Supplementary Information

Synthesis and adsorbing properties of thin plate-like {001} calcite crystals

Nives Matijaković, Giulia Magnabosco, Francesco Scarpino, Giuseppe Falini, Damir Kralj

Figure SI1.	Ρ.	SI2
Figure SI2.		SI3
Figure SI3.		SI4
Figure SI4.		SI5
Figure SI5.		SI6
Figure SI6.		SI7
Table SI1.		SI8
Figure SI7.		SI9
Figure SI8.		SI10
Figure SI9.		SI11
Figure SI10.		SI12
Figure SI11.		SI13
Figure SI12.		SI14
Table SI2.		SI15
Figure SI13.		SI16
Figure SI14.		SI17
Figure SI15.		SI18
Figure SI16.		SI19
Figure SI17.		SI20
Figure SI18.		SI21
Figure SI19.		SI22
Figure SI 20.		SI23
Figure SI 21.		SI24
Figure SI 22.		SI25
Figure SI 23.		SI26

Figure SI1. FTIR spectra of the precipitates obtained in the system with $c(Li^+) = 0.0 \text{ mol } dm^{-3}$ trough transformation time; a) 10 min of ultrasonic irradiation, b) 48 h, c) 72 h and d) 96 h. * v indicates vaterite. * c indicates calcite.

Figure SI2. FTIR spectra of the precipitates obtained in the system with $c(Li^+) = 0.1 \text{ mol } dm^{-3}$ trough transformation time; a) 10 min of ultrasonic irradiation, b) 48 h, c) 72 h and d) 96 h. * v indicates vaterite. * c indicates calcite.

Figure SI3. FTIR spectra of the precipitates obtained in the system with $c(Li^+) = 0.3$ mol dm⁻³ trough transformation time; a) 10 min of ultrasonic irradiation, b) 48 h, c) 72 h and d) 96 h. * v indicates vaterite. # c indicates calcite.

Figure SI4. FTIR spectra of the precipitates obtained in the system with $c(Li^+) = 0.5 \text{ mol } dm^{-3}$ trough transformation time; a) 10 min of ultrasonic irradiation, b) 48 h, c) 72 h and d) 96 h. * v indicates vaterite. # c indicates calcite.

Figure SI5. FTIR spectra of the precipitates obtained in the system with $c(Li^+) = 0.7 \text{ mol } dm^{-3}$ trough transformation time; a) 10 min of ultrasonic irradiation, b) 48 h, c) 72 h and d) 96 h. * v indicates vaterite. # c indicates calcite.

Figure SI6. FTIR spectra of the precipitates obtained in the system with $c(Li^+) = 1.0 \text{ mol } dm^{-3}$ trough transformation time; a) 10 min of ultrasonic irradiation, b) 48 h, c) 72 h and d) 96 h. * v indicates vaterite. * c indicates calcite.

Wavenumber/ cm ⁻¹	Band assignment*		
Calcite			
1425	v₃, asymmetric C−O stretching mode		
876	ν_2 , CO ₃ out of plane deformation mode		
713	ν₄, O−C−O bending (in plane deformation) mode		
Calcite and vaterite mixture			
1485	v ₃ , asymmetric C−O stretching mode		
1423	1423 v_3 , asymmetric C–O stretching mode		
1088	1088 v ₁ , symmetric C–O stretching mode		
876	ν_2 , CO ₃ out of plane deformation mode		
746	ν_4 , O–C–O bending (in plane deformation) mode		
713	v_4 , O–C–O bending (in plane deformation) mode		

Table SI1. Assignment of IR bands in FTIR spectra in all systems through transformation time.

*Band assignment were done according to F.A. Andersen, Lj. Brečević: Infrared spectra of amorphous and crystalline calcium carbonate, Acta Chim. Scand. **45** (1991) 1018-1024.

Figure SI7. The progress curves, pH vs time, of the precipitation systems ($c_i(CaCl_2) = c_i(NaHCO_3) = 0.1$ mol dm⁻³; $c(Li^+) = 0.3$ mol dm⁻³ (thin lines) and no Li⁺ addition (thicks lines), stirred by different devices (mechanic - blue, magnetic – red, sonication – black).

Mechanical, 60 minutes, $c(Li^+) = 0.3 \text{ mol } dm^{-3}$

Magnetic, 60 minutes, c(Li⁺) = 0.3 mol dm⁻³

Sonication, 10 minutes, c(Li⁺) = 0.3 mol dm⁻³

Figure SI8. Scanning electron images of calcite samples obtained after 5 days of aging, in the precipitation systems ($c_i(CaCl_2) = c_i(NaHCO_3) = 0.1 \text{ mol } dm^{-3}$; $c(Li^+) = 0.3 \text{ mol } dm^{-3}$). The systems were initially agitated for 60 minutes by means of mechanical or magnetical stirrer, or for 10 minutes by applying ultrasonic irradiation. Scale bars: 60 µm.

Figure SI9. PXRD patterns of the precipitates obtained in the system with $c(Li^+) = 0 \mod dm^{-3}$ trough transformation time; a) 10 min of ultrasonic irradiation, b) 48 h, c) 72 h and d) 96 h.

Figure SI10. PXRD patterns of the precipitates obtained in the system with $c(Li^+) = 0.1 \text{ mol } dm^{-3} \text{ trough}$ transformation time; a) 10 min of ultrasonic irradiation, b) 48 h, c) 72 h and d) 96 h.

Figure SI11. PXRD patterns of the precipitates obtained in the system with $c(Li^+) = 0.3 \text{ mol dm}^{-3}$ trough transformation time; a) 10 min of ultrasonic irradiation, b) 48 h, c) 72 h and d) 96 h

Figure SI12. PXRD patterns of the precipitates obtained in the system with $c(Li^+) = 0.5$ mol dm⁻³ trough transformation time; a) 10 min of ultrasonic irradiation, b) 48 h, c) 72 h and d) 96 h.

Figure SI13. PXRD patterns of the precipitates obtained in the system with $c(Li^+) = 0.7 \text{ mol dm}^{-3}$ trough transformation time; a) 10 min of ultrasonic irradiation, b) 48 h, c) 72 h and d) 96 h.

Figure SI14. PXRD patterns of the precipitates obtained in the system with $c(Li^+) = 1.0 \text{ mol } dm^{-3} \text{ trough}$ transformation time; a) 10 min of ultrasonic irradiation, b) 48 h, c) 72 h and d) 96 h.

2 <i>θ</i> /°	(hkl)	
Calcite		
29.4	104	
35.9	110	
39.4	113	
43.1	202	
47.5	018	
48.5	116	
Calcite and vaterite mixture		
24.9	020	
27.1	021	
29.4	104	
32.7	022	
35.9	110	
39.4	113	
40.7	023	
43.8	130	
50.0	114	
55.8	222	

Table SI2. Assignment of peaks in PXRD patterns in all systems through transformation time.

*PXRD pattern was indexed according to JCPDS card No. 05-0586 (calcite) and JCPDS card No: 33-0268 (vaterite)

3 days

Figure SI15. Scanning electron micrographs of calcite samples obtained in the reference system, c(Li⁺) = 0, after 10 min of ultrasonic irradiation, tree and five days: a), b) and c) respectively; and in the systems with lithium addition in the same period for: d), e) and f) at $c(Li^+)/c(Ca^{2+}) = 1$ respectively and g), h) and i) at $c(Li^+)/c(Ca^{2+})=3$ respectively, at P = 40 W, ts = 10 min and room temperature. Scale bar is 20 μ m.

Figure SI16. Scanning electron micrographs of calcite samples obtained in the systems with lithium addition after 10 min of ultrasonic irradiation, tree and five days: a), b) and c) at $c(\text{Li}^+)/c(\text{Ca}^{2+}) = 5$; d), e) and f) at $c(\text{Li}^+)/c(\text{Ca}^{2+}) = 7$; and g), h) and i) at $c(\text{Li}^+)/c(\text{Ca}^{2+}) = 10$ respectively, at P = 40 W, ts = 10 min and room temperature. Scale bar corresponds for 20 µm.

Sonication, 10 minutes, $c(Li^+) = 0 \mod dm^{-3}$

Sonication, 10 minutes, c(Li⁺) = 0.3 mol dm⁻³

Figure SI17. Vaterite samples prepared in the systems ($c_i(CaCl_2) = c_i(NaHCO_3) = 0.1 \text{ mol } dm^{-3}$; $c(Li^+) = 0.3 \text{ mol } dm^{-3}$ and no Li⁺ addition, sonicated for 10 minutes. The scale bar is 1 µm.

Figure SI18. (Top) Relative intensities of $\{00.1\}$ with respect to the $\{10.4\}$ calcite diffraction peaks shown as a function of solution concentration of Li⁺ in the samples aged for 5 days. (Bottom) The aspect ratios of the plate-like calcite crystals shown as a function of solution concentration of Li⁺ in the samples aged for 5 days. The ratios are shown for two size classes of crystals, indicated in the Table 1.

Figure SI19. Amount of lithium in precipitate separated from the solution after 10 minutes of sonication (red symbols) and after 5 days of aging of precipitate (blue), shown as a function of the initial concentration of lithium.

Figure SI20. Molecular structure of (a)calcein and (b) crystal violet.

Figure SI21. Confocal microscopy images showing consecutive crystal section of the samples shown in Fig. 4. Top row: $\{10.4\}$ crystals, bottom row, $\{00.1\}$ crystals. The scale bar is 10 μ m

Figure SI22. The kinetics of adsorption of respective dye molecules on the {10.4} calcite crystals. The red dots indicate crystal violet and the blue dots indicate calcein. The standard errors are reported.

Figure SI23. The kinetics of adsorption of respective dye molecules on the {00.1} calcite crystals. The red dots indicate crystal violet and the blue dots indicate calcein. The standard errors are reported.