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Abstract: The effect of different atomic substitutions at Mn sites on the magnetic and magnetocaloric
properties in Ni50Mn35Co2Sn13 alloy has been studied in detail. The substitution of Ni or Co for Mn
atoms might lower the Mn content at Sn sites, which would reduce the d-d hybridization between Ni
3d eg states and the 3d states of excess Mn atoms at Sn sites, thus leading to the decrease of martensitic
transformation temperature TM in Ni51Mn34Co2Sn13 and Ni50Mn34Co3Sn13 alloys. On the other
hand, the substitution of Sn for Mn atoms in Ni50Mn34Co2Sn14 would enhance the p-d covalent
hybridization between the main group element (Sn) and the transition metal element (Mn or Ni) due
to the increase of Sn content, thus also reducing the TM by stabilizing the parent phase. Due to the
reduction of TM, a magnetostructural martensitic transition from FM austenite to weak-magnetic
martensite is realized in Ni51Mn34Co2Sn13 and Ni50Mn34Co2Sn14, resulting in a large magnetocaloric
effect around room temperature. For a low field change of 3 T, the maximum ∆SM reaches as high
as 30.9 J/kg K for Ni50Mn34Co2Sn14. A linear dependence of ∆SM upon µ0H has been found in
Ni50Mn34Co2Sn14, and the origin of this linear relationship has been discussed by numerical analysis
of Maxwell’s relation.
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1. Introduction

Over the past decades, Ni-Mn-Z (Z = Ga, In, Sn, and Sb) Heusler alloys have attracted significant
attention due to its noteworthy multifunction properties, such as magnetic shape memory effect [1],
magnetoresistance [2,3], exchange bias (EB) [4], and magnetocaloric effect (MCE) [5,6]. As one of
the typical Ni-Mn-Z Heusler alloys, Ni-Mn-Sn alloy undergoes a martensitic transformation from
ferromagnetic (FM) austenite to weak-magnetic martensite, which is accompanied with an abrupt
change of magnetization ∆M [6]. This large ∆M across martensitic transformation results in a high
difference of Zeeman energy Ezeeman = µ0H∆M, which drives a metamagnetic transition from the
weak-magnetic martensite to FM austenite, thus leading to a large MCE [5,7]. Therefore, it is desirable
to enhance the ∆M during martensitic transformation in order to obtain a large MCE.
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It has been reported that the stoichiometric Ni2MnSn alloy does not exhibit martensitic
transformation while some Mn-rich Ni-Mn-Sn alloys show martensitic transformation from FM
austenite to weak-magnetic martensite [8–10]. However, the excess Mn atoms would occupy the vacant
Sn sites (4b positions), and are coupled antiferromagnetically (AFM) to the surrounding Mn atoms on
the regular Mn site (4a positions) [11,12]. This fact suggests that excess Mn would lead to the weakness
of ∆M during the martensitic transformation. The introduction of Co can act as a “FM activator” to
induce the Mn moments to align in an FM order and enhance the magnetization of austenite phase,
thus causing a larger ∆M as well as a large MCE [12,13]. Similar results have also been reported in
other Heusler alloys [14,15], e.g., the substitution of Co for Ni modifies the magnetic structure of the
austenite into FM as the preferred state and reduces the martensitic transformation temperature [15].
Furthermore, the martensitic transformation temperature (TM) increases by substituting Mn with
Co atoms, which is probably attributed to the rule of valence electron concentration [16]. Recently
however, some studies have shown that the TM does not increase monotonously by increasing the
Co substitution for Mn atoms, suggesting that there is a disagreement of the rule of valence electron
concentration [12,17]. The substitution of Mn by Ni atoms in Ni-Mn-Sn alloys increases the TM
remarkably while the MCE still remains nearly constant [18,19]. In addition, the substitution of Mn by
Sn causes a reduction of TM while the MCE remains nearly unchanged [20,21]. Consequently, different
atomic substitutions at Mn sites have different effects on the martensitic transformation and the MCE.
Unfortunately, to the best of our knowledge, a systematical study on different atomic substitutions at
Mn sites in the Ni-Mn-Co-Sn system is still lacking. In the present work, we systematically study the
effect of substituting Ni, Co, and Sn for Mn atoms for the magnetic and magnetocaloric properties in
Ni50Mn35Co2Sn13 alloy.

2. Experimental

The Ni50Mn35Co2Sn13 (parent alloy), Ni51Mn34Co2Sn13 (Ni for Mn), Ni50Mn34Co3Sn13 (Co for
Mn), and Ni50Mn34Co2Sn14 (Sn for Mn) alloys were prepared by arc melting appropriate proportion of
constituent components with a purity better than 99.9 wt.% under an argon atmosphere. The as-cast
samples were wrapped by tantalum foil and annealed in a high-vacuum quartz tube at 1173 K for
96 h, followed by quenching in ice water. It is noted that the effect of different heat treatments on
the magnetic and magnetocaloric properties has been studied intensively in NiMn-based Heusler
alloys [22–25]. It is revealed that the MCE can be largely improved by optimizing the heat treatment,
e.g., an optimized annealing method can reproduce the excellent functional properties of Ni-Co-Mn-Al
films in ribbons [25]. Here, we chose the same heat treatment from Reference [17], which also studied
Ni50Mn34Co2Sn14 and presented giant MCE in this alloy. The final composition of the samples was
determined by Energy Dispersive Spectrometry (EDS) using a JEOL-6060 Scanning Electron Microscope
(SEM) from Akishima, Tokyo, Japan, and is shown in Table 1. It can be seen that the final composition
is quite close to the nominal composition.

Table 1. Comparison of nominal composition and final composition. The deviation is shown in the bracket.

Nominal Composition Final Composition

Ni50Mn35Co2Sn13 Ni49.9(8)Mn35.1(4)Co1.9(1)Sn13.1(4)
Ni51Mn34Co2Sn13 Ni50.9(11)Mn34.1(7)Co1.8(1)Sn13.3(9)
Ni50Mn34Co3Sn13 Ni50.1(9)Mn33.9(10)Co2.9(8)Sn13.2(7)
Ni50Mn34Co2Sn14 Ni50.0(10)Mn34.0(8)Co1.9(3)Sn14.1(7)

The phase and crystal structure were investigated by using Rigaku D/max-2400 diffractometer
with Cu Kα radiation from Tokyo, Japan. The differential scanning calorimetry (DSC) curves were
measured using DSC 6220 with heating and cooling rates of 10 K/min. Magnetizations were measured
as functions of temperature and the magnetic field using a cryogen-free cryocooler-based physical
property measurement system (model VersaLab) from Quantum Design Inc., San Diego, CA, USA.
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In order to avoid the spurious magnetic entropy change (∆SM), induced by the residual effect generated
in standard process, the magnetization isotherms curves were measured in a loop process, in which the
sample is cooled down to the weak-magnetic martensite and then warmed up to the target temperature
before starting each M-H measurement. [26,27]. In this way, the phase transition is always crossed in
the same sense. The M-µ0H curves were corrected by taking into account the demagnetization effect,
i.e., Hint = Hext − Nd M.

3. Results and Discussion

Figure 1 shows the powder X-ray diffraction (XRD) patterns at an ambient temperature for
all the alloys. The Ni50Mn35Co2Sn13 parent alloy crystallizes into the 10 M modified orthorhombic
martensitic structure at room temperature. In comparison, the XRD patterns reveal the matrix of
austenitic phase with the Heusler L21 cubic structure (Fm3m space group) for the other substituted
alloys. This result indicates that the TM is above room temperature for the Ni50Mn35Co2Sn13 parent
alloy while it is reduced to below room temperature by the substitution of Mn. In addition, a small peak
(denoted by “r”) is observed at the (2 2 0) Bragg peak of martensitic structure for Ni51Mn34Co2Sn13

and Ni50Mn34Co2Sn14, corresponding to the residual martensitic phase. Thus, it suggests that the TM
of these two alloys is close to room temperature [28].
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Figure 1. The powder X-ray diffraction (XRD) patterns at ambient temperature for Ni-Mn-Co-Sn alloys.

The DSC heat flow curves of Ni-Mn-Co-Sn alloys upon heating and cooling with a ramp rate of
10 K/min are displayed in Figure 2a. Well-defined exothermic and endothermic peaks, with distinct
thermal hysteresis, indicate the first-order martensitic and reverse martensitic transformations upon
cooling and heating, respectively [29]. It is clearly seen that the TM of Ni50Mn35Co2Sn13 parent alloy
is above room temperature, the TM of Ni51Mn34Co2Sn13 and Ni50Mn34Co2Sn14 is just below room
temperature, and the TM of Ni50Mn34Co3Sn13 is much lower than room temperature, respectively.
This result is consistent with our analysis based on the XRD measurements. Based on the DSC curves,
the entropy change (∆S) associated to the structural transformation was calculated by the following
equation:

∆S =
∫ Tf

Ts

[(
dQ
dt

)(
dT
dt

)−1 1
T

]
dT (1)

where dQ
dt is the power of heat flow, dT

dt is the heating or cooling rate, and Ts and Tf are the starting and
finishing temperatures of the structural transformation, respectively. Table 2 lists the ∆S values at the
structural transition for Ni-Mn-Co-Sn alloys.



Crystals 2018, 8, 329 4 of 12

Table 2. The ∆S values at the structural transition obtained from DSC curves for Ni-Mn-Co-Sn alloys.

Alloys ∆S (J/kg K)

Ni50Mn35Co2Sn13 42.3
Ni51Mn34Co2Sn13 28.2
Ni50Mn34Co3Sn13 14.9
Ni50Mn34Co2Sn14 31.6

The Figure 2b shows the martensitic transformation temperature (TM) and reverse martensitic
transformation temperature (TA) as a function of different atomic substitution and valence electron
concentration e/a. The number of valence electrons for Ni, Mn, Co, and Sn atoms are 10 (3d84s2),
seven (3d54s2), nine (3d74s2), and four (5s25p2), respectively. The e/a value of Ni-Mn-Co-Sn alloys is
calculated by the following equation [30]:

e/a =
10 × Niat.% + 7 × Mnat.% + 9 × Coat.% + 4 × Snat.%

Niat.% + Mnat.% + Coat.% + Snat.%
(2)

Generally, the TM of NiMn-based Heusler alloys is related to the e/a and would increase with
the increase of e/a [11,29,31]. However, it is found from Figure 2b that the structural transformation
temperature does not monotonously increase with the enhancement of e/a. This non-monotonical
dependence of TM on e/a has also been reported in other NiMn-based Heusler alloys [32–34]. In Heusler
alloys X2YZ, there are four Wyckoff-positions, namely A (0, 0, 0), B (0.25, 0.25, 0.25), C (0.5, 0.5, 0.5),
and D (0.75, 0.75, 0.75), respectively. Generally, the site preference of X and Y transition metal atoms is
dependent upon the number of their valence electrons. The atom with more valence electrons prefers
the A and C positions, while the atom with fewer valence electrons tends to occupy the B position,
and the main group element Z always enters into the D site [35–37]. According to this rule, in the
present case, Ni atoms with more valence electrons would occupy the A and C positions, while Mn
atoms with the relatively fewest valence electrons would enter into the B position. Besides this, Sn,
Co, and excess Mn atoms occupy the D site. This speculation about the atomic occupation needs to
be confirmed by further experiments. Based on the study of the correlation between the electronic
structure and martensitic phase transition of Ni-Mn-Sn by hard X-ray photoelectron spectroscopy
and ab initio calculation, the d-d hybridization between Ni 3d eg states and the 3d states of excess Mn
atoms at Sn sites is believed to be the main driving force for the martensitic transformation [38,39].
Once the d-d hybridization between Ni and Mn atoms is established, any change in the Ni or Mn
content would tend to weaken the hybridization and reduce TM [38,39]. Here, the substitution of Ni or
Co for Mn atoms might lower the Mn content at Sn sites, thus reducing the d-d hybridization between
Ni 3d eg states and the 3d states of excess Mn atoms at Sn sites—resulting in the decrease of TM in
Ni51Mn34Co2Sn13 and Ni50Mn34Co3Sn13 alloys. On the other hand, the p-d covalent hybridization
between the main group element (Sn) and the transition metal element (Mn or Ni) also plays an
important role in stabilizing the parent phase [40,41], thus leading to the reduction of TM by increasing
the content of p-group elements [9]. In Ni50Mn34Co2Sn14, the increase of Sn content would enhance
the p-d covalent hybridization and therefore reduce the TM by stabilizing the parent phase.

Figure 3a–d shows the temperature dependence of zero-field-cooling (ZFC) and field-cooling (FC)
magnetization for all the alloys at 0.05 T and 3 T, respectively. For the Ni50Mn35Co2Sn13 parent alloy
with the highest TM (Figure 3a), the martensitic transformation nearly coincides with the paramagnetic
(PM) to ferromagnetic (FM) magnetic transition of austenite, causing a small transition peak under
0.05 T. With the application of a high field of 3 T, the FM austenite can be induced by metamagnetic
transition from both PM austenite and weak-magnetic martensite, which results in the decrease of
TM and the increase of the magnetic transition temperature of austenite (TA

C ), thus causing the more
prominent transition peak [42]. Additionally, the Ni50Mn35Co2Sn13 parent alloy experiences a magnetic
transition of martensite from a ferromagnetic to a weak-magnetic state at the = 190 K. With the TM
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decreasing to below the TA
C , the Ni51Mn34Co2Sn13 and Ni50Mn34Co2Sn14 undergo a magnetostructural

martensitic transition from FM austenite to weak-magnetic martensite with distinct thermal hysteresis
(Figure 3b,d). Moreover, a large ∆M of 35 Am2/kg can be obtained in Ni50Mn34Co2Sn14 under 3 T
through the magnetostructural transformation, which results in a large Zeeman energy difference
between FM austenite and weak-magnetic martensite and implies a possibly high MCE according to
the Clausius-Clapeyron relation ∆S = (∆M/∆T)× ∆µ0H [1]. For Ni50Mn34Co3Sn13 alloy, as shown
in Figure 3c, the TM further reduces to below the TM

C , and thus a martensitic transformation from FM
austenite to FM martensite is obtained.

The magnetization isotherms of Ni-Mn-Co-Sn alloys with increasing temperature upon field
ascending and descending modes are presented in Figure 4a–d. The M-µ0H curves of Ni50Mn35Co2Sn13

parent alloy increases almost linearly with increasing magnetic field, corresponding to the typical
characteristic of PM/weak-magnetic state (Figure 4a). Meanwhile, M-µ0H curves around TM show
a slight curvature with small magnetic hysteresis. This fact is attributed to the field-induced reverse
martensitic transformation from weak-magnetic martensite to FM austenite, consistent with the
result of thermomagnetic measurements in Figure 3a. Large magnetic hysteresis can be seen in the
other substituted alloys, revealing the first-order martensitic transformation. As discussed above,
the Ni50Mn34Co3Sn13 alloy experiences a martensitic transformation in an FM state, which can be
confirmed by the strong curvatures of M-µ0H curves around the transition temperature TM (Figure 4c).
On the other hand, the Ni51Mn34Co2Sn13 and Ni50Mn34Co2Sn14 undergo a magnetostructural
martensitic transition from FM austenite to weak-magnetic martensite. Therefore, a dramatic
field-induced metamagnetic transition from weak-magnetic martensite to FM austenite with more
distinct magnetic hysteresis is observed in Figure 4b,d. For example, the maximum hysteresis loss
of Ni50Mn34Co2Sn14 reaches as high as 66 J/kg. This field-induced metamagnetic transition with
remarkable hysteresis is attributed to the large Zeeman energy difference between the FM austenite
and weak-magnetic martensite [43]. Meanwhile, it has to be pointed out that this large hysteresis
loss during magnetization and demagnetization would lower the effective refrigerant capacity of the
magnetic refrigerant, which is unfavorable for practical applications. Fortunately, the large hysteresis
in Heusler alloys can be reduced effectively by fine-tuning the lattice parameters or using external bias
stimuli such as hydrostatic pressure [5].

Based on the magnetization isotherms, the ∆SM value can be calculated by using Maxwell
relation [44]:

∆SM = µ0

∫ H

0
(∂M/∂T)

H
dH (3)

The validity of the Maxwell relation for first-order magnetic transition has been disputed in the
past years since a giant spurious spike may be obtained by using the Maxwell relation for the first-order
magnetic transition [45,46]. However, recently Amaral et al. [47,48] found that the breakdown of the
Maxwell relation should not be interpreted as a consequence of the first-order magnetic transition, but a
failure caused by not considering the non-equilibrium state of coexisting phases and the concomitant
history dependence of the state. Furthermore, Caron et al. [26,49] pointed out that the spurious ∆SM
spike can be avoided by measuring the isothermal magnetization in a loop process, and so the Maxwell
relation is still feasible for the first-order magnetic transition. Consequently, the Maxwell relation is
applicable in the present work since the magnetization isotherms were measured in a loop process.
Figure 5a shows the temperature dependence of ∆SM for Ni-Mn-Co-Sn alloys under different magnetic
field changes of 1 T, 2 T, and 3 T, respectively. The Ni50Mn35Co2Sn13 parent alloy shows a small ∆SM
value of 2.0 J/kg K for a field change of 3 T. On the other hand, large ∆SM values can be obtained
in the other substituted alloys, especially in the ones with magnetostructural martensitic transition.
Ni50Mn34Co2Sn14 exhibits the highest ∆SM value in this series of alloys, e.g., the maximum ∆SM is
30.9 J/kg K for a field change of 3 T. In comparison with the ∆S values at the structural transition listed
in Table 2, it is seen that the ∆SM (30.9 J/kg K) under a field change of 3 T for Ni50Mn34Co2Sn14 is quite
close the total entropy change ∆S of 31.6 J/kg K at the transition, suggesting that the 3 T is nearly the
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saturation magnetic field which leads to the completion of phase transformation from weak-magnetic
martensite to FM austenite. Besides, the ∆SM values for the rest of alloys are much lower than the ∆S
values obtained from the calorimetric curves, indicating that the phase transformation in these alloys
needs to be completed by a higher magnetic field.
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Figure 5. (a) Temperature dependence of ∆SM for Ni-Mn-Co-Sn alloys under different magnetic field
changes of 1 T, 2 T, and 3 T, respectively. (b) The maximum ∆SM as a function of µ0H and the fitting
line to ∆SM-µ0H curve for Ni50Mn34Co2Sn14 alloy. The inset shows the ∆SM-µ0H curve and the fitting
line at low fields.

In order to investigate the magnetic field dependence of ∆SM, the maximum ∆SM as a function
of µ0H for the Ni50Mn34Co2Sn14 alloy is plotted as an example in Figure 5b. It is noted that the ∆SM
follows a linear relationship with the variation of the magnetic field when µ0H > 0.2 T:

∆SM = ∆S0 + κ µ0H (4)
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where ∆S0 is the intercept value when the field is zero, and κ is the slope factor which describes how
strong the ∆SM depends on µ0H. The adjusted R-squared factor is 0.99922, indicating the excellent linear
fitting. Similar linear relationships between ∆SM and µ0H have also been reported in other studies [50,51].
However, a slight deviation can be found in the low field range (inset of Figure 5b). The origin of this
linear relationship and the deviation at low fields will be discussed in the following section.

Since the magnetization isotherms were measured at discrete temperature intervals, the Maxwell
relation can be numerically approximated to [52]:

∆SM( T1+T2
2 , H) = µ0

T2−T1

[∫ H
0 M(T2, H)dH −

∫ H
0 M(T1, H)dH

]
= µ0∑

i

M(T2,Hi)−M(T1,Hi)
T2−T1

∆Hi
(5)

where M(T1, Hi) and M(T2, Hi) are the magnetization values measured at temperatures T1 and T2

at a magnetic field Hi, respectively. Taking 278 K and 280 K as T1 and T2 for Ni50Mn34Co2Sn14 alloy,
M(T2,Hi)−M(T1,Hi)

T2−T1
= ∆M

2 , where ∆M is the difference between M278 K and M280K at Hi upon field
decreasing mode. Figure 6 shows the ∆M/2 between 278 K and 280 K as a function of the magnetic
field for the Ni50Mn34Co2Sn14 alloy. According to Equation (5), the ∆SM value at 279 K is the integral
area under the ∆M/2 vs. µ0H curve. It is found that the ∆M/2 increases sharply at low fields, which
is due to the dramatic change of magnetization as shown in Figure 4d. Then, the ∆M/2 reaches a
maximum value and starts to decrease. The decrease of ∆M/2 becomes slow after the break point
∆Mbreak/2. Thus, the ∆SM can be divided into two parts by ∆Mbreak/2. The first part ∆SM1 is the integral
area below the critical field µ0H∆Mbreak/2 , and it is a constant ∆SM1max when the field is higher than
µ0H∆Mbreak/2 .
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When the field is higher than the critical field µ0H∆Mbreak/2 of ∆Mbreak/2, ∆SM = ∆SM1max + ∆SM2,
where ∆SM1max is a constant as the integral area below ∆Mbreak/2 while ∆SM2 is a variable as the
integral area between the µ0H∆Mbreak/2 , and the final field is µ0H. From Figure 6, the ∆SM2 can be
approximately considered to be a trapezoid, and so it could be estimated from

∆SM2(T, H) = 1
2 × (∆Mbreak/2 + ∆M/2)× (µ0H − µ0H∆Mbreak/2)

= ∆Mave/2 × (µ0H − µ0H∆Mbreak/2)

=
(
−∆Mave/2 × µ0H∆Mbreak/2) + (∆Mave/2 × µ0H)

(6)
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where ∆Mave/2 is the average value of (∆Mbreak/2 + ∆M/2). Based on Equation (6), when field is
higher than µ0H∆Mbreak/2 , the total ∆SM can be obtained from

∆SM = ∆SM1max + ∆SM2

=
(

∆SM1max − ∆Mave/2 × µ0H∆Mbreak/2) + (∆Mave/2 × µ0H)
(7)

It is seen from Figure 6 that the ∆Mave/2 is nearly constant when µ0H > µ0H∆Mbreak/2 . Therefore,
by comparing Equations (4) and (7), the first bracket of Equation (7) can be considered as -∆S0

in Equation (4), and the second bracket of Equation (7) equates with the κ µ0H in Equation (4).
Consequently, the above numerical analysis and discussion reveals the origin of the linear relationship
between ∆SM and µ0H at high fields in Ni50Mn34Co2Sn14 with first-order magnetostructural transition.
On the other hand, this approximation does not hold when the field is lower than µ0H∆Mbreak/2 ,
thus leading to the deviation of the linear relationship at low fields. In addition to the ∆SM peak
value, it is also interesting to find that other ∆SM values at different temperatures also follow the linear
relation at high fields by performing the same numerical analysis. It has to be pointed out that the
∆SM would not further increase by increasing µ0H when it reaches saturation. Therefore, this linear
relationship between ∆SM and µ0H only exists below the saturation magnetic field.

4. Conclusions

In the present Ni-Mn-Co-Sn system, the martensitic transformation temperature TM reduces
largely in the substituted alloys. The decrease of TM is likely attributed to the reduction of d-d
hybridization by substituting Mn with Ni or Co as well as the enhancement of p-d covalent
hybridization by substituting Mn with Sn. The Ni51Mn34Co2Sn13 and Ni50Mn34Co2Sn14 exhibit a
magnetostructural martensitic transition from FM austenite to weak-magnetic martensite, which
results in a giant MCE around room temperature. Moreover, a linear relationship between ∆SM and
µ0H is found in Ni50Mn34Co2Sn14, and the origin of this linear relationship is analyzed numerically
based on the Maxwell relation.
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