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Abstract: Hafnium oxide (HfO2) thin films have been made by atomic vapor deposition (AVD)
onto Si substrates under different growth temperature and oxygen flow. The effect of different
growth conditions on the structure and optical characteristics of deposited HfO2 film has been
studied using X-ray photoelectron spectroscopy (XPS), Rutherford backscattering spectrometry (RBS),
grazing incidence X-ray diffraction (GIXRD) and variable angle spectroscopic ellipsometry (VASE).
The XPS measurements and analyses revealed the insufficient chemical reaction at the lower oxygen
flow rate and the film quality improved at higher oxygen flow rate. Via GIXRD, it was found that
the HfO2 films on Si were amorphous in nature, as deposited at lower deposition temperature,
while being polycrystalline at higher deposition temperature. The structural phase changes from
interface to surface were demonstrated. The values of optical constants and bandgaps and their
variations with the growth conditions were determined accurately from VASE and XPS. All analyses
indicate that appropriate substrate temperature and oxygen flow are essential to achieve high quality
of the AVD-grown HfO2 films.

Keywords: hafnium dioxide (HfO2); X-ray photoelectron spectroscopy (XPS); Rutherford
backscattering spectrometry (RBS); grazing incidence X-ray diffraction (GIXRD); variable angle
spectroscopic ellipsometry (VASE)

1. Introduction

A variety of transistors is beneficial to enhance the function and performance of the integrated
circuit (IC). The IC transistor’s channel length and gate dielectric thickness and other device dimensions
shrink rapidly. However, the conventional silicon dioxide (SiO2) gate dielectric is a constraint because
the direct tunnel leakage current and the rate of dissipation increase with the decrease of layer
thickness [1–5]. Accordingly, new materials with the high dielectric constant (high-k materials)
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replacing SiO2 as gate dielectrics are developed, in order to improve the device performance and
reduce the leakage currents [2–5].

Many high-k materials have been used as gate oxide, such as HfO2, ZrO2, Y2O3, La2O3, Si3N4,
TiO2, and Al2O3. Hafnium dioxide (HfO2) possesses promising properties of high dielectric constant
(k ~25), relatively wide bandgap of around 5.8 eV, a good thermal stability [5], a high breakdown
electric field (5 MV/cm), and good thermal stability on Si substrate [2]. Therefore, HfO2 has been
the dielectric material in processor transistors for more than ten years already, and is an excellent
material for metal oxide semiconductor (MOS) based microelectronic devices [3], resistive switching
material in memory devices [4], and in optical coatings [2]. As such, it has been studied extensively
both experimentally and theoretically [1–24]. However, in electronic applications, the frequent coercion
of stoichiometric deviations exists on thin films of HfO2 which are typically sputtered or grown by
atomic layer deposition (ALD) [2,6]. Atomic vapor deposition (AVD), as a special MOCVD process
mode, is used to deposit pure HfO2 at a wide range of temperatures [7], and enables high gas-phase
saturation of the precursors, high growth rate, and full stoichiometric control of films [8]. We mainly
analyze the effect of different growth conditions on the structure, and the stoichiometric and optical
characteristics by using AVD for HfO2 thin films.

In this paper, a series of nanometer scale (33–70 nm) HfO2 thin films grown on Si substrates
under different conditions by AVD are studied. With the help of X-ray photoelectron spectroscopy
(XPS), Rutherford backscattering spectrometry (RBS), grazing incidence X-ray diffraction (GIXRD),
and variable angle spectroscopic ellipsometry (VASE), the composition, crystallization phases,
and optical constants of the films are characterized and penetratively studied from surface to interface.

2. Materials and Methods

Firstly, the p-type (100) silicon wafers were cleaned by HF-dipping. Then, HfO2 films with
different thicknesses of about 30–70 nm were deposited by atomic vapor deposition (AVD) using an
AIXTRON Tricent system with oxygen flow of 500 sccm and 800 sccm at a substrate temperature
of 400 ◦C and 500 ◦C. Hafnium diethylamide, Hf[N(C2H5)2]4, was the source material for the AVD
of HfO2 [9]. Argon was used as transmission gas with flow rate of 200 sccm, and the total pressure
in the chamber was fixed at 5 mbar and the injection frequency is 3 Hz, as in another previous
growth procedure [10]. Further details for the growth of HfO2 can be found there [9,10]. In this study,
three kinds of HfO2 films were prepared on 2” Si wafers by AVD, with thicknesses of approximately
70, 33, and 34 nm, respectively, which were measured via transmission electron microscopy (TEM).

Three samples of S1, S2 and S3 with the original run numbers of Hf08a, Hf08b and Hf08c,
respectively, their information, and growth conditions, are listed at Table 1.

Table 1. Growth conditions and measured thicknesses of HfO2 thin films by TEM, from the grower.

Sample Structure Growth Conditions Thicknesses

S1 (Hf08a) HfO2/Si 400 ◦C, 5 mbar, O2: 500 sccm 70 nm
S2 (Hf08b) HfO2/Si 500 ◦C, 5 mbar, O2: 500 sccm 33 nm
S3 (Hf08c) HfO2/Si 500 ◦C, 5 mbar, O2: 800 sccm 34 nm

XPS (also known as electron spectroscopy for chemical analysis—ESCA) uses highly focused
monochromatic X-ray to probe the material of interest. The energy of the photoemitted electrons
ejected by the X-rays is specific to the chemical state of the elements and compounds presented, i.e.,
bound state or multivalent state of individual elements can be differentiated. In this work, the chemical
states in the surface region of HfO2 thin films deposited on Si substrate were studied by XPS, with the
incident Al Kα beam at the energy of 1486.6 eV. For the thin films analyzed, all the energy scales of the
XPS spectra were calibrated by the binding energy (B.E.) of the C 1s peak at 285.0 eV [11]. Afterward,
the selected peaks are fitted by the fitting program XPSPEAK4.1. The energy bandgap values of thin
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oxides can be determined from the photoelectron loss-energy spectra calculated from the XPS O 1s
peaks [25,26].

Rutherford backscattering spectrometry (RBS) was employed to determine the contents of films
nondestructively. The random spectra of films are recorded via RBS, and simulated with the software
of simulation of ions in matter and nuclear reaction analysis (SIMNRA) [12]. The crystal structure
phases of films were scanned by grazing incidence X-ray diffraction (GIXRD) with Cu Kα radiation
(0.15418 nm). The diffraction angle, 2θ, was varied from 20◦ to 52◦, and incident angles were set as 0.5◦,
1◦, 3◦, and 5◦, respectively. The crystallite size of HfO2 thin film of S2 and S3 with different incident
angles has been calculated.

The variable angle spectroscopic ellipsometry (VASE) measurements were performed by a dual
rotating compensator Mueller matrix ellipsometer (ME-L ellipsometer, Wuhan Eoptics Technology Co. Ltd.,
Wuhan, China) in the spectral range from 195 to 1680 nm (0.74–6.35 eV) with 1 nm step interval at five
angles of incidence (45◦, 50◦, 55◦, 60◦, 65◦, 70◦). We adopt the Tauc–Lorentz dispersion function to
extracted dielectric functions [13–16]. The analyses of VASE experiment data helped us to fit out the
optical constants, the optical bandgaps, as well as information on thickness and roughness of HfO2

thin films.

3. Results and Discussion

3.1. X-ray Photoelectron Spectroscopy (XPS)

3.1.1. XPS Survey Scan

XPS survey scans were performed for all three HfO2 samples. Figure 1 shows such a typical wide
survey scan for a sample S3 (Hf08c). The characteristic peaks of Hf (4f, 4d, 4p), O 1s, C 1s, N 1s, and O
KLL (Auger peaks) are observed in the general survey spectra. None of contamination species have
been observed within the sensitivity of the instrument expecting the adsorbed atmospheric carbon and
nitrogen on the surface [11].
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Figure 1. XPS survey scan of the HfO2 film of the sample S3. 

3.1.2. XPS Fitting and the Elements Composition Calculating 

High-resolution XPS scans on the Hf 4f and O 1s peaks were performed for three HfO2 films, as 
shown in Figure 2a–c. We focus on the analyses of the asymmetric shape of the Hf 4f and O 1s spectra 
to reveal the relative atomic percentage and bonding phase in the surface region. The background 
subtraction was carried out using Shirley’s iterative method. The baseline of background is a 
combination of Shirley and linear function. The fitting program XPSPEAK4.1 was used to fit the 
experimental curves with a Gaussian–Lorenzian mixed function [17]. From the Hf 4f doublet, Hf 4f7/2 
and Hf 4f5/2, the spin-orbit splitting and the intensity ratio of the components were set at 1.67 eV and 
4/3, respectively [18]. 

Details of the Hf 4f fine spectra of three samples are shown in Figure 2a–c, respectively. The Hf 
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Figure 1. XPS survey scan of the HfO2 film of the sample S3.

3.1.2. XPS Fitting and the Elements Composition Calculating

High-resolution XPS scans on the Hf 4f and O 1s peaks were performed for three HfO2 films,
as shown in Figure 2a–c. We focus on the analyses of the asymmetric shape of the Hf 4f and O 1s spectra
to reveal the relative atomic percentage and bonding phase in the surface region. The background
subtraction was carried out using Shirley’s iterative method. The baseline of background is a
combination of Shirley and linear function. The fitting program XPSPEAK4.1 was used to fit the
experimental curves with a Gaussian–Lorenzian mixed function [17]. From the Hf 4f doublet, Hf 4f7/2
and Hf 4f5/2, the spin-orbit splitting and the intensity ratio of the components were set at 1.67 eV and
4/3, respectively [18].
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Details of the Hf 4f fine spectra of three samples are shown in Figure 2a–c, respectively. The Hf 4f
spectrum could be fitted with two sets of double-peak components. One set at 17.16 eV and 18.83 eV
correspond to the Hf4+ 4f7/2 and Hf4+ 4f5/2 peaks of the Hf oxide bond (O–Hf–O), respectively [11].
While another set at 16.50 eV and 18.26 eV correspond to the Hfx+ 4f7/2 and Hfx+ 4f5/2 peaks (x < 4)
of the Hf suboxide bond, respectively [19,20]. It is obvious that the doublet peaks of the suboxidized
Hfx+ are stronger than those of the fully oxidized Hf4+ from the Figure 2a,b. However, the situation is
opposite in Figure 2c. The full width at half maximum (FWHM) of fitted peaks are shown in Table 2.
In comparison, the corresponding FWHMs of the Hf4+ in Figure 2a,b are wider than that in Figure 2c.
This increased width was caused from the presence of a higher degree of disorder in the deficient
films or from the coexistence of tetragonal and monoclinic phases with small differences in binding
energy [18]. Our GIXRD data also support this scenario, with discussion in Section 3.3.
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A number of factors could lead to the binding energy shifts, such as charge transfer effect,
environmental charge density, presence of electric field, and hybridization. Among these factors,
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charge transfer causing a binding energy shift is regarded as the dominant mechanism for the S2
and S3, with different oxygen flow rates in growth conditions [21]. According to the charge transfer
mechanism, an electron removed from the valence orbital generates the increment in core electron’s
potential, and finally leads to a chemical binding energy shift [22]. The difference between the sample
S2 in Figure 2b and the S3 in Figure 2c is attributed to the difference of the oxygen flow rates. In the
deposition process of the S3, Hf oxide bonds were dominate over Hf suboxide bonds, due to the excess
oxygen at 800 sccm oxygen flow rate. On the contrary, the sample S2 with 500 sccm oxygen flow
rate exhibited a reverse trend: Hf suboxide bonds dominating over Hf oxide bonds. Therefore, it is
reasonable that the peaks shift, from 16.60 to 17.02 eV for Hf 4f7/2, and from 18.23 to 18.67 eV for Hf
4f5/2, as shown in Figure 2b,c, can be explained from the enhanced charge transfer with the increase of
the O2 gas flow [23]. The intensity change between the Hf4+ 4f and Hfx+ 4f peaks can be demonstrated
from the chemical shift in the binding energy of the Hf 4f peaks with oxygen flow rate. Both the Hfx+

4f7/2 and Hfx+ 4f5/2 peaks in Figure 2a,b have similarly dominated components for the Hf 4f7/2 and Hf
4f5/2 peaks, respectively, while they are weaker than the Hf4+ 4f7/2 and Hf4+ 4f5/2 peaks, respectively
in Figure 2c.

In Figure 3a–c, the XPS fitting results on the O 1s peaks of S1, S2, and S3 are shown, respectively.
The O 1s peak actually consist of two very closely peaks, the Hf–O bond of O–Hf–O at 530.28~530.40 eV,
and the O–O bond of non-lattice oxygen at 532.08 eV, which was contributed to by the suboxides
with Hf [17,24,27,28]. The Hf–O bond belongs to the lattice oxygen which dominates in the Figure 2c.
This demonstrates that the corresponding samples have ordered structures and good qualities at
surface. In the Figure 2a,b, the high percentage of the non-lattice oxygen peak at 532.08 eV from the O
1s spectra indicates more defects existed in the HfO2 film layer surface of S1 and S2.

Comparing the areas of O 1s and Hf 4f peaks, the stoichiometric composition ratio of O and Hf
elements at the surface layer of the HfO2 film can be estimated from the XPS fitting results. The atomic
percentages and the FWHMs of the XPS O 1s and Hf 4f peaks for HfO2 films deposited on Si are
summarized in Table 2. There are some differences among these three samples in their XPS fitting
results. The compositions of Hf are 31.63%, 33.10%, and 36.95% for S1, S2 and S3, respectively.
The surface ratios of O and Hf elements of the three samples are between 1.70 and 2.13, which are
in accordance with the range calculated by Myoung-Seok Kim et al. [23]. The higher proportions of
oxygen in the sample of S1 and S2 are due to the presence of the non-lattice oxygen.

Table 2. The Hf and O atomic percentages and bonding analyses of S1, S2 and S3.

Sample Hfx+ 4f7/2 Hfx+ 4f5/2 Hf4+ 4f7/2 Hf4+ 4f5/2 O O–Hf

S1

Peak/eV 16.54 18.21 17.16 18.82 Peak/eV 532.08 530.27
FWHM 1.34 1.32 1.27 1.25 FWHM 1.93 1.65

Area/ASF
(2.05) 4118.46 3088.84 1083.73 812.80 Area/ASF

(0.66) 2400.19 3935.01

Atom 0.14 0.11 0.04 0.03 Atom 0.26 0.42
Hf (%) 31.63% O (%) 68.37%

S2

Peak/eV 16.54 18.21 17.16 18.82 Peak/eV 532.08 530.28
FWHM 1.28 1.27 1.45 1.39 FWHM 1.96 1.57

Area/ASF
(2.05) 4425.81 3319.36 565.70 424.27 Area/ASF

(0.66) 1822.13 3885.52

Atom 0.17 0.13 0.02 0.02 Atom 0.21 0.46
Hf (%) 33.01% O (%) 66.99%

S3

Peak/eV 16.54 18.21 17.16 18.82 Peak/eV 532.08 530.33
FWHM 0.97 0.80 1.06 1.06 FWHM 1.38 1.67

Area/ASF
(2.05) 9172.99 6879.74 27,466.56 20,599.92 Area/ASF

(0.66) 2901.01 32,328.96

Atom 0.05 0.04 0.16 0.12 Atom 0.05 0.58
Hf (%) 36.95% O (%) 63.05%
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3.1.3. Energy Bandgaps of HfO2 Deduced from XPS

The energy bandgap values of thin oxides can be deduced from the energy loss signals for O
1s photoelectrons [25,26]. The photoelectron loss-energy spectra of three HfO2 films are shown in
Figure 4. The start of the photoelectron loss-energy spectrum, after setting the energy of the O 1s peak
maximum to zero loss energy, was defined by linearly extrapolating the segment of maximum negative
slope (dash-lines in the Figure 4) to the background level in each of the spectra [29–31]. The bandgap
values of S1, S2, and S3 are as follows: 5.65 eV, 5.57 eV and 5.10 eV, which are in agreement with our
results by variable angle spectroscopic ellipsometry (VASE) in Section 3.4, and previously reported
bandgap values for HfO2 in different references [3,32–37].
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(x < 4), such as the theoretically predicted semi-metallic Hf2O3 [9,39].  
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Samples 
Hf (Composition) O (Composition) Ratios (Hf:O) 
RBS XPS RBS XPS RBS XPS 
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Figure 4. The photoelectron energy-loss spectra from the O 1s peaks of HfO2 films for S1, S2 and S3 by
XPS are shown in (a–c), respectively.

3.2. Rutherford Backscattering Spectrometry (RBS)

The random RBS spectra for three HfO2 layers on Si and their corresponding simulated fits by
SIMNRA are given in Figure 5. The contents of three HfO2 films are determined precisely and listed
in Table 3, and the calculated film thicknesses are shown in Table 5. The arrows (labeled with Hf,
O, and Si) in Figure 5 denote the energy for backscattering from Hf, O, and Si atoms, respectively.
The perfectly symmetrical shapes of the hafnium peaks indicate a negligible film roughness of the
three samples with respect to the mean thickness [38].

Although the RBS probes the entire film and the XPS mainly the surface area of only about 5–10 nm,
they are particularly close to the expected ideal composition value of Hf0.33O0.67. The measurements of
XPS and RBS suggest that the stoichiometric HfO2 films were deposited dominantly on Si. However,
there is still a little deviation between the simulated compositions by RBS and XPS for all samples.
For the S1 and S2 films, from both RBS and XPS, the ratios (Hf:O) are 1:N (N > 2). There exists a
bit over stoichiometry oxygen, which might be caused from the non-lattice oxygen, as discussed in
Section 3.1.2. For the film S3, the ratios (Hf:O) from both RBS and XPS are 1:N (N < 2), indicating
a small over stoichiometry hafnium, which might be attributed from the sub-oxidized Hfx+ (x < 4),
such as the theoretically predicted semi-metallic Hf2O3 [9,39].

Table 3. The compositions of the three HfO2 films on Si obtained by RBS and XPS.

Samples
Hf (Composition) O (Composition) Ratios (Hf:O)

RBS XPS RBS XPS RBS XPS

S1 (Hf08a) 0.30 0.32 0.70 0.68 1:2.33 1:2.13
S2 (Hf08b) 0.34 0.33 0.66 0.67 1:1.94 1:2.03
S3 (Hf08c) 0.35 0.37 0.65 0.63 1:1.86 1:1.70
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shown in (a–c), respectively.

3.3. Grazing Incidence X-ray Diffraction (GIXRD)

Grazing incidence X-ray diffraction (GIXRD) patterns of S1, S2, and S3 with different incident
angles (0.5◦, 1◦, 3◦, and 5◦) are shown in Figure 6, respectively. These spectra demonstrate the
crystallization and the crystallization phases of the thin HfO2 films, and variations from the surface
to the interface corresponding to the incident angle from 0.5◦ to 5◦. The broad GIXRD curves in
Figure 6a indicate that the HfO2 film of S1 is amorphous in nature. This is due to the fact that the low
deposition temperature of 400 ◦C cannot provide sufficient energy to form a crystalline HfO2 layer
by AVD [40–42]. The GIXRD patterns of samples S2 and S3 deposited at substrate temperature of
500 ◦C indicate that these HfO2 films are polycrystalline. The peaks of GIXRD patterns in Figure 6b,c
are indexed by the monoclinic, tetragonal, and orthorhombic phases, correspondingly. It is noted
that orientation indexes of (−111), (002), (200), (−211), (211), and (−221) correspond to the dominant
monoclinic phase of HfO2 film. The low intensity peak at 2θ = 30.5◦ refers to the (−111) orthorhombic
phases [43,44]. There are two peaks at 31.0◦ and 32.3◦, being attributed to the (002) tetragonal and (011)
tetragonal phases of Hf2O3, respectively, according to the calculated data by Kan-Hao Xue et al. [39].

In the Figure 6b,c, the peaks of monoclinic, tetragonal, and orthorhombic phases are clearly seen at
3◦ and 5◦ incidences. When the detection angles were at 1◦ and 0.5◦, the m(−111) peaks of monoclinic
phase are dominant, and the peaks of orthorhombic and tetragonal phase are weak to hardly visible.
In other words, there are three phases deposited at the initial stage of film growth. As the thickness



Crystals 2018, 8, 248 9 of 16

increases, the tetragonal and orthorhombic phases gradually weaken to almost invisible. Recently,
it was reported that HfO2 thin films could be crystallized in both orthorhombic and tetragonal phases
when they are sufficiently thin (<10 nm) and the grain size is small [45,46]. Our investigation revealed
that the HfO2 layer had all monoclinic, tetragonal, and orthorhombic structural phases at its initial
growth stage, but as they grow thicker, the tetragonal and orthorhombic phases become weaker,
and finally almost disappeared.
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Figure 6. Grazing incidence X-ray diffraction (GIXRD) patterns of S1, S2 and S3 with different incident
angles (0.5◦, 1◦, 3◦ and 5◦) are shown in (a–c), respectively.

By the Scherrer formula, the crystallite size of HfO2 thin film of S2 and S3 with different incident
angles can be calculated using the m(−111) peak of the monoclinic phase [47–49].

D =
k·λ

β cos θ
, (1)

where D is the crystallite size, λ is the X-ray wavelength of Cu Kα (0.15418 nm), k is the Scherrer
constant of the order of unity (0.95 for powder and 0.89 for film), β is the full width of peak at half
maximum intensity (FWHM), and θ is the corresponding Bragg diffraction angle [47–49].

Figure 7 exhibits the m(−111) peak patterns of monoclinic phase of S2 and S3 with incident angles
of 0.5◦, 1◦, 3◦ and 5◦, from Figure 6b,c, respectively. The values of the peak position, FWHM and
the calculated crystallite size are listed in Table 4. As the incident angle varies from 5◦ to 0.5◦, i.e.,
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decreasing the depth of detection, the m(−111) peak positions were shifted towards the high angle
side and their FWHMs were increased, both gradually. Also, the crystallite size became smaller with
decreasing the depth of detection. Generally, the crystal lattice with dwindling crystal size tends to
generate phases of higher symmetry [50,51]. These correspond to the appearance of tetragonal and
orthorhombic phases in Figure 6b,c. Multiple mixed crystal phases result in the lower symmetry of the
HfO2 in the depths.
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Figure 7. The m(−111) peak of monoclinic phase of S2 and S3 in GIXRD patterns.

Table 4. Peak position (2θ (degree)), FWHM (β (degree)), and crystallite size (D (nm)). The average
errors estimations are 0.004◦, 0.007◦, and 0.008 nm, respectively.

Incident Angles S2 S3

(Degree) 2θ (Degree) β (Degree) D (nm) 2θ (Degree) β (Degree) D (nm)

0.5◦ 28.720 0.548 14.810
1◦ 28.521 0.521 15.570 28.680 0.605 13.413
3◦ 28.460 0.513 15.811 28.444 0.479 16.932
5◦ 28.449 0.460 17.632 28.426 0.472 17.183

In Table 4, the relatively similar data on the crystallite size (D) for S2 and S3 show that there is no
obvious difference in microcosmic. However, the sharp and intense peaks of S3 in the XRD spectra,
shown in Figures 6 and 7, demonstrate its structure is more orderly than S2 on a large scale. Among
the GIXRD patterns of S1, S2 and S3, the structure of S3 is the most orderly, and its quality is the best
among these three samples, which are consistent with our results from XPS and RBS measurements
and analyses.

3.4. The Variable Angle Spectroscopic Ellipsometry (VASE)

The best fit results of VASE spectra for HfO2/Si sample S3 are presented in Figure 8, where dot
lines depict SE experiment data, and solid lines are the fitting results. The data displayed for two
key ellipsometry parameters, Psi (Ψ) and Delta (∆), are related to the change in amplitude and phase
shift of the impinging E field upon reflection, and are wavelength dependent [52]. In our analyses,
we have considered an interface region with silicate (SiOx), which is observed clearly in the interface
by high-resolution transmission electron microscope (HR-TEM), as shown in Figure 9. The surface
roughness was described by Bruggeman effective medium approximation (EMA) [52,53]. The fitting
structural model were constructed as silicon substrate/interface layer/HfO2 layer/surface roughness.
In order to get more reliable fitting results, the VASE spectra were measured with five incident angles
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of 50◦, 55◦, 60◦, 65◦, and 70◦for the three samples. The fitted thicknesses of roughness, HfO2 layer,
and interface layer for three samples were obtained from VASE.

In Table 5, the thicknesses of the corresponding layer of S1, S2 and S3 are close from different
measurements, including VASE, RBS, HR-TEM, and the measured thicknesses from the grower.
It is more accurate about the thicknesses from HR-TEM and VASE. In comparison with the interface
thicknesses of three samples, higher substrate temperatures, and larger oxygen flow in growth progress
result in thicker interface of silicate.

The fitted optical constants of refractive index n and extinction coefficient k are presented in
Figure 10. As the photon energy is less than 4.70 eV, the HfO2 films are at the transparent region.
However, the extinction coefficients start to increase rapidly at the high-energy edge from 4.70 eV,
resulting from the remarkable subgap absorption [16].
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Figure 8. SE spectra (dot lines) and fitted (solid lines) psi and delta spectra vs photon energy with five
incident angles (50◦, 55◦, 60◦, 65◦ and 70◦) of HfO2/Si sample S3 at RT (300 K).

Table 5. The thicknesses of three samples are obtained by VASE, RBS, HR-TEM, and the measured
thicknesses from grower.

Thickness (nm)

Samples SE RBS HR-TEM Grower

Roughness HfO2 Interface HfO2 HfO2 Interface HfO2

S1 4.71 ± 0.06 65.74 ± 0.08 1.90 ± 0.08 53.33 62.5 2.0 70
S2 3.95 ± 0.05 32.14 ± 0.11 2.59 ± 0.11 32.67 33
S3 4.01 ± 0.05 31.71 ± 0.10 3.37 ± 0.10 40.67 34
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Figure 10. Optical constants of refractive indices (n) and extinction coefficients (k) for three HfO2 films
of S1, S2, and S3 at RT (300 K).

The HfO2 films are known to have an indirect bandgap. Its optical bandgap versus photon
energy hν is proportional to (αhν)1/2, ((αhν)2 for direct bandgap material), where α and hν are the
absorption coefficient and photon energy, respectively [3,14,54–56]. Figure 11 shows plots of (αhν)1/2

versus photon energy for our three HfO2 films, respectively. The values of the optical bandgap Eg

were calculated by the liners of (αhν)1/2 vs. hν extrapolated to the intersection with the photon energy
axis. The bandgaps of HfO2 films of S1, S2 and S3 were determined to be 5.35 eV, 5.34 eV, and 5.26 eV,
respectively. These data are approximate to the values of bandgap obtained from the photoelectron
energy-loss spectra by XPS in Section 3.1. Associated with the analysis results of GIXRD, the better
quality of samples are related to the smaller bandgaps.
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4. Conclusions

Comprehensive analyses have been conducted on a series of HfO2 thin (30–70 nm) films grown on
Si by AVD under different growth conditions via XPS, RBS, GIXRD, and VASE. The film characteristic
parameters of thickness, structures, optical constants, bandgaps etc. were accurately determined.
Important and significant results are obtained:

i. Through XPS measurements and analyses on the Hf 4f peaks and the change of intensity ratio
between Hf4+ and Hfx+ peaks, it was revealed that at the lower oxygen flow rate of 500 sccm,
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the insufficient chemical reaction leaded to more Hf suboxide bonds and non-lattice oxygen
produced at HfO2 film surface; while, as the oxygen flow rate increased to 800 sccm, the quality
of the surface films had been significantly improved.

ii. The deposited HfO2 films on Si were amorphous in nature at the low deposition temperature
of 400 ◦C by AVD, while at higher deposition temperature, polycrystalline HfO2 films
were achieved.

iii. At the initial stage of film growth, the monoclinic, tetragonal, and orthorhombic phases
co-existed. As the film grew thicker, the tetragonal and orthorhombic phases gradually
weakened until the monoclinic phase dominated. The crystallite size of HfO2 film became
smaller from interface to surface, confirmed using varied angle GIXRD.

iv. It was found that for HfO2 film, higher crystallization and more ordered structure correspond
to a smaller bandgap, determined from VASE and XPS, close to single crystal HfO2.

The comprehensive studies demonstrate that appropriate substrate temperature and oxygen flow
are essential to the structure, chemical composition, and optical constants from surface and interface of
the HfO2 films deposited by AVD. This work with integrated experiment measurements and analyses
has enhanced our understanding of AVD-grown HfO2 advanced materials.
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