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Abstract: The volume versus temperature relations for Ni3Si and Ni3Ge are obtained by using the
first principles calculations combined with the quasiharmonic approach. Based on the equilibrium
volumes at temperature T, the temperature dependence of the elastic constants, generalized stacking
fault energies and generalized planar fault energies of Ni3Si and Ni3Ge are investigated by first
principles calculations. The elastic constants, antiphase boundary energies, complex stacking fault
energies, superlattice intrinsic stacking fault energies and twinning energy decrease with increasing
temperature. The twinnability of Ni3Si and Ni3Ge are examined using the twinnability criteria.
It is found that their twinnability decrease with increasing temperature. Furthermore, Ni3Si has better
twinnability than Ni3Ge at different temperatures.
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1. Introduction

Ni-based single-crystal (SC) superalloys are widely used for turbine blades and vanes in the
most advanced gas turbine engines due to their high melting temperature, adequate high temperature
strength, elevated thermal stability, excellent oxidation and corrosion resistance [1,2]. The L12-type
ordered phases Ni3Si and Ni3Ge exhibit unique mechanical properties which makes them attractive
for structural applications at elevated temperatures.

A number of reports, particularly on mechanical properties, have been carried on Ni3Si and Ni3Ge.
For example, Ochial et al. [3] evaluated the direction of solubility lobe, the extent of homogeneity of
L12 phase and the site preference of ternary additions in Ni3Ga, Ni3Si, Ni3Ge and Ni3Al through the
experiment. Yasuda et al. [4] determined the three elastic stiffness constants of Ni3X (X = Mn, Fe,
Al, Ga, Ge and Si) by the rectangular parallelepiped resonance method. Iotova et al. [5] studied the
electronic and mechanical properties of the Ni3X (X = Mn, Al, Ga, Si, Ge) using first-principles
total-energy electronic structure calculations based on the full-potential linear-muffin-tin-orbital
method. Chen et al. [6] investigated the structural properties, elastic properties, thermal stability,
thermodynamics and electronic structures of Ni3X (X: Al, Mo, Ti, Pt, Si, Nb, V and Zr) from
first-principles calculation. Hou et al. [7] investigated the structural, elastic, thermodynamic and
electronic properties of L12-ordered intermetallic compounds Ni3X (X = Al, Ga and Ge) under pressure
using first-principles methods based on density functional theory. Tanaka et al. [8] measured the
elastic-stiffness constants of Ni3Ga and Ni3Ge over the temperature range of 77–1200 K using the
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rectangular parallelepiped resonance (RPR) method. Prikhodko et al. [9] measured the single-crystal
elastic constants of Ni-Ge and Ni-Ga solid solution alloys up to 1100 K. However, the effect of
temperature on the dislocation of Ni3Si and Ni3Ge have not been reported yet.

It is widely accepted that dislocations play an important role in determining the mechanical
properties of the materials [10,11]. Deformation twinning is another deformation mechanism in
Ni3Si and Ni3Ge. Dislocation-mediated slip and deformation twinning are two major and competing
modes of plastic deformation in fcc metals and alloys [12,13]. The generalized stacking fault energy
(GSFE) curves play a critical role in revealing the competition between dislocation and deformation
twinning. There have been many theoretical studies focused on the qualitative dependence of
deformation twinning tendency on the GSFEs in fcc metals and alloys [14–24]. Fu et al. [25] determined
the (100) and (111) antiphase boundary (APB) energies and the superlattice intrinsic stacking fault
(SISF) energies of Ni3Si using the first-principle total-energy methods. Mryasov et al. [26] employed the
local-density approximation (LDA) and the full-potential linear muffin-tin orbital (FLMTO) method to
determine the GSFEs of Ni3Ge on the {111} plane at 0 K. However, the entire GSFE curves and the
twinnability of Ni3Si and Ni3Ge at different temperatures have not yet been reported. In this paper,
the first principles methods and quasiharmonic approximation are used to systematically examine the
GSFEs and twinnabilities of Ni3Si and Ni3Ge at different temperatures.

2. Method of Calculation

In terms of first-principles quasiharmonic approach, the Helmholtz free energy F for a crystal
can be written in the form of

F(V, T) = E0(V) + Fel(V, T) + Fvib(V, T) (1)

where E0(V) is the static energy at 0 K and Fel is the thermal electronic contribution to free energy from
finite temperature. Both the E0(V) and Fel can be obtained from first principles calculations. Fvib is the
vibrational free energy of the lattice atoms given by

Fvib(V, T) = ∑
κ

{1
2

h̄ωκ(V) + kBTln
[
1− exp

(
− h̄ωκ(V)

kBT

)]}
(2)

where kB is the Boltzmann constant, h̄ is the reduced Planck constant, ωκ represents an individual
phonon frequency.

The isothermal elastic constants CT
ij , with respect to the finite strain variables, are defined as [27]

CT
ij =

1
V

∂2F
∂ηiηj

∣∣∣
T,η′

(3)

where V = V(T) is the volume at temperature T and η′ represents that all other strains are held
fixed. For a cubic system, there are three independent elastic constants CT

11, CT
12 and CT

44. The bulk
modulus BT determined from the Vinet equation of state [28] is approximated by the combinations of
the elastic moduli

BT
T = (CT

11 + 2CT
12)/3 (4)

A volume-conserving orthorhombic strain is applied to determine the difference between the CT
11

and CT
12

η(ξ) =

 ξ 0 0
0 ξ 0
0 0 (1 + ξ)−2 − 1

 (5)
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which leads to the Helmholtz free energy change

F(V, ξ) = F(V, 0) + 3(CT
11 − CT

12)Vξ2 + O(ξ3) (6)

A volume-conserving tetragonal strain is applied to determine CT
44

η(ξ) =

 0 ξ 0
ξ 0 0
0 0 ξ2/(1− ξ2)

 (7)

and the corresponding Helmholtz free energy change is

F(V, ξ) = F(V, 0) + 2CT
44Vξ2 + O(ξ4) (8)

In present work, a first-principles quasistatic approach proposed by Wang et al. [29,30] is
employed to determine the temperature dependent elastic constants Cij(T). In this approach,
the change of elastic constants at higher temperature is mainly caused by volume change.
The temperature dependence of the elastic constants Cij(T) can be estimated by the application
of the following three-step procedure. In the first step, the equilibrium volume V(T) at given T is
obtained by employing the first-principles quasiharmonic approach. In the second step, the static
elastic constants at 0 K as a function of volume are obtained by using the energy-strain relations based
on Equations (4)–(8). In the third step, the calculated elastic constants from the second step at the
volume are estimated as those at finite temperature. The elastic constants at higher temperature are
usually measured by the resonance method. That is, the crystal system is adiabatic because elastic
waves travel faster than heat diffuses and the deformation can be viewed as a isoentropic process [31].
Thus, the isothermal elastic constants CT

ij need to be transformed to the adiabatic elastic constants CS
ij

by the following relation

CS
11 = CT

11 +
TV
CV

α2B2
T (9)

CS
12 = CT

12 +
TV
CV

α2B2
T (10)

CS
44 = CT

44 (11)

where CV is the specific heat at constant volume, and α is the volume thermal expansion coefficient
obtained by α(T) = 1

V ( dV(T)
dT ).

In this work, all calculations were performed using the VASP code [32–34], which is based on
the implementation of density functional theory with the exchange-correlation functional depicted
by the generalized gradient approximation (GGA) in the Perdew–Burke–Ernzerhof (PBE) [35].
The ion electron interaction is described by the plane-wave basis projector augmented wave (PAW)
method [36,37]. For calculation of the GSFEs of Ni3Si and Ni3Ge at different temperatures, a periodic
supercell consisting of ten atomic planes is employed. Between the periodically repeated supercell a
vacuum space with six atomic layers is added to avoid interactions between faults in two neighboring
slabs. A plane wave basis set with energy cutoff of 550 eV is used for all calculations. Brillouin zone (BZ)
integrations are performed using the Monkhorst–Pack special k-point scheme [38]. The samplings of k
meshes are 15 × 15 × 15 for lattice and elastic constants calculations and 15 × 15 × 1 for generalized
stacking fault energy calculations. The self-consistent convergence of the total energy is set to
10−6 eV/atom and the maximum force on the atom is 10−4 eV/Å.

Phonon calculations are carried out by the supercell approach within the framework of
force-constant method. The chosen supercell size strongly influences on the thermal properties.
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After a lot of testing, the adequate supercell size consisting of 3 × 3 × 3 unit cells with 108 atoms is
good enough for calculating the phonon dispersions. The forces acting on atoms for each perturbed
supercell are calculated by VASP with 5 × 5 × 5 for Ni3Si and Ni3Ge. Phonon dispersion curves
for Ni3Si and Ni3Ge along high-symmetry directions in the Brillouin zone are plotted in Figure 1.
The Helmholtz free energy curves as a function of unit cell volume with a step of 100 K from 0 to
900 K at 14 volume points are given in Figure 2. At each temperature point, the equilibrium volume V
depicted by the red triangle is obtained by minimizing the Helmholtz free energy with respect to V
from fitting the integral form of the Vinet equation of state (EOS) [28]. The specific details of calculating
the phonon and thermodynamic properties can be found in Refs. [39] and [40].
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Figure 1. Phonon spectra of (a) Ni3Si and (b) Ni3Ge along high-symmetry directions in the
Brillouin zone.
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Figure 2. The values of Helmholtz free energy as a function of unit cell volume of (a) Ni3Si and
(b) Ni3Ge at every 100 K between 0 and 900 K. The red triangles indicate the corresponding equilibrium
volumes at temperatures.

3. Results and Discussion

The calculated lattice constants and isentropic elastic constants CS
ij at T = 0 K are listed in Table 1,

along with the available experimental and theoretical values. It can be seen that the calculated values
in this work are consistent with the theoretical calculations [6,7] at 0 K and experimental values [4] at
room temperature. The temperature dependent elastic constants are important for understanding and
predicting the mechanical strength, stability and phase transitions of a material [41]. Figure 3 shows
the predicted isoentropic elastic constants of Ni3Si and Ni3Ge as a function of temperature in the
temperature range of 0–900 K. It can be seen that all the values are almost invariant at low temperatures
and decrease with increasing temperature at high temperatures. CS

11 represents the elasticity in length,
whereas CS

12 and CS
44 are related to the elasticity in shape. Whatever Ni3Si or Ni3Ge, it can be seen
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that CS
11 decreases to the largest extant within the temperature range of the study. CS

11, CS
12 and CS

44
for Ni3Si decrease by 18.3, 9.7 and 10.2 GPa, and those for Ni3Ge decrease by 18.9, 11.1 and 8.9 GPa,
respectively. The elastic constants of Ni3Si and Ni3Ge compounds at different temperatures satisfy the
mechanical stability criteria in a cubic crystal [42]: C11 − C12 >0, C11 > 0 and C44 > 0, which indicates
that they are mechanically stable in the temperature range of 0–900 K.

Table 1. Calculated lattice parameter a and elastic constants C11, C12, C44 of Ni3Si and Ni3Ge at 0 K
compared with the previous theoretical and experimental data.

Materials Ref. a C11 C12 C44

Ni3Si This work 3.553 268.5 140.4 107.5
[6] 3.517 317 162 129

Ni3Ge This work 3.629 235.3 130.6 85.2
[7] 3.584 268.9 148.4 103.4
[4] 263.0 143.0 103.0
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Figure 3. The predicted isentropic elastic constants as a function of temperature for (a) Ni3Si and
(b) Ni3Ge, respectively. The CS

11, CS
12 and CS

44 are represented by the solid, dashed and dashed-dotted
curves, respectively.



Crystals 2018, 8, 364 7 of 12

The plastic behavior of Ni3Si and Ni3Ge is mainly determined by the dislocation motion and
deformation twinning. The (001) and (111) planes are the two primary slip planes in L12 structure [43].
It is widely accepted that there are three different types of dislocation dissociations in Ni3Si and Ni3Ge.
In the (111) or (001) plane, a [101] superdislocation will collinearly dissociated into two 1/2[101]
superpartials bound by an APB as following reaction:

[101]→ 1
2
[101] + APB +

1
2
[101] (12)

where [101] is the Burgers vector of perfect superdislocations in (111) and (001) planes. Furthermore,
the [101]{111} superpartial may further dissociate into two 1/6〈112〉 Schockley partials separated by
two complex stacking faults (CSF), which is called as a metastable dissociated dissociation, namely

[101]→ 1
6
[112] + CSF +

1
6
[211] + APB +

1
6
[112] + CSF +

1
6
[211] (13)

The [101]{111} perfect superdislocations may be also divided into 1/3〈112〉{111} superpartials
with a superlattice intrinsic stacking fault (SISF), namely,

[101]→ 1
3
[211] + SISF +

1
3
[112] (14)

In this work, on the basis of the temperature dependent lattice constants a(T), all the calculated
stacking fault energies of Ni3Si and Ni3Ge as a function of temperature are given in Figures 4 and 5,
respectively. The discrete points denote the values of first principles calculations and the solid curves
represent the results obtained from polynomial fitting. All the various typical energies (γus, γCSF,
γSISF, γAPB) at different temperatures for Ni3Si and Ni3Ge are listed in Table 2, respectively. The γus

is the unstable stacking fault energy, which is an important solid state parameter that demonstrates
the resistance to dislocation nucleation in materials [44,45]. The present results (γ{111}

APB = 599 mJ/m2,

γ
{111}
SISF = 308 mJ/m2 and γ

{111}
CSF = 610 mJ/m2 for Ni3Si, γ

{111}
APB = 622 mJ/m2, γ

{111}
SISF = 306 mJ/m2 and

γ
{111}
CSF = 609 mJ/m2 for Ni3Ge) at 0 K agree with the results (γ{111}

APB = 625 mJ/m2, γ
{111}
SISF = 460 mJ/m2

and γ
{111}
CSF = 710 mJ/m2 for Ni3Si) obtained by Yoo et al. [46] through the first principles

total-energy calculations within the framework of the local-density functional theory and the
results (γ{111}

APB = 660 mJ/m2, γ
{111}
SISF = 420 mJ/m2 and γ

{111}
CSF = 620 mJ/m2 for Ni3Ge) obtained by

Mryasov et al. [26] through the ab-initio calculations. However, there are no experimental and
theoretical values of stacking fault energies at finite temperature for comparison. For Ni3Si and Ni3Ge,
it can be found that all the stacking fault energies decrease with increasing temperature, since thermal
expansion may soften the stacking fault configuration at higher temperatures. From Table 2, it is easily
found that the γus along the 〈112〉{111} is the lowest, indicating that the emission of a dislocation is
most likely at this slip system.

Generally, there are no deformation twinning in Ni3Si and Ni3Ge intermetallic compounds.
However, the deformation micro-twinning can be observed in the precipitation phases of the Ni3Si
and Ni3Ge intermetallic compounds at higher temperature. There are two types of deformation
twinning in Ni3Si and Ni3Ge. One is pseudo-twinning and the other is anti-twinning. The former
is generated by the sequential motions of identical 1/6〈211〉 Shockley’s partial dislocations and the
latter is formed by sequential shear of 1/3〈121〉 dislocations on successive (111) planes. The 1/6〈211〉
Shockley’s partial dislocation is easy to form, but the formation of the 1/3〈121〉 dislocation is very
difficult. Besides, the dislocations of the disordered solid solution matrix phase of nickel-based
superalloys are also the 1/6〈211〉 Shockley’s partial dislocations. Therefore, the generalized planar
fault energy (GPFE) curves along the 1/6〈211〉 pseudo-twinning direction at different temperatures
for Ni3Si and Ni3Ge are plotted in Figure 6. The first half of each GPFE curve is created by sliding
the upper 6–10 atomic layers relative to the lower 1–5 layers along 〈211〉 over a distance a/

√
6 and
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the stacking fault · · ·ABCABCBCABCA· · · is generated. The second half is then constructed by
displacing the upper 7–10 layers in a similar fashion and the two-layer twin · · ·ABCABCBABCAB· · ·
is generated. For each GPFE curve, the first maximum value is the unstable stacking fault energy γus1

and the second maximum value is the unstable twinning energy γut, the first minimum value is the
intrinsic stacking fault energy γsf and the second minimum value is the twin stacking fault energy 2γtsf.
Numerical values extracted from the curves’ extrema are listed in Table 2. All these values decrease
with increasing temperature.
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Figure 4. The calculated generalized stacking fault energy curves for Ni3Si (a) sliding along 〈112〉{111}
(a/61/2), (b) sliding along 〈112〉{111} (61/2a/3), (c) sliding along 〈110〉{111} (21/2a) and (d) sliding
along 〈110〉{010} (21/2a). The discrete points represent the results from first-principles calculations
and the curves denote the results from polynomial fitting.

Van Swygenhoven et al. [14] proposed that the difference δut
us ≡ γut − γus can estimate the ease

with which an fcc material deforms by twinning relative to deforming by dislocation-mediated slip.
Tadmor and Bernstein [15] proposed a more thorough treatment of the balance between dislocation
mediated slip and deformation twinning, that is

τa =
[
1.136− 0.151

γsf
γus

]√γus

γut
(15)

where γsf and γus are replaced by γCSF and γus1 for the pseudo-twinning in Ni3Si and Ni3Ge
intermetallic compounds, respectively. τa is called as the twinnability parameter of a crystal. τa > 1
indicates that the main deformation mechanism is the deformation twinning, τa < 1 shows that
the main deformation mechanism is the dislocation slip and τa = 1 demonstrates that the main
deformation mechanism is the full dislocation movement. Besides, a larger τa indicates a greater
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propensity for twinning. All the values of δut
us and τa at different temperatures for Ni3Si and Ni3Ge are

listed in Table 2. Obviously, both δut
us and τa decrease with increasing temperature. Whatever Ni3Si or

Ni3Ge, the values of δut
us are always larger than 0 in the temperature range of 0–900 K. This phenomenon

demonstrates that the main deformation mechanism does not change with increasing temperature,
but the twinnability of Ni3Si and Ni3Ge increase with increasing temperature. From Table 2,
it can be seen that the twinnability parameters of Ni3Si (τa = 0.550) and Ni3Ge (τa = 0.500) at 0 K are
much smaller than those of the fcc pure metals Al (τa = 0.930), Cu (τa = 1.001) and Ag (τa = 1.042) [15].
However, the twinnability of Ni3Si and Ni3Ge are similar to that of Ni3Al. Besides, the twinnability
parameters of Ni3Si and Ni3Ge are smaller than 1 in the whole temperature and their twinnability
parameters decrease with increasing temperature, which indicates that it is difficult to form the
pseudo-twinning through the direct shearing and the twinnability of Ni3Si and Ni3Ge decrease with
increasing temperature. That is to say, the twinnability of Ni3Si and Ni3Ge with temperature predicted
by τa and δut

us are different. The twinnability criterion τa is dependent on the γut and γus in addition to
γsf, but δut

us is based on the γut and γus. Therefore, τa can more accurately describe the twinnability of a
material in comparison with δut

us. Furthermore, the twinnability of Ni3Si is greater than that of Ni3Ge
at different temperatures according to the two criteria τa and δut

us. This may be resulted from that the
difference between γut and γus of Ni3Ge is greater than that of Ni3Si.
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Figure 5. The calculated generalized stacking fault energy curves for Ni3Ge (a) sliding along 〈112〉{111}
(a/61/2), (b) sliding along 〈112〉{111} (61/2a/3), (c) sliding along 〈110〉{111} (21/2a) and (d) sliding
along 〈110〉{010} (21/2a). The discrete points represent the results from first-principles calculations
and the curves denote the results from polynomial fitting.
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Figure 6. Temperature effects on the generalized planar fault energy curves of (a) Ni3Si and (b) Ni3Ge,
respectively. The discrete points denote the values from first-principles calculations and the curves
represent the results from polynomial fitting.

Table 2. Calculated various fault energies (J/m2), relative barrier difference δut
us ≡ γut − γus (J/m2) and

twinnability τa at different temperatures of Ni3Si and Ni3Ge.

Ni3Si T (K) 0 300 600 900

γ
〈112〉{111}
us1 0.367 0.366 0.359 0.346

γ
〈112〉{111}
us2 0.990 0.988 0.973 0.948

γ
〈110〉{111}
us 1.193 1.189 1.164 1.122

γ
〈112〉{111}
CSF 0.610 0.609 0.602 0.588

γ
〈112〉{111}
SISF 0.308 0.307 0.304 0.298

γ
〈112〉{111}
ut 0.951 0.949 0.935 0.911

2γ
〈112〉{111}
tsf 0.944 0.942 0.929 0.908

γ
〈110〉{010}
us 1.984 1.975 1.925 1.840
γ
{111}
APB 0.599 0.598 0.592 0.580

γ
{010}
APB 0.477 0.476 0.471 0.463
δut

us 0.584 0.583 0.576 0.565
τ 0.550 0.549 0.547 0.541

Ni3Ge T (K) 0 300 600 900

γ
〈112〉{111}
us1 0.321 0.320 0.314 0.301

γ
〈112〉{111}
us2 0.953 0.951 0.936 0.908

γ
〈110〉{111}
us 1.047 1.044 1.021 0.980

γ
〈112〉{111}
CSF 0.609 0.608 0.600 0.584

γ
〈112〉{111}
SISF 0.306 0.305 0.303 0.298

γ
〈112〉{111}
ut 0.925 0.923 0.908 0.882

2γ
〈112〉{111}
tsf 0.947 0.944 0.931 0.906

γ
〈110〉{010}
us 1.667 1.661 1.617 1.537
γ
{111}
APB 0.622 0.620 0.613 0.598

γ
{010}
APB 0.466 0.465 0.462 0.456
δut

us 0.604 0.603 0.594 0.581
τ 0.500 0.499 0.498 0.492

4. Conclusions

In this work, temperature effects on the elastic constants, generalized stacking fault energies and
generalized planar fault energies of Ni3Si and Ni3Ge are investigated by the first principles calculations
combined with a quasiharmonic approach. It is found that the elastic constants, APB energies,
CSF energies, SISF energies and twinning energy decrease with increasing temperature. Besides,
the twinnability of Ni3Si and Ni3Ge with temperature have been investigated through the two criteria
τa and δut

us, but the two criteria give different results. τa is dependent on the γut and γus in addition to
γsf, but δut

us is based on γut and γus, that is to say, τa can more accurately give the twinnability of a
material. Furthermore, the twinnability of Ni3Si is greater than that of Ni3Ge at different temperatures.
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