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Abstract: When ultrasound is applied to a solution for crystallization, it can affect the properties
of the crystalline products significantly. Ultrasonic irradiation decreases the induction time and
metastable zone and increases the nucleation rate. Due to these effects, it generally yields smaller
crystals with a narrower size distribution when compared with conventional crystallizations. Also,
ultrasonic irradiation can cause fragmentation of existing crystals which is caused by crystal
collisions or sonofragmentation. The effect of various experimental parameters and empirical
products of sonocrystallization have been reported, but the mechanisms of sonocrystallization
and sonofragmentation have not been confirmed clearly. In this review, we build upon previous
studies and highlight the effects of ultrasound on the crystallization of organic molecules. In addition,
recent work on sonofragmentation of molecular and ionic crystals is discussed.

Keywords: ultrasound; sonocrystallization; sonofragmentation; sonochemistry; acoustic cavitation;
crystal nucleation

1. Introduction

Ultrasound is an oscillating sound pressure wave over a frequency range of 15 kHz to 10 MHz [1].
When ultrasonic waves pass through a liquid with sufficient amplitude, the negative pressure
exceeds the local tensile strength of the liquid and bubbles are created [2–4]. Bubbles are typically
generated near pre-existing impurities (e.g., gas-filled crevices in dust motes), which oscillate and grow
during cycles of compression and expansion. When the growing bubbles reach a specific resonant
size, they efficiently absorb energy from ultrasound waves during a single compression-expansion
cycle [1,5,6]. The resonant size depends on the frequency of the irradiated ultrasound, and is
approximately 170 µm for a 20 kHz ultrasound [1]. At the resonant size, bubbles grow rapidly
during a single cycle of ultrasound waves due to efficient energy absorption. Since bubbles cannot
be sustained without absorption of energy, they implosively collapse after reaching the resonant size.
This process is referred to as acoustic cavitation.

There are both chemical and physical effects of acoustic cavitation. Ultrasonic wavelengths in
liquid vary from approximately 1 mm to 10 cm, which is much larger than the molecular size scale.
Thus, the chemical and physical effects of ultrasound do not occur by direct interactions between
ultrasound and chemical species, but by the process of acoustic cavitation [2,4,7]. The collapse of
bubbles produces hot spots, which have intense local temperatures (~5000 K) and pressures (~1000 atm)
and a rapid heating and cooling rate (>1010 K·s−1) [8–11], and shockwaves. Shockwaves have velocities
as high as ~4000 m/s and high-pressure amplitudes of 106·kPa [12].

The physical effects of ultrasound are more diverse in heterogeneous systems (solid-liquid
systems) than in homogeneous systems. When a bubble collapses near a significantly larger surface
or particle, the bubble no longer collapses spherically and a high-speed liquid stream with a velocity
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>100 m/s is generated (i.e., a microjet) [13,14]. The liquid moves toward the surface of the solid
material, which deforms it or changes its chemical composition [1,15]. Additionally, shockwaves
generated from acoustic cavitation cause high-velocity collisions between micron-sized solid particles
(i.e., interparticle collisions) [16–18]. Shockwaves can also directly interact with particles and induce
breakage (i.e., sonofragmentation) [19].

Sonocrystallization is crystallization induced by ultrasound, and was first reported by Richards
and Loomis in 1927 [20]. In that report, the author investigated the ultrasonic effects of crystallization,
among other diverse physical and chemical influences. From the 1950s to the 1970s, sonocrystallization
was actively studied in the former Soviet Union [21–24]. Since that time, sonocrystallization of
various materials and the modification of diverse experimental parameters have been reported [25–27].
The industrial use of sonocrystallization increased during the 1980s due to advances in ultrasonic
equipment, and, currently, sonocrystallization is common for generating crystals in the pharmaceutical
and fine chemicals sectors [28–30]. Despite considerable research, a fundamental understanding of
sonocrystallization, especially the mechanism of action, remains incomplete.

2. Effect of Ultrasound on Crystallization

2.1. Induction Time and Metastable Zone Width

Induction time (tind) is the elapsed time between supersaturation and the appearance of crystals
(Figure 1) [31]. It is composed of three parts, including the relaxation time (tr), stable nucleus time
(tn), and nucleus growing time (tg). The relaxation time is the time required for the crystallized
solution to achieve a quasi-steady-state distribution of molecular clusters, while the stable nucleus
time and nucleus growing time are the times required for the formation of a stable nucleus and
its growth to a detectable size, respectively. In some systems, especially those with a low degree
of supersaturation, massive nucleation occurs following a latent period (tlp). The concentration of
the crystallized solution remains relatively constant during the induction time and latent period.
Following the latent period, widespread crystal growth occurs and the concentration of the solution
changes rapidly and significantly. Induction time is measured by visual observation or analytical
techniques that utilize conduction measurements or laser light scattering. There are several factors that
affect induction time measurements greatly such as agitation, impurities, solution viscosity, level of
supersaturation, etc.

Crystals 2018, 8, x FOR PEER REVIEW  2 of 20 

 

>100 m/s is generated (i.e., a microjet) [13,14]. The liquid moves toward the surface of the solid 
material, which deforms it or changes its chemical composition [1,15]. Additionally, shockwaves 
generated from acoustic cavitation cause high-velocity collisions between micron-sized solid 
particles (i.e., interparticle collisions) [16–18]. Shockwaves can also directly interact with particles 
and induce breakage (i.e., sonofragmentation) [19]. 

Sonocrystallization is crystallization induced by ultrasound, and was first reported by Richards 
and Loomis in 1927 [20]. In that report, the author investigated the ultrasonic effects of 
crystallization, among other diverse physical and chemical influences. From the 1950s to the 1970s, 
sonocrystallization was actively studied in the former Soviet Union [21–24]. Since that time, 
sonocrystallization of various materials and the modification of diverse experimental parameters 
have been reported [25–27]. The industrial use of sonocrystallization increased during the 1980s due 
to advances in ultrasonic equipment, and, currently, sonocrystallization is common for generating 
crystals in the pharmaceutical and fine chemicals sectors [28–30]. Despite considerable research, a 
fundamental understanding of sonocrystallization, especially the mechanism of action, remains 
incomplete. 

2. Effect of Ultrasound on Crystallization 

2.1. Induction Time and Metastable Zone Width 

Induction time (tind) is the elapsed time between supersaturation and the appearance of crystals 
(Figure 1) [31]. It is composed of three parts, including the relaxation time (tr), stable nucleus time 
(tn), and nucleus growing time (tg). The relaxation time is the time required for the crystallized 
solution to achieve a quasi-steady-state distribution of molecular clusters, while the stable nucleus 
time and nucleus growing time are the times required for the formation of a stable nucleus and its 
growth to a detectable size, respectively. In some systems, especially those with a low degree of 
supersaturation, massive nucleation occurs following a latent period (tlp). The concentration of the 
crystallized solution remains relatively constant during the induction time and latent period. 
Following the latent period, widespread crystal growth occurs and the concentration of the solution 
changes rapidly and significantly. Induction time is measured by visual observation or analytical 
techniques that utilize conduction measurements or laser light scattering. There are several factors 
that affect induction time measurements greatly such as agitation, impurities, solution viscosity, 
level of supersaturation, etc. 
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saturation, tn = nucleation time, tind = induction time, and tlp = latent period [31]. 

Figure 1. A desupersaturation curve. There is lag time between the points of supersaturation (A)
and nucleation (B’). Initial nuclei grow until they are a detectable size (B). The concentration of the
solution remains relatively constant for some time (C) and then it changes dramatically (D) due to
rapid crystal growth. Finally, it reaches the equilibrium concentration (E). C* = equilibrium saturation,
tn = nucleation time, tind = induction time, and tlp = latent period [31].
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Ultrasonic irradiation reduces induction time due to the improved micro-scale mixing and
turbulence caused by acoustic cavitation. When the induction time decreases, the rate of appearance
of crystals accelerates. Thus, the number of produced crystals increases, while their sizes decrease.

The effect of ultrasound on the induction time for crystallization has previously been
reported [32–34]. Z. Guo et al. studied the effects of ultrasound on induction time using saturated
roxithromycin solutions [33]. In this study, saturated roxithromycin solutions were mixed with water
(antisolvent) under ultrasonic irradiation and the induction time was assessed using a He–Ne laser
recorder. Notably, induction time was reduced when sonocrystallization was performed (Figure 2).
Additionally, the difference in induction time between sonocrystallization and stirring crystallization
increased as the supersaturated ratio of the solution decreased.
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Figure 2. Influence of ultrasound on the induction time (tind) of roxithromycin solutions with different
supersaturated ratios (S) in the presence (N) and absence (�) of ultrasound [33]. Ultrasonic frequency
was unspecified, but an ultrasonic horn was used, so one must assume ~20 kHz.

Those authors also assessed the induction time of BaSO4 under ultrasonic irradiation and found
that the induction time of sonocrystallization was shorter than that for stirring crystallization [35].
Furthermore, it was confirmed that sonication with high-amplitude ultrasound waves decreased
induction time more than sonication with low-amplitude waves (Figure 3).

Crystals 2018, 8, x FOR PEER REVIEW  3 of 20 

 

Ultrasonic irradiation reduces induction time due to the improved micro-scale mixing and 
turbulence caused by acoustic cavitation. When the induction time decreases, the rate of appearance 
of crystals accelerates. Thus, the number of produced crystals increases, while their sizes decrease.  

The effect of ultrasound on the induction time for crystallization has previously been reported 
[32–34]. Z. Guo et al. studied the effects of ultrasound on induction time using saturated 
roxithromycin solutions [33]. In this study, saturated roxithromycin solutions were mixed with 
water (antisolvent) under ultrasonic irradiation and the induction time was assessed using a He–Ne 
laser recorder. Notably, induction time was reduced when sonocrystallization was performed 
(Figure 2). Additionally, the difference in induction time between sonocrystallization and stirring 
crystallization increased as the supersaturated ratio of the solution decreased. 

 
Figure 2. Influence of ultrasound on the induction time (tind) of roxithromycin solutions with 
different supersaturated ratios (S) in the presence (▲) and absence (■) of ultrasound [33]. Ultrasonic 
frequency was unspecified, but an ultrasonic horn was used, so one must assume ~20 kHz. 

Those authors also assessed the induction time of BaSO4 under ultrasonic irradiation and found 
that the induction time of sonocrystallization was shorter than that for stirring crystallization [35]. 
Furthermore, it was confirmed that sonication with high-amplitude ultrasound waves decreased 
induction time more than sonication with low-amplitude waves (Figure 3). 

 
Figure 3. Influence of ultrasound on the induction time (tind) of BaSO4 solutions with different 
supersaturated ratios (S). The amplitude of an 750 W ultrasonic processor was modified to 0% (♦, no 
ultrasound), 21% (■), 31% (▲), 41% (×), 51% (*), and 61% (●) [35]. Ultrasonic frequency was 
unspecified, but an ultrasonic horn was used, so one must assume ~20 kHz. 

Figure 3. Influence of ultrasound on the induction time (tind) of BaSO4 solutions with different
supersaturated ratios (S). The amplitude of an 750 W ultrasonic processor was modified to 0%
(�, no ultrasound), 21% (�), 31% (N), 41% (×), 51% (*), and 61% ( ) [35]. Ultrasonic frequency
was unspecified, but an ultrasonic horn was used, so one must assume ~20 kHz.
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The metastable zone width (MZW) is the area between an equilibrium saturation curve
and the experimentally observed supersaturation point at which nucleation occurs spontaneously
(Figure 4) [31]. For the generation of crystals, the status of a solution changes from stable to metastable
to labile (unstable). There are several ways to generate crystals, including cooling (ABCD line),
evaporation or addition of an antisolvent (AB’C’ line), a combination of cooling and evaporation,
or cooling and the addition of an antisolvent (AB”C” line).
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spontaneous crystallization occurs [31].

When a solution is ultrasonically irradiated, the MZW decreases. During sonocrystallization,
gas-filled crevices surrounding dust motes behave as new nucleation sites causing an increase in
the rate of nucleation [36,37]. Additionally, microscale mixing and turbulence improves from the
collapse of bubbles during sonocrystallization [38–41]. They accelerate diffusion of solutes and
increase the nucleation rate. Due to such increased nucleation sites and improved mixing efficiency,
sonocrystallization reduces the MZW. Mixing efficiency can be formulated in terms of the Richardson
flux constant [42], a dimensionless number defined as the ratio of buoyancy to shear terms in turbulence
kinetic energy equations. Lewis Fry Richardson is also familiar for his observation that turbulence can
be described as

• Big whorls have little whorls
• That feed on their velocity,
• And little whorls have lesser whorls
• And so on to viscosity [43].

The effects of ultrasound on the MZW were confirmed during the crystallization of
p-aminobenzoic acid (PABA) [44]. Cooling crystallization of PABA was performed at a constant cooling
rate of 1 ◦C/min during sonication or with stirring. The nucleation temperature was determined by
detecting the appearance of the first crystals becoming visible to the naked eye. As shown in Figure 5,
nucleation occurred at lower levels of saturation during sonication compared to stirring.
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Figure 5. Effect of ultrasound on the metastable zone width (MZW) of p-aminobenzoic acid
crystallization. For sonocrystallization, 20 kHz and 2.1 W/cm2 of ultrasound was used. For the
unsonicated cases, a magnetic stirring bar was used to stir the solution at 300 rpm [44].

Another example of a reduction in MZW under sonication is the antisolvent crystallization of
benzoic acid [45]. A saturated benzoic acid solution was prepared using absolute ethanol, and mixed
with water (antisolvent) by either conventional magnetic stirring or ultrasonic irradiation at room
temperature. As shown in Figure 6, the MZW decreases significantly on ultrasonic irradiation of the
benzoic acid solution.
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rates of antisolvent (a) with stirring (a magnetic bar, 400 rpm) and (b) under sonication (20 kHz,
8 W/cm2). For each graph, the Eq conc line is the solubility curve of benzoic acid [45].

2.2. Nucleation Rate

Ultrasound may promote nucleation by reducing the critical excess free energy (∆Gcrit).
When ultrasound is irradiated to a solution, bubbles are generated [2–4]. At the bubble–solution
interface, half a solute molecule is solvated by the solvent, while the other half is not due to contact
with the bubble. Such contacts decrease the solvation rate. Re-dissolution of the solute molecule is
then prevented, increasing the coagulation of molecules in the solution [46]. Thus, the critical excess
free energy (∆Gcrit) for nucleation is reduced, while the nucleation rate increases [31,37].

Also, ultrasound increases the rate of secondary nucleation by affecting the number of secondary
nucleation sites. Under ultrasonic irradiation, the crystals generated from primary nucleation collide
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or interact with shockwaves [47–49]. Due to these occurrences, pre-existing crystals are fragmented
and become sites of secondary nucleation [36,50].

Chow et al. investigated sonocrystallization of ice crystals in sucrose solution, which formed
ice dendrites (Figure 7) [51–53]. Primary nucleation produced the ice dendrites, which subsequently
fragmented due to continuous sonication. During prolonged sonication, secondary nucleation occurred
around the fragmented crystals and cavitation spots. From corresponding images of these events,
it was confirmed that ultrasound affected primary and secondary nucleation events.
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Figure 7. Optical micrographs of sonocrystallization and sonofragmentation of ice dendrites in a
15 wt % sucrose solution using 67 kHz ultrasound in a custom optical microscope chamber. (a) Primary
nucleation and crystal growth (no ultrasound), (b) flow patterns and breakage of ice dendrites after
1.36 s of sonication, (c) sonofragmentation of ice crystals after 2.38 s of sonication, and (d) secondary
nucleation and crystal growth after 17.38 s of sonication [51].

2.3. Polymorphism

Polymorphisms can be effected by sonocrystallization. Polymorphism is the ability of a solid
material to exist in more than one form or structure [54]. Polymorphs have different stabilities under
certain conditions, and the preferred form depends on the condition in which the polymorphs are
formed or stored. It is unknown how ultrasound controls the polymorphism of a material [55–57].

Sonocrystallization generally converts crystals from their kinetically favored form to one that
is thermodynamically favored. A typical example is that of calcium carbonate, which exists in
three different forms including calcite (the most stable form under ambient conditions), aragonite
(metastable), and vaterite (the least stable form) [58]. Without sonication, vaterite, which is
the kinetically favored form, was generated. However, the percentage of calcite, which is the
thermodynamically favored form, increased as sonication time or intensity increased (Figure 8) [58].
Thus, more intense or extended periods of sonication might promote the ground-state polymorph
due to the improved mass transport and local heating from acoustic cavitation. Another example
of sonocrystallization for controllable polymorphism is p-aminobenzoic acid [44]. Rasmuson et al.
reported that p-aminobenzoic acid polymorphs were selectively crystallized by adjusting the degree of
supersaturation and ultrasonic irradiation. Above ~25 ◦C, p-aminobenzoic acid is in its α-polymorph
which is its energetically favored form. Sonocrystallization of p-aminobenzoic acid significantly
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reduced the induction time, narrowed the MZW, and produced the β-polymorph above 25 ◦C with a
low initial supersaturation.Crystals 2018, 8, x FOR PEER REVIEW  7 of 20 
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intensity of ultrasound with 30 min of sonication, and (b) the effect of sonication time with 13 W/cm2

of sonication [58].

Conversely, sonocrystallization can sometimes produce a less thermodynamically stable
polymorph. Paracetamol exists as either form I (stable) or form II (metastable), and given the
difference in stability between the forms, form II has higher solubility [59]. When a supersaturated
paracetamol solution was cooled without sonication, plate-like crystals (form I) were generated.
However, with sonication, needle-like crystals (form II) were formed (Figure 9). The generation of less
stable forms from sonocrystallization has been reported; however, until now, no clear explanations
were provided [59–64].
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3. Various Parameters of Sonocrystallization

3.1. Frequency of Ultrasound

Changes in ultrasound frequencies affect the bubble dynamics [65]. At low ultrasonic frequencies
(<100 kHz), cavitation bubbles experience positive and negative pressure ultrasound waves for
extended periods of time because wavelengths increase as frequencies decrease. Thus, the bubble
oscillation amplitude is large since the size of the bubble differs substantially during compression and
expansion periods [32,66]. Conversely, high ultrasonic frequencies (>200 kHz) shorten the wavelength
of the ultrasound and the lifetime of the cavity is reduced. In all cases, there are generally dense clouds
of cavitation bubbles, and the power of collapse from each bubble is dependent on their size: stronger
for large bubbles at low frequencies, weaker for small bubbles at high frequencies [67,68]. While not
generally recognized in the literature, the number of cavitating bubbles is not controllable, and so it
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is exceedingly difficult to compare different frequencies due to changes in the number of cavitating
bubbles, which are highly dependent on the specific apparatus used.

Koda et al. produced liposomes under ultrasonic irradiation and assessed the effects of irradiation
frequency on their size. Three different frequencies (43, 143, and 480 kHz) were applied at a fixed
intensity (8 W/cm2). It was observed that the size of the liposomes decreased as the sonic frequency
decreased, due to changes in bubble dynamics (Figure 10) [69].
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Figure 10. The effect of frequency of ultrasound on crystal size of liposomes. The ultrasonic power
was 8 W/cm2, and the frequencies were 43 kHz (#), 133 kHz (�), and 480 kHz (♦) [69].

Another study investigated the effects of the frequency of ultrasound waves on the MZW [70].
Cooling crystallization of paracetamol was tested without or with ultrasonic irradiation at multiple
frequencies (from 41 to 1140 kHz), and the MZW was calculated as the difference between the
nucleation temperature and the saturation temperature. When the frequency of the ultrasound
increased, the MZW decreased (Figure 11).
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Figure 11. The effect of ultrasound frequency on reduction of the MZW of paracetamol. The amount of
reduced MZW is the difference of MZW of cooling crystallization of paracetamol without and with
sonication (8 W/cm2). The cooling crystallization and cooling sonocrystallization experiments were
performed at least three times for each frequency. The dots are the average reduction of MZW and the
error bars are the standard deviations [70].

3.2. Intensity of Ultrasound

When ultrasound intensities increase, the size of generated crystals decreases. Increased sonication
intensities cause more vigorous microscale mixing and turbulence, which causes solutes to diffuse
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more rapidly [71]. Due to the accelerated diffusion of the solute, the induction time and MZW are
reduced and the nucleation rate increases. Also, the vigorous microscale mixing and turbulence helps
to prevent crystals from agglomerating [72]. The effect of ultrasound intensity was investigated during
sonocrystallization of roxithromycin [73]. The intensity was adjusted from 5 to 15 W/cm2, which
caused the average crystal length to decrease from ~60 µm to ~15 µm during 10 min sonications.

3.3. Sonication Time

As sonication time increases, crystal sizes decrease and become more uniform. For short sonication
times, solution and precipitants are not mixed uniformly [32]. The generated crystals from the solution
are irregularly shaped and of various sizes. Thus, prolonged sonication time improves mixing and
prevents crystals from aggregating [74,75]. Kougoulos et al. investigated the effects of sonication
duration on crystal size using adipic acid and found a significant difference in crystal size according
to whether sonication was applied or not (Figure 12) [76]. Furthermore, crystal size was reduced
as sonication duration increased. As we will see, this is often due to sonofragmentation of the
crystals formed.
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Figure 12. Effect of sonication time on particle size and size distribution of adipic acid. For sonication
experiments, the adipic acid solution was sonicated at 20 kHz and 8.5 W/cm2. For the control
experiment, stirring was performed with a magnetic stirring bar (200 rpm) [76].

3.4. Types of Ultrasound Generator and Configurations for Sonocrystallization

Multiple types of ultrasonic generators exist and provide many different experimental
configurations for sonocrystallization. Ultrasound generators are typically ultrasonic baths, horns,
and plate transducers (Figure 13).
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Sonicating baths are standard laboratory equipment and are typically used to disperse particles in
liquid. Such sonicators are easily accessed, but are only available in batch configurations [80,81].
Ultrasonic horns are also used to perform sonocrystallization and offer batch or flow-through
configurations [45,71,82–86]. Scale-up to large tubular flow-through reactors has also been
commercialized, as shown in Figure 14 [29]. Another type of ultrasound generator is the
plate transducer, which generates a wide range of ultrasound frequencies. It is essential for
sonocrystallization when high frequencies (>100 kHz) are required [87]. With the ultrasonic plate
transducer, a batch configuration is typically used for crystallization.
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transducers from C3 Technology [29].

4. Ultrasound in Slurries, Inter-Particle Collisions, Shockwaves, and Sonofragmentation

In a liquid–solid mixture, acoustic cavitation causes various physical phenomena. If a bubble
grows near a solid particle larger than the resonant size of the bubble, the bubble is deformed due
to the asymmetric environment [1,6]. This asymmetry causes the bubble to collapse asymmetrically,
and a fast-moving stream of liquid (i.e., a microjet) is formed [13,14]. The microjet moves toward
the solid particles and causes surface deformation or changes in the chemical composition of the
surface [1,15].

When solid particles in the mixture are smaller than the resonant size of the bubble, the shockwave
that is generated by acoustic cavitation causes interparticle collisions [17,18,88]. Also, shockwaves
interact directly with solid particles, causing sonofragmentation [19,89,90]. Interparticle collisions and
sonofragmentation affect the average particle size and size distribution, both by reducing the size of
existing crystals and by creating secondary nucleation sites [91].

The effect of the shockwaves generated by acoustic cavitation in liquid–solid systems depends
on the properties of the solids in the system, most notably their malleability versus their friability
(brittleness) [16]. For malleable materials (e.g., metal powders), ultrasonic irradiation leads to
agglomeration from interparticle collisions [17,18]. The velocity of the colliding particles is sufficient
at the point of impact between particles to cause intense localized heating, plastic deformation,
spot-welding, and melting (Figure 15) of various low-melting-point metals (e.g., Zn, Ni, Co, Mo).
Very-high-melting-point metals (e.g., W), however, are not affected to the same extent, as one might
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expect [18]. Similarly, there is an optimal particle size for such impacts that depends on the particle
density, but is generally in the 0.5 to 50 µm range [18].Crystals 2018, 8, x FOR PEER REVIEW  11 of 20 
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Figure 15. SEM image of zinc particles after sonication. 20 wt % of zinc slurry was sonicated by an
ultrasonic horn (20 kHz and 50 W/cm2) for 30 min. Localized melting was caused by high-velocity
interparticle collisions and particles were agglomerated [16,17].

Sonication of molecular crystals causes sonofragmentation by means of direct interactions between
particles and shockwaves. Suslick et al. explored the sonication of an aspirin slurry under multiple
experimental conditions [19]. They suggested four possible mechanisms of particle breakage under
sonication, including interparticle collision, particle-horn collision, particle-wall collision, and direct
interaction between particles and shockwaves (i.e., sonofragmentation). As shown in Figure 16,
interparticle collisions rarely affect particle breakage. Additionally, particle-horn and particle-wall
collisions were negligible contributors to fragmentation. Thus, the authors concluded that direct
interactions between particles and shockwaves were the main causes of fragmentation.
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Figure 16. Effect of quantity of particle loading on final particle size after sonication for 10 s. Ultrasound
was 20 kHz and 5.5 W/cm2. All masses were dispersed in 5 mL of dodecane [19].
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Ionic crystals are also broken due to the direct interaction between shockwaves and crystals [92].
Suslick et al. investigated the mechanism of sonofragmentation of slurries of various ionic crystals
under multiple experimental conditions. In addition, they quantitatively studied the relationship
between material properties (i.e., Vickers hardness and Young’s modulus) and the patterns of
sonofragmentation. There was strong correlation of the rate of fragmentation with thermodynamic
properties of ionic crystals: the size of fragmented crystals decreased exponentially with increase of
sonication time (Figure 17). It is a mechanochemical extension of the Bell-Evans-Polanyi Principle or
Hammond’s Postulate: activation energies for solid fracture correlate with binding energies of solids.
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Figure 17. Relationship between (a) Vickers hardness (Hv) and the time necessary to halve the initial
crystal size (τ1/2) and between (b) Young’s modulus (E) and the time necessary to halve the initial
crystal size (τ1/2). The dashed lines are linear fits [92].

As we have discussed, the effects of ultrasound on crystals have been heavily investigated
experimentally. Mathematical simulations of the sonofragmentation process using population balance
models that describe the effects of all physical parameters such as solution viscosity and applied
power on the crystal size distribution have been lacking. Braatz, Suslick, and coworkers have
recently presented detailed population balance models for describing the crystal breakage that results
from ultrasound [93]. Aspirin crystals dispersed in various solvents—dodecane and silicone oils of
known viscosity—were subjected to ultrasound and the kinetics of the resulting sonofragmentation
quantitatively measured. Population balance models were developed for binary breakage events
and cavitation rate proportional to the applied power and exponentially related to solvent viscosity.
As shown in Figure 18, a simple 2-parameter population balance model that assumes binary breakage
into equal fragments was tested against the experimental data and describes the breakage process
accurately: the influences of sonication time, ultrasonic intensity, and liquid viscosity are quantitatively
incorporated into this simple model. The statistical analysis supports the breakage model in which
cavitation bubbles cause the aspirin crystals to break into two equal-sized particles.Crystals 2018, 8, x FOR PEER REVIEW  13 of 20 
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5. Application

Sonocrystallization generates various materials with a wide range of sizes and diverse structures.
One of the fields in which sonocrystallization is used widely is to produce pharmaceutical agents
(PAs), since it can control crystal sizes, distributions, and polymorphisms [25,28–30]. Reductions in PA
size increase the dissolution rate and solubility, especially for nanocrystals [94–97]. Also, control of
polymorphisms decreases the probability of side effects [98,99]. For PAs, control of such properties
(i.e., size and polymorphism) is important because they directly affect delivery to target organs and
work to treat a disease. In fact, multiple PAs, including acetylsalicylic acid, paracetamol, phenacetin,
carbamazepine, etc., have been generated via sonocrystallization to decrease size and size distributions,
and/or to control polymorphism (Figure 19) [59,60,70,72,100–103].
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directly affect delivery to target organs and work to treat a disease. In fact, multiple PAs, including 
acetylsalicylic acid, paracetamol, phenacetin, carbamazepine, etc., have been generated via 
sonocrystallization to decrease size and size distributions, and/or to control polymorphism (Figure 
19) [59,60,70,72,100–103]. 

 

Figure 19. Microscopic images of several pharmaceutical agents generated by sonocrystallization.
Optical microscopic images of (a) acetylsalicylic acid [100] and (b) paracetamol [60]. SEM images of
(c) phenacetin [72] and (d) carbamazepine [101].

Another application of sonocrystallization is for the generation of nanocrystals and
nanostructures [104–110]. Qian et al. reported ultrasonic irradiation as a new method for generating
zinc oxide nanocrystals [111]. The conventional method was time-consuming, taking 2 days; sonication
(20 kHz), however, generated nanocrystals in 3 min. Moreover, nanocrystals were formed using
ultrasonic irradiation without the addition of heptane in 25 min (Figure 20).
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distribution, electron diffraction pattern, and TEM images [111].

It is possible to produce a variety of nanostructures via sonocrystallization. Li et al. produced
nanofibers and fibrillar networks using ultrasonic irradiation [112]. N-lauroyl-L-glutamic acid
di-n-butylamide (GP-1) was dissolved in octanol or propylene glycol at 120 ◦C and quenched to
room temperature in an ultrasonic water bath (35 kHz, 1–4 W/cm2) for 0–2 min. Using sonication,
the product was a nanofiber network structure and without sonication, spherulitic particles were
formed (Figure 21). The network structure exhibited an enhanced storage modulus and gelation
capability compared with the spherulitic particles.Crystals 2018, 8, x FOR PEER REVIEW  15 of 20 
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pre-existing crystals under ultrasonic irradiation has provided useful insights into the effects of 

Figure 21. N-lauroyl-L-glutamic acid di-n-butylamide (GP-1) nanostructures generated without
sonication or with sonication: SEM images of GP-1 (a) spherulitic structures produced without
sonication and (b) 3D interconnected fiber network structures with 1 min of sonication, and (c) storage
modulus of the 2 wt % GP-1/polypropylene glycol gels formed without ultrasound (�) and with
ultrasound (�), respectively. Scale bars are 500 nm [112].
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Hayward et al. reported on the generation of perylene diimide (PDI) nanowires using
sonocrystallization [113]. PDI and poly(3-hexylthiophene) were dissolved in 1,2-dicholorobenzene
at 120 ◦C and cooled to 20 ◦C with or without sonication. Notably, sonocrystallization produced
narrower, straighter, and less agglomerated PDI nanowires than the cooling crystallization without
sonication (Figure 22, left). The relatively good control of sonocrystallized nanowire sizes allowed for
the preparation of smooth films (Figure 22, right).
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Figure 22. (Left) SEM images of perylene diimide (PDI) nanowire produced by (a) cooling
crystallization without ultrasonic irradiation and (b) sonocrystallization in the presence of ultrasound;
for the sonocrystallization, the PDI solution was irradiated with 35 kHz of ultrasound for 2 h [113].

6. Conclusions

Sonocrystallization is an important method for the controlled preparation of crystals with desired
size and size distribution. In solutions undergoing crystallization, acoustic cavitation and its physical
effects reduce the induction time and the metastable zone width and increase the nucleation rates of
crystal formation. Various control variables have been modified to produce micro- and nano-crystals
that are of special interest to the pharmaceutical industry due to the enhanced bioavailability associated
with particle size reduction. The effect of breakage of pre-existing crystals under ultrasonic irradiation
has provided useful insights into the effects of ultrasonic irradiation during sonocrystallization.
There have been numerous reports on empirical results from sonocrystallization. While the mechanisms
of action attributed to sonocrystallization and sonofragmentation have been increasing well delineated,
the relative importance of these various mechanisms (bubble interface nucleation, reduction of MZW,
sonofragmentation, etc.) remains, however, an open question that will depend heavily on specific
systems and configurations.
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