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Abstract: Single crystals of Fe0.43Mo2.56SbO9.5 were obtained by hydrothermal techniques at 230 ◦C.
The crystal structure was determined from single crystal X-ray diffraction data. The compound
crystallizes in the non-centrosymmetric space group Pc with unit cell parameters a = 4.0003(2) Å,
b = 7.3355(3) Å, c = 12.6985(6) Å, β = 90◦. The crystal structure comprises five crystallographically
independent M atoms and one Sb3+ atom, M atoms are of two kinds of partially occupied sites Mo6+

and Fe3+. The building blocks consist of [SbO3O0.5O0.5E] octahedra (E = lone electron pair) and
[(Mo/Fe)O6] octahedra. The M = (Mo, Fe) and O atoms are arranged in a distorted hexagonal 2D-net,
not the Sb atoms. The distortion of the net and consequently the symmetry reduction results mainly
from the location of the Sb atoms. Disorder manifests itself as a splitting of the metal sites and as a
consequent shortening of the Mo–Fe distances. Six (Mo/Fe)O6 octahedra are connected to form a
pseudohexagonal channel. The Sb3+ atom is displaced from the pseudo-six-fold axis.

Keywords: hydrothermal synthesis; non-centrosymmetric (NCS) materials; X-ray diffraction;
disordered structure

1. Introduction

The search for crystallographically non-centrosymmetric (NCS) materials is of current interest
and of great importance due to the fact that such compounds may show interesting physical properties
e.g., non-linear second harmonic generation, ferroelectricity etc. [1–8]. Involving cations having
stereochemically active lone pairs e.g., Se4+, Te4+, Sb3+, As3+ and also d10 transition metal cations that
are susceptible to second order Jahn–Teller distortion in the search for new compounds enhance the
possibilities to form NCS materials [9,10].

A large variety of ternary oxides in the M–Sb–O system (M = Mn2+, Fe2+, Co2+, Ni2+, Zn2+,
Mg2+) have previously been described in the literature [11–15]. The oxidation state of the Sbcations
plays an important role when forming different kinds of crystal structures. MSb2O4 (M = Co, Ni,
Fe, Mn) crystallizes in tetragonal symmetry with space group P42/mbc and forms schafarzikite type
of crystal structures [11,14–16]. The crystal structure of MSb2O4 consists of rutile-type chains of
edge-sharing MO6 octahedra which are linked together by trigonal pyramidal Sb3+ cations. The Sb5+

cations have octahedral coordination and the example compounds crystallize with the trirutile crystal
structure FeSbO4, Fe2Sb2O6, CoSb2O6, the pyrochlore-type Co2Sb2O7 or the spinel-type compound
Co2.5Sb0.5O4 [12,17–19].

There are comparatively few quaternary compounds that have been investigated so far compared
to the number of ternary compounds, especially in the M–Co–Sb–O (M= Mo, Ag, Na, Sr, Ba)
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system [13,20–22]. Some of these compounds exhibit interesting magnetic properties showing e.g.,
spin-glass transitions at low temperatures. Examples include the layered Ag3Co2SbO6 and Sr2CoSbO6

and Sr2CoSbO5.63 (semiconductors) Na3Co2SbO6 phases [13], the distorted Sr3CoSb2O9 (insulator
pervoskites [20] or the Ba3CoSb2O9 and Ba2Co1.4Sb0.6O6−y phases [22]. However, there is only one such
phase found in the [M–Fe–Sb–O] system; e.g., FeSb2−xPbxO4 (x = 0.2–0.7) [23]. The replacement of Sb3+

by Pb2+ induces oxidation of Fe2+ to Fe3+. The substitution by Pb2+ leads to C-type antiferromagnetic
orbital crystal structure compared to A-type antiferromagnetic orbital crystal structure for FeSb2O4.
An example of disordered crystal structure in the [Fe–Mo–O] phase is observed e.g., Fe2(MoO4)3.
The disorder is mainly due to the Mo atom [24,25].

Compounds in the [M–Sb–O] and [M–Fe–Sb–O] systems have mainly been synthesized by solid
state reactions that involve heating the constituents in a silica ampoule. The temperature varies from
500 ◦C to 1600 ◦C for different systems. In the present study we instead utilize a hydrothermal synthesis
technique to grow single crystals of a new quaternary phase with the composition Fe0.43Mo2.56SbO9.5.
The crystals show diffuse scattering in addition to the Bragg reflections. After careful examination
of many crystals by single crystal X-ray diffraction we concluded that the diffuse scattering, hence
disorder, is intrinsic for this compound. The evidence is even more pronounced from the fact of
lowering to non-centrosymmetric monoclinic symmetry with six-fold twinning instead of the higher
hexagonal symmetry. Unfortunately it was not possible to synthesize phase-pure material for further
characterization of the physical properties.

2. Materials and Methods

A mixture of FeF2:MoO3:Sb2O3=1:5:2 in 2 mL deionized water plus a few droplets of HF were
sealed in an 18 mL teflon lined steel autoclave and heated to 230 ◦C at a rate of 1.6 ◦C/min. The plateau
temperature was maintained for four days and thereafter the temperature was lowered to 30 ◦C with a
rate 1.6 ◦C/min. The following starting chemicals were used: Sb2O3 (99.97%, Sigma-Aldrich, St. Louis,
MO, USA), FeF2 (99.8%, Sigma-Aldrich), and MoO3 (99.5%, Sigma-Aldrich). The hydrothermal
synthesis yielded green single crystals of Fe0.43Mo2.56SbO9.5 that were washed using water and ethanol
followed by drying at room temperature. An unidentified [Sb–Mo–O] phase was also found from the
EDS analysis.

Single crystal X-ray diffraction data were collected using a Bruker D8 Venture diffractometer
equipped with a PHOTON 100 detector. Data integration, including correction for oblique incidence,
was performed with the software CrysAlis RED [26]. Absorption correction was applied with the
computer program SADABS [27]. The crystal structure was solved using the program Superflip [28]
and refined by using the program JANA2006 [29]. Fe, Mo, and Sb atoms were refined with anisotropic
temperature parameters and oxygens were refined isotropically; the crystal refinement data is
summarized in Table 1.

Chemical compositions were obtained by EDS using a Hitachi M3000 tabletop scanning electron
microscope and a JEOL JSB-7000F. The content of heavy elements was found to be 10.6 at% Fe, 61.3at%
Mo, and 28.1at% Sb, see Supplementary Materials. The expected values are 10at% Fe, 50at% Mo and
40at% Sb. An unidentified [Sb–Mo–O] phase was also found as byproduct with the composition 66at%
Sb and 33 at% Mo respectively.
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Table 1. Crystallographic data for Fe0.43Mo2.56SbO9.5.

Fe0.43Mo2.56SbO9.5

formula weight/g mol−1 543.77
temperature/K 293
crystal system Monoclinic
space group Pc (no. 7)

a/Å 4.0003 (2)
b/Å 7.3355 (3)
C/Å 12.6985 (6)
β/◦ 90.0

V/Å3 372.6
ρ/g.cm−3 4.846

Z 2
crystal size/mm3 0.45 × 0.15 × 0.10

radiation type Mo- Kα

wavelength/Å 0.71069

indices range
−8 ≤ h ≤ 8
−15 ≤ k ≤ 15
−26 ≤ l ≤ 26

No. of reflections
Measured/unique 18,904/13,739

observed [I >3σ(I)] 9883
Rint 0.044

(sinθ/λ)max/Å−1 1.03
RF/wRF [F>3σ(F)] >
All reflections (%) 6.30/7.29

goodness of fit (all) 1.59

3. Results

Crystal Structure

The new compound Fe0.43Mo2.56SbO9.5 crystallizes in the monoclinic non-centrosymmetric space
group Pc with unit cell parameters a=4.0003(2) Å, b=7.3355(3) Å, c=12.6985(6) Å, β=90◦. The refined
β is 90.005 (3) which is within three times standard uncertainty. This is why we fixed the β to 90◦,
which showed convergence and good fit to data using space group Pc (monoclinic b-axis) compared
to the possible space group in the higher symmetry of the orthorhombic cell. All crystallographic
parameters from the refinement are summarized in Table 1. The structural units of Fe0.43Mo2.56SbO9.5

with isotropic atomic displacement parameters and occupancies are summarized in the Supplementary
Materials. Six fold twinning by fixing the volumes to one sixth was applied during the refinement.
The twinning matrices are implied as follows: (100,0 −1/2 −3/2,01/2 −1/2); (100, 0 −1/23/2,0 −1/2 −1/2);
(−100,010, 001); (−100, 0 −1/2 −3/2, 01/2 −1/2);(−100, 0 −1/23/2, 0 −1/2 −1/2). The unit cell contains one
crystallographic independent Sb3+ atom and five sites by partially occupied Mo6+ and Fe3+ atoms.
Mo/Fe sites are named either by a number or a number plus a letter. These five sites are Mo1/Fe1,
Mo1a/Fe1a, Mo2/Fe2, Mo2a/Fe2a, and Mo3/Fe3. To make the description of the crystal structure simpler
we introduced [Mo*/Fe*] to denote all [Mo/Fe] sites, [Mo1*/Fe1*] to denote the [Mo1/Fe1, Mo1a/Fe1a]
sites and [Mo2*/Fe2*] to denote the [Mo2/Fe2, Mo2a/Fe2a] sites. The Mo1/Fe1 and Mo1a/Fe1a sites are
present at a very short distance 0.71 Å and are actually split positions. Disorder manifests itself as
a splitting of the metal sites and as a consequent shortening of the Fe–Mo distance. A similar trend
has been found for the splitting of the Mo2/Fe2 and Mo2a/Fe2a sites. However, there is no split of the
Mo3/Fe3 atom. Strong evidence for disorder is observed from the diffuse scattering found from the
reconstructed image of the (hk2) layers, see Figure 1. The occupancy of Mo1 (0.72) is significantly higher
than the occupancy of Fe1 (0.12), Mo1a (0.13), and Fe1a (0.02), however the overall occupancy is close to
1. Similarly, the occupancy of Mo2 (0.62) is significantly higher than for Fe2 (0.11), Mo2a (0.21) and Fe2a
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(0.04) and the overall occupancy is also close to 1. Mo3 (0.86) also has a higher occupancy than Fe3 (0.14)
and together the occupancy is 1, see Table 2. There are ten crystallographically independent oxygen
atoms that have been refined isotropically and the O (10) atom is half occupied in a disordered manner.

The Sb atom is coordinated with five oxygen atoms to complete the distorted square pyramid
[SbO4]. The [SbO4] units connected to each other by –Sb–O (10) –Sb–O (10) bridges to form a [Sb2O7]n

chain, see Figure 2a. The lone electron pair (E) sides opposite to the axial site of the pyramids to
complete the distorted [SbO3O0.5O0.5E] octahedras. The Sb–O distances vary from 1.95(2) Å to 2.443(7)
Å, see Table 3. The Sb–O distances are comparable with the distances found in cubic Sb2O3 and
monoclinic Sb3O4F [30,31]. Bond distances up to 2.76 Å for Sb–O are to be considered to belong to the
primary coordination sphere according to the operative definition by Brown [32].

Table 2. Occupancy factor of the partially occupied atoms in Fe0.43Mo2.56SbO9.

Atom Occ

Mo1 0.72
Fe1 0.12

Mo1a 0.13
Fe1a 0.02
Mo2
Fe2

0.64
0.11

Mo2a 0.21
Fe2a 0.04
Mo3 0.86
Fe3 0.14

Both Mo1/Fe1 and Mo1a/Fe1a sites form distorted octahedral units of [(Mo1/Fe1)O6] and
[(Mo1a/Fe1a)O6] respectively. The equatorial Mo/Fe–O distances are in the range 1.904(8)–2.014(11) Å.
The axial Mo/Fe–O distances are 1.620(7)–2.391(7) Å. The short axial Mo/Fe–O distance is explained
by the disorder present at the Mo1/Fe1, Mo1a/Fe1a sites. The [(Mo1*/Fe1*)O6] octahedra are
connected to each other by oxygen bridges to form a chain with the composition [(Mo1*/Fe1*)O5]n.
Similarly, both Mo2/Fe2 and Mo2a/Fe2a sites forms distorted [(Mo2/Fe2)O6] and [(Mo2a/Fe2a)O6]
octahedral and a similar chain; [(Mo2*/Fe2*)O5]n. The equatorial Mo/Fe–O distances are in the
range 1.809(7)Å to 2.066(9) Å and the plane is shown in Figure 2b. The axial Mo/Fe–O distances
are 1.675(6) Å and 2.329(6) Å respectively, see (Table 3). Mo3/Fe3 sites form distorted octahedra
units of [(Mo3/Fe3)O6]. The equatorial Mo3/Fe3–O distances are in the range 1.838(7)–2.023(8)Å
and the axial Mo3/Fe3–O distances are in the range 1.739(5)–2.273(5)Å. The [(Mo3/Fe3)O6] units are
connected to each other by (Mo/Fe)–O–(Mo/Fe) bridges to form a [(Mo3/Fe3)O5]n chain along [1−1
0], see Figure 2a. The [(Mo1*/Fe1*)O5]n and [(Mo2*/Fe2*)O5]n chains connect to each other forming
[(Mo1*/Fe1*)(Mo2*/Fe2*)O8]n layers, see Figure 3b,c. The [(Mo3/Fe3)O5]n and [SbO3.5]n chains connect
via edge sharing to form [(Mo3/Fe3)SbO6.5]n chains, see Figure 3a. The [(Mo1*/Fe1*)(Mo2*/Fe2*)O8]n

layers and the [(Mo3/Fe3)SbO6.5]n chains connect to each other by five different types of bridges, which
are [(Mo1*/Fe1*)–O7–Sb1], [(Mo2*/Fe2*)–O7–Sb1], [(Mo2*/Fe2*)–O9–Sb1], [(Mo2*/Fe2*)–O9–(Mo3/Fe3)],
[(Mo1*/Fe1*)–O8–(Mo3/Fe3)].
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Mo1/Fe1 1 × 2.326 (6); 1 × 1.680 (6); 1 × 1.904 (8); 1 × 1.927 (6); 1 × 2.010 (7); 1 × 1.942 (9)

Mo1a/Fe1a 1 × 1.620 (7); 1 × 2.391 (7); 1 × 1.946 (11); 1 × 1.912 (9); 1 × 2.014 (11); 1 × 1.941 (11)
Mo2/Fe2 1 × 1.720 (6); 1 × 2.286 (6); 1 × 1.930 (8); 1 × 1.859 (6); 1 × 2.012 (7); 1 × 2.020 (8)

Mo2a/Fe2a 1 × 2.329 (6); 1 × 1.675 (6); 1 × 1.868 (9); 1 × 1.809 (7); 1 × 2.031 (8); 1 × 2.066 (9)
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4. Discussion

The diffraction data suggests that a hexagonal crystal structure with space group P6/mmm would
be a possible solution, but attempts to solve the crystals structure in this space group results in a very
poor fit of the data. The solution is however sufficiently good to show the semblance of a hexagonal
tungsten bronze type arrangement, the metal indicating a puckering of the layer. This, again, is
a common structural response to the presence of a lone-pair element distorting the planar crystal
structure and disrupting the mirror plane perpendicular to c.

There is no prescribed order for the modeling of this, but it is natural to first lower the symmetry
from hexagonal P6/mmm to orthorhombic Cmmm and then to consider symmetry lowering compatible
with the absence of a mirror plane perpendicular to c. This produces seven possible direct subgroups:
Pmmn, Pman, Pbmn, Pban, Cmm2, C2/m11, C12/m1. The best result was found for Pbnm, but split positions
caused by the symmetry remained and the symmetry was subsequently lowered through Pb2n to Pb11.
No significant improvement was found on reducing the symmetry to P1. To control the veracity of this
result, each of the other six maximal subgroups were taken as starting points for symmetry reduction,
but these attempts verified the original result. The crystal structure in the orthorhombic group Pban
could be reduced through the path Pban–Pb2n–Pb11 to yield the same result as before, as could Cmm2
via Cmm2–Cm11–Pb11 and Cmm2–Pba2–Pb11, but for the other orthorhombic starting points, the
symmetry had to be reduced to P1 to yield a solution comparable to that in Pb11. The monoclinic
group C2/m11 likewise could be reduced via C2/m11–Cm11–Pb11 and C2/m11–P2/b11–Pb11 to yield the
same solution while C12/m1 yielded only the P1 solution.

The orientation of Mo*/Fe*atoms in the (bc) plane is shown in Figure 4. The cations Mo1*/Fe1*,
Mo2*/Fe2*, and Mo3/Fe3 forms a pseudo-hexagonal channel, presented by a dotted line, see Figure 4.
The distances in between the heavy atoms of the pseudo-hexagon vary from 3.616 Å to 3.837 Å and the
angle varies from 114.55◦ to 125.69◦. The antimony and oxygen atoms reside in the pseudo hexagons
made up of six Mo*/Fe* and six O atoms. Inside the pseudohexagon there are two four-membered rings
made of Mo*/Fe*, Sb and O atoms. Disorder manifests itself as a splitting of the metal sites on Mo*/Fe*
in the pseudohexagons, which is why the symmetry is monoclinic instead of hexagonal. Sb is shifted
away from the center of the pseudo 3-fold rotation axis, located in the pseudohexagonal channels.
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Figure 4. Pseudohexagonal arrangement of the Mo*/Fe* atoms in the (011) plane. (Mo*/Fe*) = Light
blue, Sb= Grey, O = Red.

5. Conclusions

The new compound Fe0.43Mo2.56SbO9.5 crystallizes in the monoclinic non-centrosymmetric
space group Pc with unit cell parameters a = 4.0003(2) Å, b = 7.3355(3) Å, c = 12.6985(6) Å, β
= 90◦. Five partially occupied sites with Mo6+/Fe3+ atoms and one Sb3+ atoms are present as
crystallographically independent atoms. Several (Mo*/Fe*) sites sit at very short distances due to
disorder in the crystal structure as evident from diffuse scattering. The lowering of symmetry confirms
distortion in the crystal structure. The Sb atoms possess distorted octahedra of [SbO4E] units with
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two half occupied oxygen atoms. The Mo*/Fe* forms distorted octahedral units of [(Mo*/Fe*)O6].
Disorder manifests itself as a splitting of the metal sites on Mo*/Fe* in the pseudohexagonal channel,
which is why lowering the symmetry to monoclinic from hexagonal is found. Sb is located in the
pseudohexagonal channels and is shifted away from the center of the pseudo six-fold rotation axis6.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4352/9/1/40/s1,
Table S1: Qualitative EDS analyses on single crystals were performed in a scanning electron microscope
(JEOL-7000F) showing that all the intended elements are present in Fe0.43Mo2.56SbO9.5. Average composition is
calculated considering several points in a crystal. Table S2: (a) Structural parameters of the cations and (b) anions
in Fe0.43Mo2.56SbO9.5 (Occ. = Occupation factor).Details of crystallographic file is deposited to CCDC (CCDC
1889226).
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