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Abstract: An improved lumped-parameter equivalent circuit model is proposed to describe S-shaped
I–V characteristics of organic solar cells (OSCs). This model originates but differs from Mazhari’s
model. As a minor but important modification, a shunt resistance is added to Mazhari’s model to
increase the accuracy of simulating the S-shaped kink in the third quadrant. Subsequently, we present
a terminal current-voltage equation set and derive an analytical solution to the improved model.
Furthermore, we verify the analytical solution to our model by using the least square method and
validate our model by using the experimental I–V curves examined from OSCs. Compared with
Mazhari’s model, our model has greater accuracy in interpreting the S-shaped kink with linear-like
rise in the third quadrant. As a result, our improved model is suitable to explain the S-shaped I–V
characteristics of organic solar cells in the whole operational region, especially for the S-shaped kink
in the third quadrant.
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1. Introduction

Over the last two decades, organic photovoltaic devices [1] have attracted much attention and
undergone intensive research due to their many potential advantages over conventional silicon-based
solar cells, such as low-cost printing [2] and fabrication on flexible substrate [3]. However, the power
conversion efficiency (PCE) of organic solar cells (OSCs) still cannot approach that of conventional
silicon-based solar cells because the S-shaped kinks that are tested according to the I–V characteristics of
polymer OSCs [4,5] can damage the PCE. Recently, the bilayer cell structure based on heterojunction [6,7]
has been reported to give a crucial improvement in PCE, but the efficiency so far is not high enough. It is
noted that a lumped-parameter equivalent circuit model of OSCs is useful to explain three factors [8]
impacting PCE—short-circuit current, open-circuit voltage, and fill factor—and to optimize the design
of photovoltaic devices by providing a quantitative analysis for I–V characteristics.

The conventional equivalent circuit models [9,10] of Si-based solar cells obviously cannot
reasonably interpret the S-shaped kink observed in OSCs, because the constant photo-generated
current source, in parallel with a single diode, only represents the J-shaped I–V curves. Among the
multiple-diode equivalent circuit models [11–17], Mazhari’s model [11] is regarded as the simplest
model including seven parameters used in simulations, while the other models [12–17] contain at least
eight fitting parameters. Mazhari’s model is able to provide an electrical explanation [18] of the OSC
S-shaped kink with exponential-like rise in the first quadrant, but it fails to demonstrate the linear-like
rise of the S-shaped kink of OSCs in the third quadrant [19].

In this paper, we propose an improved lumped-parameter equivalent circuit model by modifying
Mazhari’s model, in order to give accurate predictions on I–V characteristics of OSCs, especially for
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the linear-like upturn in the S-shaped kink in the third quadrant. The rest of the paper is organized
as follows. In Section 2, the set of I–V equations in the improved model is shown and the analytical
solution is derived. In Section 3, we verify the solution by using the least square method results.
In Section 4, we compare our model and Mazhari’s model with experimental data [20], and discuss
why our model is more accurate. Finally, the conclusions are summarized in Section 5.

2. Improved Model and Its Analytical Solution

As shown in Figure 1, Mazhari’s model consists of three diodes (i.e., DD, DR, and DE) and a
photo-generated current source Iph without any series or shunt resistances. In the above-mentioned
diodes, DD simulates the dark current, DR models the recombination current, and DE describes the
extraction current. The absence of series or shunt resistances leads to the introduction of major errors
in the process of simulating the S-shaped kink in the third quadrant.
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Figure 1. The solar cell lumped-parameter equivalent circuit model [11] proposed by Mazhari.

Based on Mazhari’s model, we propose an improved model as shown in Figure 2. We add a
shunt resistance with the diode DR to supply a linear item in the relationship between terminal current
I and voltage V in Figure 2, which is beneficial for illustrating the S-shaped kink with linear-like
rise in the third quadrant, as shown in Section 4. In addition, there are two things deserving of our
attention. From the aspect of the circuit’s topological structure, adding the shunt resistance Rs with
the diode DR in Figure 2 is equivalent to placing the resistance directly in series or in parallel with
the photocurrent, according to the law of external equivalence. From the physical significance aspect,
the shunt resistance Rs with DR in Figure 2 represents the power conversion efficiency (PCE) loss
resulting from the contact resistances between electrode and acceptor, between acceptor and donor,
and between donor and electrode.
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In Figure 2, at two earth-free nodes, we use Kirchhoff’s current law and Shockley’s well-known
ideal diode current equation [21] to obtain two node current equations as
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It is worth noting that Equation (2) can be directly applied to Figure 1, but the linear item
introduced by the shunt resistance that RS is added into Equation (1) is different from that in Figure 1.
Here, Vint is the voltage drop across the recombination diode DR. nD, nR, and nE are the ideality factors
of three diodes representing the divergence from the ideal diode. ID0, IR0, and IE0 are the reverse
saturation currents of three diodes. Vt is the thermal voltage symbolized by kT/q, where k is the
Boltzmann constant, T is the absolute temperature, and q is the electron charge.

Aiming at roundly demonstrating the S-shaped I–V characteristics of OSCs, implementing our
improved model into OSCs’ I–V characteristic simulations in compact format, and facilitating the
computer-aided-design, we should derive the accurate and efficient solution of the equation set of
Equations (1) and (2) to demonstrate the terminal current I as a function of the terminal voltage
V in the improved model, i.e., I–V characteristics of OSCs. Unfortunately, the above equation set
cannot be solved directly because Equations (1) and (2) are transcendental equations including at
least two exponents. Although we can use the least square method to find the accurate solution of
the equation set, this method actually consumes much more computation time, leading to reduced
simulation efficiency.

In this paper, we pay more attention to Equation (1) rather than substituting Equation (1)
into Equation (2) and eliminating Vint to directly solve the implicit I–V equation. We use the
Newton–Raphson root-finding scheme [19], as a trade-off method between accuracy and efficiency,
to derive an analytical solution of Equation (1) obtaining the computation results of Vint as a function
of V. Subsequently, we substitute Vint into Equation (2) to get the results of the I–V equation in Figure 2.
It is noted that the Newton–Raphson root-finding scheme adopted in solving Equation (1) processes
the fast convergence and enough computation accuracy.

3. Numerical Verification and Discussion

In this section, we use the least square method to verify the solution derived by the
Newton-Raphson root-finding scheme of our improved model. In Figures 3–8, the verifications
show that good agreements between our solutions and the least square method results can be obtained
and our improved model can describe the S-shaped I–V characteristics of OSCs. Here, we can requisite
the fitting parameters used in simulations by using the systematic parameter extraction procedure
presented in Reference [11] or Reference [18].

Furthermore, we will now discuss the influences of the different fitting parameters on Vint and I.
Firstly, Figure 3 shows that RS has an effect on both Vint and I. RS determines the slopes of Vint (shown
in Figure 3a) and I (shown in Figure 3b) as a function of V in the third quadrant, respectively. It is
noted that RS has little effect on Vint and I while RS is larger than 1 kΩ. In fact, this is in consistent
with the circuit structure in Figure 1. If RS comes into infinity, our improved model in Figure 2 would
degrade into Mazhari’s model in Figure 1. Secondly, Figure 4 shows that Iph can affect the quantities
of Vint in the whole operational region and I in the third quadrant, but not the slopes of Vint and I.
Thirdly, Figures 5 and 6 show that the recombination diode DR has an important influence on the
characteristics of OSCs. On the one side, in Figure 5a, we can observe that IR0 only affects the results
of Vint in the first quadrant. In Figure 5b, IR0 affects the results of I only in the third quadrant. On the
other side, in Figure 6a,b, the role played by nE is analogous to that of IR0. On the contrary, IE0 and nE
of the extraction diode DE can only influence the results of Vint in the first quadrant, but not in the
third quadrant, as shown in Figures 7a and 8a. At the same time, both IE0 and nE can only affect the
results of I in the third quadrant, as shown in Figures 7b and 8b.
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4. Experimental Verification and Comparison with Mazhari’s Model

In Figures 9–13, we compare the solutions of our improved model with experimental data [19] to
verify our model in practice. Simultaneously, the results simulated by Mazhari’s model are shown in
Figures 9–13, which may be compared with our improved model.
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For the solar cells in Reference [19], the enhanced electron acceptor (fullerene C60) and donor
(purified Poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene-vinylene]) bilayer films were prepared on
clean ITO glass coated with 50 nm of PEDOT:PSS and 50 nm of Al cathode, with the aim of increasing
the power conversion efficiency (PCE). In the N2 atmosphere, the solar cells in [19] were exposed to
1000 W/m2 simulated AM1.5G sunlight, and the I–V characteristics were measured and shown as
symbols in Figures 9–13.

According to Figures 9–13, and combining the equation set of (1) and (2), we can observe that our
improved model can simulate the S-shaped kink with both the exponent-like rise in the first quadrant
and the linear-like rise in the third quadrant. From the view of physical significance, the shunt
resistance should be added to the loss of the current. From the view of circuit structure, our improved
model can degrade into Mazhari’s model under the condition that RS goes into infinity. From the view
of simulation results, we can observe that our improved model can give more accurate predictions on
the linear-like rise of the S-shaped kink in the third quadrant, compared with Mazhari’s model. This is
the reason why the shunt resistance RS must be introduced in our improved model. It is interesting that
the slope of the S-shaped kink in the third quadrant decreases, but the shunt resistance RS increases as
the annealing temperature increases. The probable reason is that the increase of annealing temperature
results in the increase of contact resistance Rs. In addition, the higher annealing temperature leads to
the I–V curves of OSCs changing from S-shape into J-shape. This may result from the mixture of donor
and acceptor.

5. Conclusions

In this paper, we proposed an improved model based on Mazhari’s model and derived the
analytical solution of our improved model by using the Newton-Raphson root-finding scheme. High
accuracy and efficiency of solutions show that our improved model, as a lumped-parameter equivalent
circuit model, can be used to simulate the S-shaped I–V characteristics of organic solar cells (OSCs).
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Compared with Mazhari’s model, the simulation results of our improved model for S-shaped kink are
more accurate in the third quadrant. Finally, we used the least square method and experimental data
to verify our solutions of the improved model. As a result, such an improved model can be adopted to
substitute for Mazhari’s model to give more accurate predictions on the S-shaped I–V characteristics
of OSCs, especially for the S-shaped kink in the third quadrant.
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