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Abstract: Time-reversal symmetry (TRS) of electrons is associated with an anti-unitary operator
with T2 = —1, which induces Kramers degeneracy and plays an important role in realizing the
quantum spin Hall effect (QSHE). By contrast, TRS of photons is described by TZ = 1. We point out
that due to this difference, TRS is not the necessary condition for the construction of the photonic
analogue of the QSHE. Instead, by constructing an artificial pseudo TRS T, with T,% = —-lina
photonic system, one can realize the photonic Kramers degeneracy and a pair of topological protected
edge states, a photonic analogue of the QSHE. Specifically, by retrieving the optical parameters
of materials with the pseudo TRS, we propose a photonic topological insulator (PTI) utilizing
a pair of double-degenerate transverse electric (TE) and transverse magnetic (TM) polarizations
to mimic the spin up and down states of the electron. We demonstrate that the unidirectional
polarization-dependent transportation of TE and TM edge states can be realized in this system
based on computer simulations. For all possible symmetry types, we check the robustness of these
topological states by using a complete set of impurities, including three Pauli matrices and one
complex conjugate operator. The results show that the PTI is protected by the pseudo TRS T,.
In general, an arbitrary pair of optical polarizations on the Bloch sphere can be utilized to construct
photonic pseudospin states and the PTI. Our findings confirm the physical meaning of the pseudo
TRS and may provide guidance for future PTI designs.

Keywords: topological insulator; gyrotropic; photonic crystals

1. Introduction

In condensed matter physics, symmetry-related topological properties are global properties of
the energy band which always indicate the emergence of novel phases and play an important role
in various physical systems [1-11]. For example, in systems with broken time-reversal symmetry
(TRS), a non-zero Chern number leads to the quantum Hall effect [1-4]. In systems with unbroken
TRS, Z, invariant characterizes the quantum spin Hall effect (QSHE), i.e., the topological insulator (TI),
which exhibits edge spin transportations protected by TRS [5-11]. Since both solid-states physics and
artificial crystal structures obey the similar band theory, a number of creative works with topological
properties have been proposed in the realm of bosonic systems, including photonic crystals [12-25].
The photonic integer quantum Hall effect has been realized using two-dimensional gyroelectric or
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gyromagnetic photonic crystals in the presence of an external magnetic field [12-15]. The photonic
Floquet topological insulator has been successfully demonstrated by breaking z-axis spatial-inversion
symmetry with helical waveguides as well [16-18]. Using periodical arrays of coupled resonator
optical waveguides with unbroken TRS, photonic anomalous Floquet topological insulators can also
be realized for two uncoupled clockwise and anti-clockwise circulating modes in the two-dimensional
case [19,20]. However, demonstrating a photonic analogue of the QSHE, i.e., a photonic topological
insulator (PTI), is not straightforward. The degrees of freedom of photons need to be increased
to double degeneracy which will experience opposite gauge fields with pseudospin-orbit coupling.
Therefore, doubly degenerated transverse electric (TE) + transverse magnetic (TM)/TE — TM photonic
hybrid polarizations in bi-anisotropic materials or p + d/p — d orbital-like TM modes near double
Dirac cones due to the band folding mechanism are proposed to construct PTIs with TRS [18,21-25].

Recently, He et al. [26] has proposed a PTI based on two circular polarized modes under a broken
TRS condition. They showed that the robustness of the polarization-dependent transportation in
PTI is not protected by bosonic TRS T, (TZ = 1) but by an artificial pseudo TRS T, = ioyK (0, is
the y-component Pauli matrix, K is the complex conjugate and T;% = —1) [26]. This indicates that
the bosonic TRS Ty, is not the necessary condition in realizing a PTI. Following this principle to only
consider Ty, we can have more choices of photonic pseudo-spins and material types to design a
desirable PTI. Taking a polarization-based PTI as an example, if the system is set to have both TRS and
pseudo TRS, there only exists one definite solution that is TE + TM/TE — TM for PTIs, no matter how
the degeneracy is created [18,21,22,27]. On the contrary, without considering bosonic TRS, there will
be more choices on the Bloch sphere to construct a PTL

In this work, based on the pseudo TRS T),, we propose an alternative PTI model utilizing TE
and TM polarizations as a basis, which is another pair of polarization-based PTIs on the Bloch sphere.
By substituting such a pair into the Hamiltonian of PTI and Maxwell equations, we retrieve suitable
types of materials which possessing both gyroelectric and gyromagnetic properties. In this PTI, there
are a pair of gapless boundary states represented by the TE and TM modes, respectively, which
propagate in opposite directions along the boundary leading to zero net energy flow. Furthermore,
we test the robustness of our PTI using a complete set of impurities according to the Pauli matrices and
complex conjugate operator, proving the T, protected property. A method based on the tight-binding
approximation is used to analyze the edge states, which confirms the numerical results. The topological
index, namely the spin Chern number Cry;,rg = =1, is also calculated to verify the non-trivial
topological property of the photonic crystal energy band.

2. Method

Numerical investigations in this work were conducted using a hybrid RF mode of commercial FEM
software (COMSOL Multiphysics, COMSOL Inc., Stockholm, Sweden, Version 5.1). The parameters
used in numerical investigations were based on an yttrium-iron-garnet crystal at 4.28 GHz.

3. Results

3.1. PTI Model and Gapless Edge States

Figure 1a shows the Bloch sphere description of the optic polarizations, where three bases are
represented by a two-component vector («, ,B)T, eg,TE= (1,007, T™M = (0,1)". By setting |IB\2 — |af?,
2Re(aB*), and 2Im(aB*) as the three orthogonal axes x, y, and z, the three paired bases on the x, y, and
z directions are TE/TM, TE + TM/TE — TM, and TE + iTM/TE — iTM, respectively. One of these
should be chosen to be the pseudospins for a PTI system. Then, the Hamiltonian of the system can be
written as a 2 by 2 diagonal matrix when the pseudospin states are taken as the basis, which is a linear
combination of I, iI, 0, and ic;. Because T, symmetry (T, = icyK) [26] is the necessary condition for
constructing a polarization-based PTI, the Hamiltonian is further limited as a combination of I and
io, with [Ty, I] = 0 and [Ty, i0;] = 0. If we also require the system to satisfy TRS (T, symmetry), it is



Crystals 2019, 9, 137 30f13

easy to find that only the two pole points of the Bloch sphere, TE + TM/TE — TM polarization, can be
the candidate. The reason is that with basis TE + TM/TE — TM polarization, the TRS operator can be
written as T, = 0K, which satisfies [T}, I| = 0 and [T}, ic;] = 0. Thus, the PTI can be realized by using
effective bi-anisotropic materials [18]. However, without the restriction of the TRS, TE + iTM/TE — iTM
(left/right circularly) polarized waves can also be used to realize the PTI using Tellegen material [26,28].
As we can see, there still remains a basis of polarizations TE/TM on the Bloch sphere to construct the
PTI. In this work, we choose TE/TM polarizations to replenish the integrity of the polarization-based
PTI, which indicates that not only three pairs of poles but also any pair of polarizations on the Bloch
sphere can be selected to construct the PTL
As revealed above, the Hamiltonian should be a combination of I and ic,, and hence we write
down the Hamiltonian explicitly as
E.
R 0

H[Ezlzlﬁg—iﬁl 0
H, 0 Lo+iLq

with £y = k%e | +0xY9x +9dyy9dy and L1 = dxkdy — dykdy, where kg, 7, k, and ¢ | are optical parameters
which need to be retrieved in the following steps. It should be noticed that we have used E; and
H, components to represent the TM and TE modes. In Equation (1), the real part £y represents the
transport of energy flow and the imaginary part £; indicates the pseudospin coupling effect. It is

obvious that [H, Tp} = 0 with T;, = ioy K, which means the system can be used to construct Kramers
degeneracy and the PTL. Combing Equation (1) with the general constitutive relation of materials
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we can obtain one possible kind of gyro-material: e; = pg, €f = —py, and e, = p, where the relative
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permittivity and permeability tensors of the implemented gyrotropic material in our photonic crystal
can be described as:
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Thus, we can derive v = p/ (yfl - ‘ujz() and x = py¢/ (y§ - y}) in Equation (1) in lossless
condition [29].

Based on such a material model, we propose an yttrium-iron-garnet crystal-based photonic crystal
which consists of periodic gyrotropic cylinders (in which radius r = 0.11a and 4 is the lattice constant)
under an external magnetic field at microwave frequencies. The corresponding parameters are y1; = 14,
pr =124, and e; = 15 [30]. To satisfy the aforementioned requirement, the other parameters are
assumed tobe ¢; =14, e, = —12.4,and | = 15.

Figure 1b shows the projected band structures of the proposed PTI, in which the blue dotted lines
represent the degenerate bulk states (shadow region) while the green and red dotted lines between the
second and the third energy bands represent the two edge states for the TE and TM modes. Figure 1c,d
are the field distribution of point ¢ and d marked in Figure 1b, respectively. The edge states are analyzed
and confirmed in a three-layer sandwiched waveguide configuration. Its cladding/boundary layer has
parameters € = diag{1,1,—1} and }7 = diag{1,1, —1}, which satisfies pseudo TRS and confines the
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light traveling along the waveguide-cladding interface [15,31,32]. At the frequency corresponding to
point ¢, localized electric (magnetic) field distribution at the left (right) interface suggests that the left
(right) interface only supports the TM (TE) mode. The dispersion curve’s slope is always positive in
this case, indicating the light travels in a forward direction. On the other hand, the properties at point
d are completely reversed. Therefore, only clockwise (anti-clockwise) scattering for the TM (TE) wave
is allowed to travel along the boundary. The one-way propagating condition is the opposite for the
edge states in the third gap. It is worth noting that other types of boundaries can also be used, such as
a photonic crystal-air interface [32,33].
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Figure 1. Bloch sphere and energy band of supercell. (a) Choose |8|* — |a|?, 2Re(a*), and 2Im(aB*) of
the two-component vector («, ,B)T, eg,TE = (1, O)T, T™ = (0, 1)T, to be the x-, y-, and z-components
of 3D space. The polarizations transverse electric (TE)/transverse magnetic (TM), TE + TM/TE — TM,
and TE + iTM/TE — iTM are the unit vectors on three main axes. (b) The projected band structures
of the photonic topological insulator (PTI). Gapless edge states are denoted by green and red dotted
lines. (c) and (d) correspond to the field (both electric and magnetic) distribution of points c and d in
Figure 1b, respectively. The color represents the value of the E, or H,.
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Figure 2a is a schematic of a “ring-shaped” PTI used to illustrate the polarization-dependent
transgortation of the gaplessH edge states. The cladding layer is just like it in the waveguide case
with € =diag{1,1, -1} and p = diag{1,1, —1}. Excited by a circularly polarized source (white bar)
H, exp(—iwt) + iE, exp(—iwt) at an operating frequency of 0.53442(27tc/a), the net energy flows for
the two modes balance each other due to the identical magnitude but opposite directions as shown
in Figure 2b. The TM (TE) mode has only clockwise (anti-clockwise) energy flow as illustrated in
Figure 2c (Figure 2d), which is the photonic analogue of the QSHE.
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Energy flow of TM mode Energy flow of TE mode

Figure 2. Energy flow of a “ring-shaped” structure. (a) A schematic of the total energy flow in a
ring-shaped PTI. (b) The net zero energy flow for the TE and TM modes combined. (c) The clockwise
propagating energy flow of the TM mode. (d) The anti-clockwise propagating energy flow of the TE
mode. The white bar represents the excitation source. The color on site represents the amplitude of the
energy flow. Red (green) arrows represent the flow direction of the TM (TE) mode.

3.2. Pseudo TRS and Robustness of the One-Way Edge State

In this section, we test the robustness of our system. There are two basic types of symmetries in
PTI systems, Tj and Tj,, which are both composed of a Pauli matrix and complex conjugate operator,
e.g., Ty = ioyK and T, = oK. Following this principle, we can also construct other two kinds of
symmetry operators, Ty = 0yK and T; = K, as shown in the first row of Table 1. To check the robustness
of the system, a complete set of impurities are used and their character Hamiltonian Hs are shown
in the first column of Table 1. The commutations between H and T are listed in the table. Here,
circle marks indicate that the commutation result is zero while cross marks indicate a non-zero result.
The realization of the eight kinds of impurities are listed in the last column of Table 1. The lossless
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.. o ot o ot o et .
condition, ¢ = ¢ , 4 =y ,and { = ¢ ,is assumed. Following Table 1, we study the robustness

(the backscattering-immune property) of our PTI against the eight kinds of impurities as shown in
Figure 3. An E; source is set at the interface indicated by a black star and the cylinder impurity
(r = 0.11a) is placed at the center of waveguide. If there is backscattering, the corresponding impurity
is considered to break the robustness.

Table 1. Commutation results between all Hamiltonian and symmetry operators. The symmetry type
of each Hamiltonian (a two by two complex matrix) is determined via its constitutive equation (the
last column). We list all kinds of commutation results between the Hamiltonians and four symmetry
operators (three Pauli matrices and one identity matrix with a complex conjugate operator). Circle
marks mean commutation while cross marks mean non-commutation.

T . >
N Tp=ioyK Ty=0xK T:=0:K Tj=K Constitutive Parameters ?, }7, , Ceg,

I 0 0 O 0 (a) C=u=14
. . 0 124i 0
il ® ® ® ® (b) e=j=| -124i 0 0
0 0 14
<> Ed
e =u =14,
Ox ® O ® O (c) & o H'
¢ = ¢ =diag{0,0,14}
T =0 =14,
. 0 124i 0
d e —
o © @ © ® @ F=¢=| -124i 0 0
0 0 0
€ =0 =14
oy ® o) 0 ® (e) o ot
¢ = =diag{0,0,14i}
¢ =0 =14,
0 124 0
f > ot
ioy O ® ® O ® F-7 2| —124 0 o
0 0 0
o ® ® o) o) (@) ¥ =10=14
. 14 —124i 0
e=| 124i 14 0 |,
0 0 15
j h
1oz © © ® © ®) . 14 124i 0
W=| —124i 14 0
0 0 15

As shown in Figure 3a,d,f,h, E; wave propagates in one direction against impurities without
any backscattering. Their corresponding character Hamiltonians all commute with the pseudo TRS
T, = ioyK, as shown in Table 1. This means that an impurity with T), will retain the robustness. In other
words, the pseudo TRS is sufficient to ensure the robustness. It should be noticed that the impurity
with H = I represents the cavity, impedance-matching dielectric impurities and H = ic; represents
the our-of-order arrangement of the lattice, which are all conventional impurities. A principle which
should be clarified is that when we say the robustness is protected by a certain symmetry, we mean
that the symmetry is not only sufficient but is also necessary for the robustness.

For the impurities without pseudo TRS, Figure 3c,e show strong backscattering properties, which
match the commutation analysis of T, in Table 1 ([0, Ty] # 0 and [0y, T,] # 0). Finally, there
remain two special cases in Figure 3b,g. Although no backscattering can be found, the commutations
between their character Hamiltonians and T, are non-zero. The reason is that impurities with
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A =il (Figure 3b) and A =0, (Figure 3g) will not exchange TE and TM modes. Therefore, no H,
backscattering can be observed.

. T, oo oo oo oo o o

o o _oc o o o o o o > o@aeu

[ -
Min Max
Figure 3. Field distribution with impurities. (a-h) Field distribution with impurities shown in Table 1.
The black star presents an E, incidence point source while the impurity is set as a circle. Each upper
picture shows |E;| distribution and the lower one shows |H;| distribution. The color on site represents

the amplitude of |E;| or |H;|. All of the backscattering phenomenon match the commutation results in
Table 1, except for (b) A and (g) A,.
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A

To further prove our conclusion, we mixed impurities H;; =il and H, = 0, with H;, = icy. Hj,
itself cannot break the robustness, as shown in Figure 3d, but will exchange TE and TM modes due to
the non-diagonal terms. The corresponding constitutive parameters are chosen as

0 14i 0O
C=3=|-14 0 o0 |,
0 0 14
, (4)
o o 0 124i 0
E=C=1|-124i 0 0],
0 0 O
and
o “ ,
e =ding{14,14,1}, u = diag{14,14,15},
PR 0 124i 0 (5)
c=¢=1| —-124i 0 O
0 0 ©

The backscattering results are shown in Figure 4a,b, which means H;j; = il and H, = 0, can
induce backscattering. Finally, we obtain get the conclusion that the pseudo TRS T is not only a
sufficient condition but also a necessary condition for protecting the robust propagation of PTIs.

LT .., o oo s oo o _z_o o

Min Max

Figure 4. Field distribution with mixed impurities. We mixed impurities with character Hamiltonians
Aj; = il and A, = ¢, with H;, = ioy. Field distribution with impurities (a) I:I,'I_H-x and (b) I:Iz+ix. It can
be seen that by exchanging TE and TM modes, H;; and H..

On the other hand, the bosonic TRS is not a necessary condition, and its operator T}, has different
mathematic forms under different bases. For instance, in our system TE/TM is the eigen state, leading
to the result that T, = T, is the corresponding bosonic TRS operator (E, <+ E;, H; <> —H, under
time-reversal operation). The Hamiltonian of our proposed PTI (Equation (1)) does not commutate
with T, but commutates with T),. Thus, there is no bosonic TRS but only a pseudo TRS in our system
as well as a perviously reported left and right circular polarization-based PTI [26]. Otherwise, if we
choose another eigen state such as TE + TM/TE — TM [18], the corresponding TRS operator changes
to the form of Ty. The Hamiltonian of such polarization-based PTIs both commutate with Ty and T}.
To clarify different kinds of T and judge which is the one responsible for the robustness, we should
test all eight kinds of impurities.

3.3. Theoretical Model of Dirac Degeneracy via Tight Binding Approximation and Spin Chern Number

Here, we apply the tight binding approximation method to construct an analytical model via the
low-energy effective Hamiltonian. For simplicity, TE and TM polarization can be treated independently.
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For the TE polarization, there are three types of eigen-modes, these being [s"F ) | pIE ), and | p; E >,
equivalent to an electric monopole and two electric dipole modes in an electronic system. We can
define new p modes as the linear superposition of [py*) and [py* >: IpIEY = F ( p2F) £ilpy* >) /V2.
By applying the perturbation theory and expanding the k-dependent Hamiltonian to the first order,

we can obtain [26]
Hrg = Eg+motz + ﬁUf (kyTx + kxTy) — Hyp (6)

where Ty, Ty and T, are Pauli matrices, Ey is the energy origin point, mg is the mass term and v f
represents the phase velocity near the Dirac point [26]. It is therefore evident that the Hamiltonian
here is a Dirac equation.

The Hamiltonian of TM can be expressed in terms of the TE mode via symmetry operation on all
eigen-modes. The Hamiltonian for the whole system can be expressed as

-
Ho(k) o
H— . (7)
o H(-k)
This is the same with as that in the BHZ (Bernevig-Hugues-Zhang) model of a two-dimensional

electronic QSHE [6]. By solving the eigen equation Equation (5) [26], the dispersion of the edge states
for our system can be determined as:

E =chosky, 0= =£1 (8)

The dispersion of the edge-states can thus be analytically obtained as shown in Figure 5, fitting
well with the simulation data. In the calculation ivy = 0.1153 m/s was chosen for the edge states.

o simulated results
fitting results
fitting results

0.555

0.550

0.545

Frequency(Z2rc/a)

0.540

-0.06 -0.04 _ -0.02 0.00 0.02 0.04 0.06
Y I Y

Figure 5. The dispersion relation for edge states. The solid lines and open circles represent the
theoretical results according to Equation (6) and the simulation data, respectively.
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We also numerically investigate the Berry curvature (BC) and spin Chern numbers [11] in our PTI
system. Taking TM polarization for example, the BC can be calculated by Ref. [14]

BC<;) = (B_)C(z>)z = (Vk x Arm <;)>Z = (Vi x ({Ex|Vk|Ex))).
= (vox (s (V)9 (¥))) ’

with the result shown in Figure 6a. The corresponding spin Chern number can be calculated by
—
integration of the BC over the whole Brillouin zone Cry = (1/27) 5, BC| k d’k. The BC around

the M points has positive values and contributes most to the summation, leading to Ctp = 1. On the
contrary, the BC of TE polarization is negative near the M points as shown in Figure 6b, and the
corresponding spin Chern number C7g = —1. The final result Ctp;/7r = +£1 further indicates the

photonic QSHE appearing in our system [11]. It can be shown that the Z; invariant and spin Chern

number yield equivalent descriptions [26,34].

(b)
T™M mode TE mode

o

_T% 50 __% 25
5 5

3 50
5 25 3 5
z z
Q [0}
] 00 0

7.50
Figure 6. The Berry curvature of TE and TM modes. (a) and (b) are TM and TE Berry curvatures,

respectively. It can be seen that the wave vector around the M points contribute most to the Berry phase.
4. Discussion

The QSHE in electronic systems is described by the Dirac equation, with Tj% = —1. According
to the Kramers theorem, the single-particle eigen-mode of the Hamiltonian must have a degenerate
partner. When one-way propagating electrons are backscattered by a nonmagnetic impurity, the
two possible backscattering paths always interfere destructively, leading to perfect transmission [35].

Similarly, in our proposed PTI system, the T, operator with T’% = —1 means that rigorous Kramers
double degeneracy can exist for photons as well.

Therefore, the transportation robustness of
the net polarization carried by photonic edge states is protected by such symmetry. Moreover,

polarization-dependent edge states in our PTI are robust, as they can exist against all kinds of disorders
and impurities that keep the pseudo TRS.

Although the homogenous gyrotropic material used in our PTI might not be available in nature,
there are several ways to obtain the desirable effective gyrotropic response. First, an effective medium
combining two sub-wavelength sized naturally-occurring gyroelectric and gyromagnetic materials [15]
can be formed to mimic gyrotropic response. Photonic structure geometry can be further designed
to achieve great flexibility when designing waveguide-based 2D photonic crystals [36]. Secondly,
metamaterials can be applied and engineered to tailor electromagnetic responses, including magnetic
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resonance, electronic resonance, optical active chirality, and desirable gyrotropic responses from
magneto-electric coupling [18,37]. Additionally, in some artificial multiferroic materials, a magnetic
field could be applied to manipulate ferroelectric polarization, and vice versa. These effects could be
leveraged to create a material system with the coexistence of off-diagonal terms in permittivity and
permeability tensors [38].

5. Conclusions

In summary, our findings clarify the role of TRS and pseudo TRS in bosonic T1 systems. Following
the principle to construct a fermionic-like pseudo TRS, we have proposed a PTI with TE/TM
polarizations as photonic spins. Backscattering immune propagation and polarization-dependent
transportation can be achieved with a pair of conjugate gapless edge states. Based on a symmetry
analysis using all eight possible types of impurities, we have definitively shown that a PTI is only
protected by the pseudo TRS T, [39]. Moreover, analytic dispersion of edge states and numerically
calculated spin Chern numbers have also been investigated to confirm the non-trivial topological
property. Our work may find great potential applications such as in a polarization splitter for entangled
photons [40], optical isolation, and polarization-dependent transportation. The roadmap we used to
retrieve the constitutive relation of PTI components in this paper may pave the way for constructing
some experimentally desirable PTIs and may be leveraged to create other types of bosonic T1.
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