of the coexistence of low {101}
and high energy {100} facets manifests itself in the highest photodegradation rate of both MO and
MB by nanorods with 25% of {101} and 75% of {100}. Nanosheets dominated by high energy {001}
and {100} facets, 72% and 28%, respectively and nanoellipsoids enclosed totally by low energy {101}
facets demonstrate the lowest photoactivity towards decomposition of MO and MB dyes. From the
experiments performed by Liu et al. [15], it could be concluded that the optimum ratio of the oxidative
{001} to the reductive {101} facets existed for hydrogen evolution, as shown in Figure 5e. The truncated
tetragonal bipyramids of TiO2 anatase with 14.9% of {001} facets demonstrated the best photocatalytic
activity for H2 generation, whereas the octahedral crystals terminated with {101} facets appeared as
completely inactive. The dependence of the photocatalytic activity on the percentage of the exposed
facets has been attributed to the electron-hole recombination rate.
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Figure 5. The intensity of PL signal associated with the reaction of TA (terephthalic acid) with •OH resulting
in the formation of TAOH (2-hydroxy terephthalic acid (a), the percentage of reduced NBT (nitroblue
tetrazolium) from the reaction of NBC with O2

•− (b). Reprinted with permission from ref. [111] Dependence
of the rate constant of MO and MB degradation on different shapes of TiO2 nanocrystals (c), relative % of
exposed facets area for the examined shapes (d). Reprinted with permission from ref. [98]. Photocatalytic H2

production using TiO2 nanocrystals with different amount of highly reactive {001} facets after 6 h irradiation
(e). Reprinted and modified with permission from ref. [15].

4.2. α-Fe2O3 (Hematite)

Among all iron oxides, hematite is well known for its catalytic properties enabling to conduct
efficiently the catalytic oxidation of CO to CO2 [172,173]. It is believed [174] that even under the
extra-terrestrial conditions, i.e., in hot, CO2-rich planetary atmospheres, such as Venus, oxidation of
gaseous CO occurs on the surface of the mineral hematite Fe2O3.

Carbon monoxide is an odorless, colorless and extremely toxic gas. It is generally produced
and released from the partial combustion process of fossil fuels, in many industrial processes and
especially in the automotive exhaust systems. Its quick removal from the atmosphere by catalytic
oxidation to CO2 is required for the safety reasons. Another important application can be found
in fuel cells, alternative for conventional internal combustion engines, where the hydrogen-rich gas
mixture obtained by the partial oxidation or steam reforming of a hydrocarbon fuel usually contains
byproducts, mainly carbon monoxide. Even a small amount of CO present in the reformed gas mixture
may poison the electrodes of the fuel cell, therefore selective catalytic oxidation of CO to CO2 has been
found to be the most effective way to remove the trace amounts of CO from hydrogen.

Facet-dependent reactivity of Fe2O3 single crystals has been studied in relation to catalysis [175–178].
Recent studies of the shape-controlled nanocrystals for CO catalytic conversion to CO2 by Ouyang et
al. [129], Liang et al. [124] and Sun et al. [175] demonstrate that not only the specific surface area SSA
plays an important role in this process but morphology and high Miller index planes exposed to the gas
atmosphere contribute as well. Figure 6a presents the influence of temperature on the progress in CO
conversion for α-Fe2O3 micro/nanocrystals along with the mechanism proposed by Sun et al. [175].

Sun et al. [175] synthesized plate, cube and rod microcrystals of α-Fe2O3 by different hydrothermal
methods and discussed the effect of morphology on the CO catalytic activity. These authors
demonstrated the onset of the conversion process at about 120 ◦C for rods enclosed within {110}
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planes and, as a consequence, the best conversion efficiency at each reaction temperature studied.
At 160 ◦C, CO conversion amounted to 21.7% for rods with {110} facet exposed, 9% for cubes with
{012} facets exposed and 0 for plates with {001} facet exposed. The CO activities follow the order
of: rods with {110} > cubes with {012} > plates with {001}. It should be mentioned however that
this order does not match the surface energy sequence corresponding to these planes (see Table 1).
It reflects the fact that planes of low Miller indices have almost the same surface energy in the case
of α-Fe2O3. The catalytic activity does not scale with the SSA either as 6.352 m2g−1 was obtained for
rods, 1.835 m2g−1 for cubes, and 31.533 m2g−1 for plates.

The effect of increased activity for rods has been accounted for [175] by assuming different
abilities of chemisorbed oxygen corresponding to various reaction mechanisms as shown in Figure 6b.
Both α-Fe2O3 {110} and {012} surfaces terminated with oxygen atoms cannot chemisorb O2. Lattice
oxygen in this case directly oxidizes CO thus creating oxygen vacancies in {110} and {012} surface layers.
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Figure 6. Catalytic activities of hematite: rods, cubes, plates (a) with the top and side view of optimized
geometric structures of (110) surface with corresponding energy profiles of each elementary step
in CO oxidation catalysis (b). Reprinted and modified with permission from ref. [175] Catalytic
activities of concave nanocubes and nanorods α-Fe2O3 for carbon monoxide oxidation (c). Reprinted
with permission from ref [124]. Photocatalytic degradation of RhB over the iron oxide various
facet-dependent nanostructures (d). Reprinted and modified with permission from ref [126].

Then, O2 chemisorbs at oxygen vacancy site and CO in the atmosphere reacts with this oxygen.
Activation energy being lower for (110) surface—0.19 eV as compared with (012)–0.31 eV is a decisive
factor in establishing the order mentioned above in the catalytic performance of microcrystals of
different morphologies. Therefore, the activation energy in CO oxidation catalysis by α-Fe2O3 surfaces:
0.19 eV for (110) surface of rods < 0.31 eV for (012) surface of cubes < 0.39 eV for (001) surface of plates
determines the order of the CO catalytic performance rods > cubes > plates.
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Earlier, Liang et al. [124] gave evidence for the superior catalytic activity of hematite concave
nanocubes for low-temperature oxidation (Figure 6c). Concave nanocubes were bound by high-index
facets of much higher surface energy as compared with the case presented in [175]. Not only the
conversion of CO was much more pronounced than in the case of cubes synthesized by Sun et al. [175],
but the temperature onset was decreased to about 40

◦
C. No correlation with the specific surface area

was found. Similar results were reported by Ouyang et al. [103] where pseudocubes of α - Fe2O3

enclosed within {012} facets displayed the best CO conversion ability as contrasted with bipyramid
{113} and plate {001}/{012}. This effect has been explained by the different amounts of CO chemisorbed
on these surfaces and related to the height of the barrier for activation of this process.

In order to investigate the photocatalytic activity of variously shaped crystals, dye photodegradation
was performed [126]. Iron oxide nanostructures in the shape of nanodiscs and nanocubes were prepared by
hydrothermal route with Zn2+ and Al3+ ions addition as capping agents. The influence of the well-defined
facets towards photodegradation of rhodamine B under visible light irradiation with 5 mL of H2O2 as
hydroxyl radicals source was investigated. It was shown (Figure 6d) that nanodiscs, with the dominant {110}
facets exhibited the most desirable photocatalytic behavior, while the surface of cubic particles and powders
with mixed morphology did not amplify the photodegradation processes. This significant improvement in
photocatalytic activity in the presence of H2O2 was assigned to its diffusion at the (110) surface and easy
generation of reactive species such as •OH.

4.3. Cu2O

Cupric oxide Cu2O contains Cu(I) that can either be reduced to Cu(0) or oxidized to Cu(II),
thus it exhibits very rich chemical reactivity. Therefore, Cu2O is well-known for its catalytic and
photocatalytic applications [16,18,90,138,140,150]. The facet-dependent photodegradation of negatively
charged methyl orange is the most widely studied for the photocatalytic activity investigation of Cu2O
crystals [96,97,155,179–182]. In some of these studies, particles with low-index and high-index facets
have been examined [97,155,182] which indicated that high index facets displayed an enhanced
catalytic activity.

It has been demonstrated [72] that Cu2O {100} crystal planes are more stable than those of {111}
and {110} during the oxidative dissolution reaction of Cu2O. The stability order of Cu2O {100}, {110},
and {111} crystal planes can be explained by the fact that the Cu–O bond on Cu2O (100) surface is
much shorter and stronger than that on Cu2O (111) and (110) surfaces thus more difficult to break
for the liquid–solid reactions to take place. Moreover, the Cu2O (111) surface is easily reduced in
contrast to the Cu2O (100) surface. Cu2O crystals have been extensively studied for numerous catalytic
and photocatalytic reactions such as [3 + 2] cycloaddition [146], cross-coupling [183–185], water
splitting [186] and CO oxidation [187].

Recently, the facet-dependent catalytic activity of Cu2O nanocrystals of different shapes: cubes,
octahedral, rhombic dodecahedra, but of the same total surface area, has been reported in the
synthesis of 1,2,3-triazoles by multi-component, so-called “click” reactions of alkynes, organic
halides, and NaN3 [146]. “Click” chemistry is known for its powerful impact on drug discovery,
organic synthesis, biological, and electrochemical applications [188,189]. The most practical aspect
of click chemistry is the ability to attach diverse structures with a wide range of functional groups.
The sequence of decreasing catalytic activity was detected: rhombic dodecahedral with exposed {110}
facets, octahedral {111}, and nanocubes {100}.

Therefore, different types of exposed crystal planes {110}, {100} and {111} of Cu2O nanocrystals
exhibit different surface compositions/structures that determine their catalytic properties in catalytic
reactions. As chemisorption plays a key role in the catalysis, the Cu(I) sites on Cu2O surface exhibit
a much stronger activity than the O sites, thus Cu2O (100) surface terminated exclusively by the O
sites is much less catalytically active than Cu2O (110) and (111) surfaces [72].

Figure 7 gives examples of the application of shape-controlled nanocrystals of Cu2O to
dual-functional catalysis and clock reactions.
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Dual-functional photocatalysis is an attractive process that seemed to be almost impossible to
achieve in one system. However, it has been demonstrated [18] that Cu2O cuboctahedrons allow
to carry out photocatalytic pollutant degradation PDR and hydrogen evolution reactions HER in
industrial wastewaters. It is difficult for PDR and HER to coexist in one system simultaneously as PDR
is usually an anaerobic process whereas HER is an anoxic one [190]. Efficient charge carrier separation
is necessary to achieve dual-functional photocatalysis and this could be done with electrons driving
HER at {100} facets of Cu2O and holes participating in PDR at {111} surfaces of Cu2O, as shown in
Figure 7d. Photoluminescence PL spectra presented in Figure 7a demonstrate that Cu2O cuboctahedron
with {100} and {111} facets exposed separates, the most efficiently, electrons and holes because the
recombination rate, in this case, is the smallest. As an explanation of the mechanism of dual-functional
catalysis, it was proposed to take into account the work function of different facets and compare them
with that of bulk Cu2O (4.8 eV). It turned out that the work function of Cu2O (100) facet (7.8 eV)
was larger than that of the bulk Cu2O while that of Cu2O {111} was exactly the same (4.8 eV) [191].
Therefore, electrons accumulate preferentially on the {100} facet whereas holes rest on the {111} surface
of the nanocrystal. The presence of a hole in the dye degradation was established by using different
quenchers in vacuum (Figure 7b) and in the atmosphere (Figure 7c). Photocatalytic activity was greatly
inhibited by ethylene diamine tetraacetic acid EDTA—a quencher of holes, which proved that h+ were
the main species active in PDR.
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The most spectacular manifestation of the catalysis performed with the aid of Cu2O nanoparticles
is the “clock reaction” involving methylene blue MB and hydrazine in aqueous medium [140]. A clock
reaction is a chemical reaction which gives rise to a significant induction period during which one of
the chemical species, the clock chemical, has a very low concentration. The end of the induction period
is marked by a rapid increase in the concentration of the clock chemical. Demonstration of the clock
reactions is quite popular in chemistry and may be carried out with different substrates, e.g., sulfuric
acid and hydrogen peroxide with iodine. As shown in Figure 7e, hydrazine supplies electrons to MB
via nanocube of Cu2O which acts for many days as a catalyst in a solution. Colorless leucomethylene
blue, LMB is produced as a consequence but the blue color of MB can be regenerated in a few seconds
after being shaken in air which promotes oxidation. Importance of Cu2O nanoparticles in this clock
reactions has been established beyond doubt as the electron transfer from hydrazine to MB required
the presence of the catalysts and was made possible because of the reasonable affinity of the reducing
hydrazine and oxidant MB to the nanocube surfaces as shown in Figure 7e.

5. Chemical Sensing

Chemical sensing especially at close to room temperature is considered as dominated by surface
processes. Two factors determine the reactivity of a solid in the gas-solid chemical reactions: the surface
reactivity of the solid and the adsorption/activation of gas molecules on the solid surface. These
two factors have to be optimized in order to achieve improved sensor response but at the same time
selectivity to target gas can be increased by a careful choice of active surfaces of micro and nanocrystals.

In the case of gas sensing, chemisorption of oxygen in different forms O2
−, O− and O2− takes place as

the first step in air atmosphere at the temperature below 150 ◦C, between 150 ◦C and 400 ◦C, and above
400 ◦C, respectively [31]. Reaction (1) describes generally this process and indicates that the electrons from
the bulk of the solid have to be involved in chemisorption of oxygen species. As a result, a depletion in the
case of n-type or accumulation layer in the case of p-type is formed at the interface solid-gas thus creating
a potential barrier for the current flow. Depletion layer width may depend on the facet exposed in the
case of micro and nanocrystals as shown schematically in Figure 8 for an n-type semiconductor. In the
second step, when the same facet is exposed to reducing gas, e.g., CO, the electrons are exchanged and the
barrier height decreases. Exposure of high-energy facets with a considerable density of the dangling bonds
is believed to improve adsorption of gas molecules thus affecting gas sensing responses.

When discussing the mechanism of gas sensing by metal oxide semiconductors, it is important to
consider the relationship between the grain size, d, and Debye length, λD, defined as:

λD =

√
εε0φs

eND
(7)

where ε and ε0 denote relative permittivity of the material and vacuum permittivity, respectively, φs is
the surface potential barrier, e represents electron charge and ND stands for donor concentration.

Debye length determines the width of the near-surface depletion or accumulation layer, thus when
compared with the grain size, one can distinguish between three different cases, namely:

• large grains: d >> λD

• intermediate case: d ≥ λD

• small grains: d ≤ λD

For large grains, the depletion or accumulation layer constitutes an insignificant part of the grain and
the interaction between gas phase and sensing material can be analyzed in the same way as for the bulk
material. Most of the volume of the crystallites is unaffected by the surface interactions with the gas phase.
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The gas sensing mechanism is controlled by the grain boundaries barriers and charge transfer from one
grain to another. The electrical conductivity σ depends exponentially on the barrier height:

σ ∝ exp
(
−qVB

kT

)
(8)
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Figure 8. Schematic illustration of facet-dependent sensing mechanism for n-type semiconductor in
the presence of air and reducing gas e.g., CO.

Furthermore, the grain boundaries barriers are independent of the grain size, therefore,
the sensitivity is independent of the average crystallite size.

If the grain size is reduced then a significant part of the volume participates in the
interaction. The energy bands are nearly flat throughout the whole structure and, since there are
no significant barriers for intercrystallite charge transport, the conductivity is controlled by the
intercrystallite conductivity.

As far as nanomaterials are concerned, the surface-to-volume ratio, A/V, is thought to be one of
the most important parameters to improve gas sensing characteristics, since it is inversely proportional
to the particle size. Under the assumption of identical, spherical particles of the radius r and diameter
D = 2r one can use the following simplified equation:

A
V

=
4πr2

4
3 πr3

=
6
D

(9)

The surface-to-volume ratio affects, among others, the density of centers active for
chemisorption [77,129,192,193] thus facilitates the interactions between the solid surface and gas phase.

However, it has been recently recognized [33,102,194–196] that high surface-to-volume ratio
cannot guarantee excellent gas sensing performance. There are certainly other factors related to surface
properties such as surface atomic arrangement, surface energy, dangling bond density, etc. that cannot
be made explicit in the case of randomly oriented nanomaterials but that can be elucidated and
exploited in the case of shape-controlled nanocrystals. Thus, recently substantial research has been
initiated to take advantage of the selective exposure of high-energy facets of numerous metal oxide
nanocrystals such as SnO2 [197–200], ZnO [198,201–205], WO3 [198,206], anatase TiO2 [9,106,112],
α-Fe2O3 [129,132,134,135], Cu2O [27,76,78,139,144,148] and their anisotropic properties to improve gas
sensing behavior. The chosen examples that follow, illustrate this new trend.
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5.1. TiO2 (Anatase)

Titanium dioxide is a promising material for a sensor capable of detecting a variety of reducing
gases, i.e., NH3 [207], CO [208], H2 [209], H2S [210] and alcohols [211].

Anatase TiO2 is known as a good candidate for gas sensors based on the surface reactions.
Applications of anatase in gas sensing [212–214] are inherently related to the progress in synthesis of
nanomaterials that, due to a substantial increase in surface-to-volume ratio, enable low-temperature
operation. Not only nanotubes [215] but other, sometimes even exotic nanoforms have been tested as
gas sensors [214]. Our own work in this field [216] indicates that a synergetic effect in H2 sensing is
produced when rutile and anatase nanopowders are mixed in a certain proportion.

It is generally believed that due to high surface energy, TiO2 anatase nanocrystals with the
exposed {001} facets should display the best gas sensing behavior [8–10]. Figure 9 recapitulates the
most important results concerning the influence of shape-controlled TiO2 nanocrystals grown by
hydrothermal method on their response to ethanol.

Quite recently Liu et al. [9,10] reported that TiO2 nanosheets with exposed {001} high energy
facets demonstrated abnormal p-type sensing response to 500 ppm of ethanol below 120 ◦C, followed
by switching to a regular n-type behavior above (250 ◦C) as shown in Figure 9a.

The ethanol-sensing performance of the sensors constructed on the basis of TiO2 nanocrystals
with various percentage of the exposed {001} facets was also investigated by Liu [9] as shown in
Figure 9c–f. There is a strong correlation between the crystallite size and the shape controlled by HF
volume during the crystal growth (Figure 9b). It is quite evident that with the increasing percentage
of the exposed {001} facets, the response increases in both cases: p and n-type regime. Abnormal
p-type sensing behavior was accounted for by proton transfer between alcohol molecules and water
molecules adsorbed at lower temperatures at the surface of TiO2 nanosheets. At high coverage of the
hydrophilic TiO2 surface by water molecules, the proton conduction is facilitated. According to the
Grotthuss chain mechanism [217,218], proton conduction takes place according to the Scheme 1 as
shown below:
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After the introduction of ethanol, its molecules can be dissolved in the pre-adsorbed water. Due to
the larger proton affinity of ethanol (188.3 kcal/mol) as compared to that of H2O (166.5 kcal/mol),
protons will be bonded by ethanol molecules [218] leading to the formation of a great quantity of
C2H5OH2

+·(H2O)2 ions. This results in a substantial resistance increase of the water layer on the
surface of TiO2, responsible for the abnormal p-type sensing response. With humidity increase,
more C2H5OH2*(H2O)2 ions are generated, and electrical resistance is thus increased. When the
operation temperature is higher than 150 ◦C, water molecules desorb from the surface of TiO2

nanosheets. In this case, oxygen adsorption replaces the water adsorption, and a regular n-type
sensing response is exhibited at elevated temperatures above 250 ◦C

Huang et al. [106] studied the gas responses of TiO2-based nanosensors of different shapes:
nanorods, nanobelts, nano-polyhedrons, and nanoparticles under a certain concentration of ethanol
at the temperature of 400 ◦C. It is apparent that different morphologies of TiO2 result in different
gas-sensing properties affecting not only the response but its kinetics as well. The response and
recovery times were found to be 9 and 7 s, respectively for the nanoparticles, 6 and 5 s, respectively for
the nanobelts, 6 and 4 s, respectively for the nanorods, and 5 and 4 s, respectively for nano-polyhedrons,
and the gas sensing responses of nanoparticles, nanobelts, nano-polyhedrons, nanorods were estimated
to be 8.4, 9.6, 18.8, and 13.3, respectively.
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Zhang [112] performed the first-principle studies as well as experimental verification of enhanced
CO sensing by TiO2 with exposed {001} facet. Surface orientation was found to have great influence
on CO adsorption, the mechanism of which was clarified by the DFT simulation, where (001) surface
displayed stronger interaction with CO.Crystals 2019, 8, x FOR PEER REVIEW  35 of 56 
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5.2. α-Fe2O3 (Hematite)

Recently published an excellent review on gas sensing properties of α-Fe2O3 based nanomaterials
by Mirzaei et al. [11] suggests that hematite is the sixth most studied metal oxide for this application.

Hematite α-Fe2O3 is generally more sensitive to alcohols and NO2. A lot of papers appeared on
different forms of nanostructured α-Fe2O3 [220–222] for gas sensing. Adsorption of water acting as
a donor has an important influence on its electronic properties [11].

However, there are not so many reports on the application of shape-controlled α-Fe2O3

nanocrystals. The representative results are shown in Figure 10.
Liu et al. [132] studied rhomboidal crystals of α-Fe2O3 with exposed {104} facets for acetone

(Figure 10a) and ethanol (Figure 10b,) and compared their responses with those of α-Fe2O3 commercial
powder. For a given acetone and ethanol concentration, the sensor response of well-oriented crystals is
significantly higher than that of the chaotically dispersed powder grains. This result may be attributed
to the specific arrangement of Fe atoms on the (104) plane. Unsaturated coordination form of Fe atoms
has been proposed in this case. Therefore, a large concentration of dangling bonds or oxygen vacancies
appear on {104) plane making this surface highly reactive towards adsorption of oxygen species in the
first stage of gas sensing.

Yang et al. [34] reported the synthesis of polyhedral single-crystalline α-Fe2O3 particles by the
hydrothermal method and applied them to sensing of the following chemical compounds: acetic acid,
ammonia, methanol, acetone, methanal, and ethanol, as shown in Figure 10c. Two different shapes
were discussed: oblique parallelepiped and tetrakaidecahedron. The sensitivity to ethanol over all
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concentration range studied follows the sequence: oblique parallelepiped > less truncated degree
polyhedron > more truncated degree polyhedron > quasi-spherical structure as can be concluded from
Figure 10d. This effect has been attributed to high-index planes enclosing the oblique parallelepiped.Crystals 2019, 8, x FOR PEER REVIEW  36 of 56 
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Figure 10. Dynamic response–recovery curves for acetone (a) and ethanol (b) detection (300 ppm).
Reprinted and modified with permission from ref. [134] Sensitivity of the sensors based on as-prepared
hematite towards different gases or vapors at a concentration of 5 ppm (c). Sensitivity curves of
hematite particles with different shapes as a function of ethanol concentration (d). Reprinted and
modified with permission from ref. [34].

Similar observations were made by Ouyang [129] and Liu [135]. Ouyang et al. [129] demonstrated
that the bipyramid Fe2O3-{113} nanocrystals exhibited the best performance in acetone detection,
followed by pseudo cube-Fe2O3-{012} and plate-Fe2O3-{001}/{012}. The same facet-dependent sensing
order was found in the methanol sensing measurements. It was therefore concluded that the gas
sensing properties of bare crystal surfaces were in the order of {113} > {012} > {001}. For three
different samples, the relative percentages of the chemisorbed oxygen component are about 56.85%
(bipyramid-Fe2O3-{113}), 35.40% (pseudo cube-Fe2O3-{012}), and 22.92% (plate-Fe2O3-001}/{012}),
respectively. Therefore the {113} facets of α-Fe2O3 are more active than the {012} and {001} facets for
adsorption of ionized oxygen species.

5.3. Cu2O

Cu2O is an excellent example of a p-type semiconductor of gas sensing mechanism different than
that of materials exhibiting an n-type conductivity (TiO2, Fe2O3). The basic difference in gas sensing
mechanism comes from the fact that instead of the depletion region, an accumulation layer enriched in
holes is formed at the surface upon interaction with atmospheric oxygen [223,224]. As a consequence,
the electrical resistance of this layer decreases with respect to the bulk. It means that the conduction
in the sensing layer will take place differently than in the case of n-type metal oxides. The electrical
current in the space charge layer flows “parallel” to the surface, not perpendicular as in the case of
n-type sensors, and through the bulk. Therefore, the space charge layer resistance, which is sensitive to
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gas chemisorption, is not dominating the overall resistance like in the case of n-type sensors. According
to the model proposed by Barsan et al. [223] the resulting gas sensor response for p-type semiconductor
(Equation (10)), Sp is expected to be much smaller than that of n-type metal oxide, Sn and in the case of
the same morphology one gets:

Sp =
√

Sn (10)

Therefore, the number of papers devoted to p-type metal oxides in application to gas sensing is
much smaller as compared with that of n-type semiconductors. However, there is still a great challenge
to develop sensitive and selective gas sensors based on p-type semiconductors such as CuO [225] and
Cu2O [226–229].

Cuprous oxide materials enclosed with well-defined facets have been widely investigated in the field
of electrochemical sensing, especially in hydrogen peroxide, H2O2, or glucose detection [139,144]. H2O2 is
a common oxidizing agent and essential intermediate in medicine, industry or electrochemistry [230,231].
Due to the low cost, simple operation and high sensitivity nonenzymatic electrode-based electrochemical
methods hold a great promise.

Zhong et al. [144] analyzed different electrodes modified by variously shaped Cu2O nanocrystals
for H2O2 detection (Figure 11a,b). Responses indicated that the presence of dangling bonds at the
{111} and {110} surfaces, which are positively charged, plays a significant role in the adsorption
processes. The {100} facets do not interact with hydroxyl radicals in the solution due to their electrically
neutral behavior. The extended hexapod Cu2O with a high contribution from {111} facets exhibits
the best electrocatalytic activity toward H2O2. The following order in the H2O2 detection has been
established: extended hexapod > octahedral > rhombic dodecahedra which correlates well with the
electrocatalytic activity.

On the other hand, similar relationship was studied by Wang et al. [33], who analyzed CO
response of cuprous oxide in a form of a cube, octa- and truncated octahedral crystals (Figure 11c).
It was suggested that Cu2O-octa and Cu2O-truncated octahedra exhibited the conductivity higher than
that of cube Cu2O due to the presence of surfaces with different degrees of band bending. The reaction
rate between target gas molecules and the surface of sensing oxide was enhanced. Moreover, according
to the model for {100} facets terminated by oxygen atoms only, while copper atoms are coordinate
saturated, the electrically neutral {100} facets are catalytically inactive. The probability of interactions
with ionized oxygen species is negligible in contrast to {111} facet, where copper atoms are coordinated
unsaturated. Therefore, an increase in the number of ionized oxygen species adsorbed onto the {111}
facets can be observed which significantly affects the sensing activity of the Cu2O-octa crystals.
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values (c). Reprinted with permission from ref. [33].

6. Conclusions and Perspectives.

This review was intended to present the relatively new approach in the design of photocatalytic
and gas sensing materials, i.e., shape-controlled nanocrystals with well-defined facets exposed.
Research performed in this field, directed at the growth and morphology, as well as photocatalytic
and chemical sensing applications of particular metal oxides such as TiO2—anatase, α-Fe2O3 hematite,
and Cu2O has been cited and discussed. Other metal oxides such as SnO2, ZnO, WO3, Bi2O3, BiVO4,
also deserve special attention and should be carefully reviewed in this aspect in the future.

Common to both applications is a fact that for a reaction to take place, molecules need to adsorb
on the nanocrystal surfaces. Surface energy, surface charge, the number of active catalytic and
sensing sites, as well as binding energy of molecules to a particular surface are relevant factors to
consider in evaluating the relative catalytic activities and sensitivities of different crystal faces to
particular target species. Moreover, for photodegradation and photo-catalyzed reactions, the efficient
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transport of photogenerated charge carriers to the particle surfaces is important while selectivity plays
a fundamental role in the case of chemical sensors.

Single crystals exhibit the capability of selectively exposing crystal facets on the surface, thereby
fulfilling the requirement of anisotropy in electrical, optical, and catalytic properties. However, special
methods of growth of highly desired facets, i.e., those of the highest surface energy and sufficient
density of dangling bond are needed as according to laws of thermodynamics, the low energy facets
usually terminate nanocrystals with equilibrium shape. One of the strategies which can be pursued
in order to effectively reverse this situation, i.e., to stabilize the more reactive facets, is the selection
of the optimal working conditions. Preparation of nanocrystals enclosed within particular facets is
not enough from the point of view of identification of factors efficiently controlling the particle shape
as well as the mechanism of growth. As already pointed out in this review, it is more challenging
to synthesize nanocrystals with a series of shapes by changing only one technological parameter.
Moreover, it is desirable to avoid application of hydrofluoric acid and other highly toxic compounds in
order to promote the “green chemistry” scenario.

Although some impressive improvement has been observed with respect to catalysis and
photocatalysis based on TiO2 shape-controlled nanocrystals, there is still a lot to be done in the
case of other metal oxides: α-Fe2O3 and Cu2O. Systematic studies of the effect of high-index planes on
the photocatalytic decomposition of contaminants are required to form more general conclusions as
to the order of facets responsible for the photocatalytic activity. It has been established without any
doubt that selectivity of the photocatalytic processes is provided by the charge transfer to different
facets where particular molecules can be adsorbed. No such mechanism has been suggested in the
case of chemical sensing. In conclusion, increasing the percentage of high activity facets helps to
develop highly efficient photocatalysts. Nevertheless, a synergism of different facets on the surface of
semiconducting crystals is also exploited.

Many serious challenges still remain in the area of chemical sensing especially as far as gas
sensitive nanocrystals are considered. The gas sensing mechanism being different for n-type and
p-type semiconductors and the lack of selectivity in the case of resistive-type metal oxide gas sensors
complicates the task of application of shape-controlled nanocrystals for this purpose.

However, important advancements in this field, allow us to expect future development of sensitive
and selective gas sensors based on facet-engineered nanocrystals with the well-understood surface
chemistry. Such progress in both research areas: catalysis and chemical sensing, will certainly bring us
closer to the realization of efficient, tailor-made and tunable nanomaterials.
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