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Abstract: The ground-state phase diagrams of 4He adsorbed on graphene and graphite are calculated
using quantum simulation methods. In this work, a systematic investigation of the approximations
used in such simulations is carried out. Particular focus is placed on the helium–helium (He–He) and
helium–carbon (He–C) interactions, as well as their modern approximations. On careful consideration
of other approximations and convergence, the simulations are otherwise (numerically) exact. The
He–He interaction as approximated by a sum of pairwise potentials is quantitatively assessed.
A similar analysis is made for the He–C interaction, but more thoroughly and with a focus on
surface corrugation. The importance of many-body effects is discussed. Altogether, the results
provide “reference data” for the considered systems. Using comparisons with experiments and
first-principle calculations, conclusions are drawn regarding the quantitative accuracy of these
modern approximations to these interactions.

Keywords: helium; 4He; graphene; graphite; phase diagram; quantum fluid; quantum solid;
superfluid; supersolid; quantum simulation methods; quantum Monte Carlo

1. Introduction

Quantum fluids and solids (QFS) are characterized by particles that interact through weak
long-range forces, and for which their quantum kinetic energy Ek is much larger than kBT where kB is
the Boltzmann constant and T is the temperature. For the solid phase [1], the quantum motion can lead
to spatial fluctuations about the equilibrium lattice sites that are much larger than in any classical solid.
These phases are important for several reasons, as they are key to the fundamental understanding of
nature, technological applications, and applied interests of many scientific fields.

QFS often consist of lightweight particles (because of their large Ek). Archetypical examples
include hydrogen and helium, which are present in a wide range of thermodynamic conditions [2].
One such system that is the subject of many experimental and theoretical studies is the adsorption of
helium on a carbon (often graphene or graphite) substrate. An example of this system is shown in
Figure 1.

While studies of this system have been performed over several decades now, it is currently of
interest with respect to its possible connection to a supersolid phase of matter [3].

Due to the strong attraction to the substrate, helium atoms adsorb layer by layer through at
least seven distinct ones on graphite [4]. For the first two, equivalent densities are respectively
about 1.5 and 1.1 times that of the bulk liquid, and highly compressed in vertical separation
from the surface. In addition, several phases result from the interaction between the helium
atoms (which will be referred to as the He–He interaction) and their interaction with the substrate
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(the He–C interaction). These have been studied computationally for both graphene [5–10] and graphite
[5,6,11–15]. Experimental references will be made within this context.

(a) He–C system (b) symmetric sites

Figure 1. (a) A cutaway of graphene and adsorbed helium atoms. A single layer is shown, but up
to 16 (as an approximation to graphite) are considered in this work. (b) High-symmetry sites over
the graphene plane. These will be referred to as the hollow, bridge, and top sites. Note that these
results were calculated using the helium–helium (He–He) potential of Przybytek et al. and the isotropic
helium–carbon (He–C) potential (discussed in Section 2).

For the first adsorbed helium layer, the phase diagram is only somewhat understood. It is well
established from heat-capacity [16,17] and neutron-diffraction [18] measurements that a commensurate
(C) solid phase is stable in which one-third (1/3) of the available substrate adsorption sites (the hollow
sites; see Figure 1b) are occupied in a

√
3 ×
√

3 structure (called the C1/3 phase); a representative
density plot of this phase is shown in Figure 2b. At lower densities, it has been suggested (from
experiments [19]) that the solid melts, forming a low-temperature liquid (possibly a superfluid) phase;
an alternative scenario (from calculations [13]) is that the low-density monolayer is comprised of solid
clusters and a low-density vapor.

(a) liquid (b) solid

Figure 2. Density plots of (a) the liquid, at the equilibrium density, and (b) solid (C1/3) phases. See
the text for (general) details. Note that these results were calculated using the He–He potential of
Przybytek et al. and the isotropic He–C potential.

While the general structural features in this region of the phase diagram seem somewhat
established, the properties are less so and controversial. Consider again a possible supersolid phase
(supersolidity is not actually considered herein, but the idea is nonetheless a motivation). For the first
adsorbed layer, this was calculated in [6]. Additional calculations [7], however, suggested that the
superfluidity and structural properties for the related vacancies could be a feature of the assumed
He–C interaction. (The possibility of supersolidity has also been suggested for the second adsorbed
layer [20]; for an opposing view, see [15].)
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In this article, a relatively fundamental question is considered based on these results: Are the
approximations to the interactions used in quantum simulations capable of achieving quantitative
accuracy, even for the phase diagram? This is answered for the adsorption of 4He to graphene and
graphite substrates. The quantitative accuracy of modern approximations to the He–He and He–C
interactions are systematically investigated. These include the recently-proposed He–He pairwise
potential of Przybytek et al. [21,22] and the He–C atom–bond pairwise potential [23] (both are discussed
and motivated further in Section 2). Careful consideration of other approximations and convergence
are made as well. Related questions are also considered: Are the He–C interactions developed for
graphite suitable for studying graphene, and vice versa? In terms of interactions, why does graphite
have a similar phase diagram to graphene? Etc.

This article is outlined as follows. The quantum simulation methods used are discussed next
(Section 2). Results are then presented (Section 3). Following this, they are discussed (Section 4).
Finally, conclusions are drawn and an outlook is provided (Section 5).

2. Methods

The ground-state phase diagrams of 4He adsorbed on graphene and graphite were calculated
using quantum simulation methods. The 4He atoms were modeled quantum mechanically, under the
adiabatic (approximation to the) elimination of the electronic degrees of freedom [24] (a priori, there
is no reason to expect this approximation to be invalid). The carbon atoms, on the other hand, were
modeled as classical, fixed particles.

The solution to the above problem is that of the many-body Schrödinger equation Ψ(r; R) where r
represents the 4He coordinates, parameterized on the carbon ones R,

HΨ(r; R) = EΨ(r; R) (1)

where the HamiltonianH describing the system under the above approximations is

H =

N4He

∑
i=1

−h̄2

2m4He
∇2

i + VHe–He + VHe–C (2)

where the first term sums over the number of 4He atoms N4He, VHe–He and VHe–C are the He–He and
He–C interactions, respectively, and E is the energy.

The He–He interaction was modeled as a sum of pairwise potentials,

VHe–He(r) =
N4He

∑
(i,j)

VHe–He(rij) (3)

where VHe–He(rij) is the potential between 4He atoms separated by a distance rij = |ri − rj|, and
the sum runs over all such pairs (i, j). Forms of VHe–He considered were the HFD-B form [25] with
the parameters of Aziz for helium from [26] and the more modern pairwise form of Przybytek
et al. [21,22,27]. Note that the latter leads to better agreement with the experimental phase diagram of
bulk 4He at all densities. For a recent evaluation of He–He potentials for predicting the ground-state
energies and structural properties of the helium dimer (and trimers), see [28].

The He–C interaction was modeled as a sum of potentials between each 4He atom and
the substrate,

VHe–C(r; R) =

N4He

∑
i=1

VHe–C(ri; R) (4)

where VHe–C(ri; R) is the potential between atom i and the entire carbon lattice (described by R).
Forms of VHe–C considered were the 6–12 isotropic and anisotropic potentials [29] (both which can
be written as a sum of pairwise potentials between helium and carbon atoms) and a more modern
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atom–bond pairwise potential [23] (which considers the interaction as additive atom–bond pairwise
potentials [30] between helium atoms and carbon–carbon bonds [31]). Note that these potentials are
based on different (types of) data; the former are the best fits to that from scattering experiments (for
graphite), whereas the latter is fitted to that from first-principles calculations (for a model system for
graphene). Because these forms of the He–C interaction are (all) decomposed as a sum of pairwise
potentials, they can straightforwardly be (and are commonly) applied to different substrates (graphene
or graphite, respectively). Though, it is an approximation that this can be done with equal accuracy.

Quantum Monte Carlo methods [32] were used to stochastically solve Equation (1).
Both variational (VMC) and diffusion Monte Carlo (DMC) were used, as described below.

VMC was used first to variationally find the optimal parameters of a trial (T) solution ΨT to
Equation (1). That considered was a symmetrized version [33] (and, in particular, its extension to two
dimensions [34]) of the Nosanow–Jastrow form,

ΨT(r; R) =

{ N4He

∏
(i,j)

f (rij)

}{ Ns

∏
J=1

N4He

∑
i=1

g(rxy
iJ )

}{ N4He

∏
i=1

ψ(zi)

}
(5)

where

f (rij) = e
− 1

2

(
bHe–He

rij

)5

is a two-body (atoms i and j) correlation function,

g(rxy
iJ ) = e−αHe–Crxy

iJ
2

is a one-body localization factor, which localizes atom i to the sites J = 1, 2, . . . , Ns where Ns is
number of solid (s) sites and rxy

iJ is the magnitude of the vector ri − RJ projected over the xy-plane,
and ψ(zi) is a localization factor along the z direction. Note that this wavefunction properly and
simultaneously accounts for the Bose–Einstein statistics of 4He, the necessary requirements of spatial
solid order, and localization of particles along z.

ψ was numerically calculated using a Numerov integration scheme [35], and according to the
approach discussed in Section 3.2. The variational parameters of ΨT (Equation (5)) are bHe–He and
αHe–C. The former was determined first and for the liquid phase (i.e., for αHe–C = 0), at the equilibrium
density; the optimal value found was 3.04 Å. Keeping this value fixed, αHe–C was determined for the
solid (C1/3) phase; the value found was 0.43 Å−2.

Following this, DMC was used to project out the ground-state solution Ψ (Equation (1)). Note
that in this case of bosonic particles, the DMC method is (numerically) exact (i.e., to within statistical
uncertainties). VMC, on the other hand, only provides a variational upper-bound to the true energy,
depending on the trial wavefunction. In DMC, this wavefunction acts only as a “guiding” function;
the quality which is related to convergence.

The He–C systems modeled consisted of 21 × 21 unit cells of graphene (882 carbon atoms, and
/layer, in the case of graphite).

2.1. Phase Diagrams

Phase diagrams are presented using the data obtained from the DMC simulations. Note that
all energies are reported per particle (/N4He). Note also that statistics (error bars) were calculated
using blocking.

Liquid (l) energies El as a function of (surface) density σ were fit to the commonly-used form

El(σ) = El(σeq) + B
(

σ− σeq

σeq

)2
+ C

(
σ− σeq

σeq

)3
(6)
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where the equilibrium density is σeq, the energy at this density is El(σeq), and A and B are constants.
The stability of the solid (including as the ground state) and also any region(s) of phase coexistence

(with the liquid) were determined by double-tangent Maxwell constructions.

3. Results

In this section, the importance of the He–He and He–C interactions are first considered. The
focus is on the phase diagram of 4He adsorbed on graphene—in particular, for monolayer coverages
up to and just above the density of the C1/3 phase at σs ≈ 0.0636 Å−2. An extension to graphite is then
made. These results are sufficient to make both qualitative and quantitative comparisons to available
experimental and first-principles data; this though is reserved for Section 4.

Note that, among the following subsections, results are repeated in a few instances. This is only
to simplify the comparative analysis, and will be explicitly remarked on when done so.

3.1. He–He Interaction

Consider first the He–He interaction. In this section, this is considered directly; some aspects
of this will be (indirectly) considered again in Section 3.2. Note that the following results were all
obtained using the isotropic He–C potential to model the associated interaction.

Figure 3 shows the phase diagrams for the two He–He potentials under consideration (Section 2).
Corresponding data is reported in Table 1. Qualitatively, the two potentials produce nearly identical
results. Quantitatively, however, the potential of Przybytek et al. gives an important shift (higher) of
the equilibrium liquid density (see below). The energies are otherwise relatively unaffected.

(a) Aziz (b) Przybytek et al.

Figure 3. Phase diagram of 4He adsorbed on graphene. Energies E per particle /N4He (abbreviated as
/N) as a function of (surface) density σ are shown for the two He–He potentials under consideration.

Table 1. The data which corresponds to Figure 3. Results are shown for the two helium–helium
(He–He) potentials VHe–He under consideration. Note that all quantities have been defined in relation
to Equation (6) or at the start of (this) Section 3, except for the energy of the solid Es.

VHe–He σeq (Å−2) El(σeq) (K) Es(σs) (K) El(σs) (K)

Aziz 0.0379(9) −128.88(2) −128.91(1) −127.8(2)
Przybytek et al. 0.0392(6) −128.88(2) −128.87(1) −127.7(1)

In order to understand the above results, Figure 4 shows the He–He potentials. As expected, they
are very similar; this statement refers to both the locations of the minima and the general shapes on either
side of them. The improvements of Przybytek et al. result in only a small increase in the well depth.
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(a) Aziz (b) Przybytek et al.

(c) difference

Figure 4. The He–He potential as a function of pairwise separation r. The insets in (a,b) show expanded
views of the minima; and (c) shows the difference between potentials, ∆VHe–He(r) = V(b)(r)−V(a)(r),
with the inset showing an expanded view of the region near and just above the minima.

For the remainder of (this) Section 3, results based only on the He–He potential of Przybytek
et al. are shown. In Section 4, it is discussed that this potential leads to an important quantitative
improvement in comparison with experiment. Note that the other aspects of the considered systems
are probably relatively insensitive to this choice in any case.

3.2. He–C Interaction

Consider now the He–C interaction. While the importance of corrugation has been considered
before (either directly (e.g., [14]) or indirectly), thorough quantitative details are considered here.

The phase diagram calculated with each of the three He–C potentials under consideration
(Section 2) is shown in Figure 5. The corresponding data is reported in Table 2.

Table 2. Corresponding data to Figure 5. Results are shown for the three helium–carbon (He–C)
potentials VHe–C under consideration.

VHe–C σeq (Å−2) El(σeq) (K) Es(σs) (K) El(σs) (K)

isotropic 0.0392(6) −128.88(2) −128.87(1) −127.7(1)
anisotropic 0.0355(5) −130.12(1) −131.24(1) −128.6(2)
atom–bond 0.0413(7) −147.32(3) −146.401(9) −146.79(9)
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(a) isotropic (b) anisotropic

(c) atom–bond

Figure 5. Phase diagram of 4He adsorbed on graphene. Results are shown for the three He–C
potentials under consideration. Open circles correspond to liquid data, the dashed lines are fits to
this data (Equation (6)), and filled circles correspond to the C1/3 phase. Note that (a) is the same as
in Figure 3b.

The liquid curves are qualitatively similar for the isotropic and anisotropic potentials. That of
the atom–bond though is different. Quantitatively, each potential has a different relative depth at
the minimum (the equilibrium liquid density). From the low-density side, and from shallowest to
deepest, are the curves for the anisotropic, isotropic, and atom–bond potentials. On the high-density
side, the isotropic and anisotropic curves increase in energy significantly. The atom–bond potential,
however, does not. There are also differences in the equilibrium liquid densities among the potentials.
The anisotropic one results in the lowest density, whereas that of the atom–bond is just a bit higher
than that of the isotropic one. Therefore, while the atom–bond potential looks qualitatively different,
this could be related to the higher equilibrium liquid density shifting the entire curve higher.

The (relative) energies of the solid phase are significantly different for the three potentials. For the
isotropic one (Figure 5a), the energy of the C1/3 structure and the liquid at the equilibrium density are
nearly within error bars (Table 2); therefore, the latter is stable (approximately) only at a single point.
The anisotropic potential (Figure 5b), however, significantly lowers the energy of the C1/3 structure;
the solid is unambiguously the ground state. These results are in good agreement with previous
calculations [5–10], but with using a different He–He potential. The atom–bond potential, however,
raises the energy of the C1/3 structure above that of the liquid. Note that a probable contribution to
this is the shallow increase in energy of the high(er)-density liquid (as discussed above).

To understand the above, it is necessary to consider the quantitative properties of these potentials.
Of particular importance is their corrugation, herein defined to be the relative difference in potential
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between the high-symmetry sites over the graphene plane (Figure 1b). This can be seen by VHe–C(z),
the He–C potential for a single helium atom as a function of its height z over the carbon surface.

The potentials VHe–C(z) over the sites in Figure 1b for each of the He–C potentials are shown
in Figure 6. Qualitatively, they are similar. The well depths increase from top and bridge to the hollow
sites for each. In addition, the (relative) well depths for the bridge and top sites are comparable.
Quantitatively however, those for the hollow sites are noticeably different. That for the anisotropic
potential is largest, whereas that for the atom–bond potential is comparable to the other sites.

(a) isotropic (b) anisotropic

(c) atom–bond

Figure 6. The He–C potential VHe–C(z) as a function of height z over the three symmetric sites of the
graphene plane (Figure 1b). The insets show expanded views of the minima.

Looking at the He–C potential across the entire carbon surface and for all z alone however is
insufficient to explain the observed properties of the phase diagram. Additional information is needed,
in particular the separation of 4He atoms from the surface. For the purpose of this discussion, it turns
out to be sufficient to consider only the equilibrium (most probable) separation ze.

The separation of 4He atoms and their distribution is calculable directly from the simulations
(and presented below). It is insightful, however, to first consider a single-body Schrödinger equation,
with a potential VHe–C,4(z) obtained as a lateral (xy) average (i.e., at each z) of VHe–C(z) over the entire
graphene plane.

Lateral-averaged potentials are shown in Figure 7. This side-by-side comparison shows that
the isotropic and anisotropic potentials are qualitatively similar. The atom–bond potential, however,
exhibits a much larger well depth, with a minimum at a much higher z.

The solutions to the aforementioned Schrödinger equation for each of the potentials are shown
in Figure 8. Shown also are full-simulation results, calculated at the equilibrium liquid densities
(Table 2); note that the same ze resulted also from calculating at the density of the C1/3 structure
(start of Section 3). The corresponding ze and full width at half maximum (FWHM) are reported
in Table 3.
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(a) isotropic (b) anisotropic

(c) atom–bond

Figure 7. Lateral-averaged He–C potential VHe–C,4(z).

(a) isotropic (b) anisotropic

(c) atom–bond

Figure 8. ψ(z) (from Equation (5)). Both single-body and full-simulation results are shown.
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Table 3. The equilibrium separation of 4He atom(s) from the graphene plane ze, and the full width at
half maximum (FWHM) of the associated distribution. Both single-body and full-simulation results
are reported.

(a) single body (b) full simulation

VHe–C ze (Å) FWHM (Å) ze (Å) FWHM (Å)

isotropic 2.87 0.91 2.86 0.64
anisotropic 2.87 0.91 2.87 0.64
atom–bond 3.29 0.91 3.28 0.64

First compare the single-body to full-simulation results. The latter are significantly more narrow
(quantitatively, given by the FWHM). Figure 8 shows that the distributions are also (the most) different
for z > ze. ze, however, as calculated by the two methods, are nearly identical. Consider now the
difference between potentials. Interestingly, the FWHM is identical among them. This suggests that
the shapes of the average potential wells (at least near the minima) are similar; and, hence, so is the
average corrugation. ze is also the same for the isotropic and anisotropic potentials. It is significantly
larger, however, for the atom–bond potential.

Consider now though the potential VHe–C(ze) (i.e., at the equilibrium separation) over the three
symmetric sites (Figure 1b). The relative difference in potential at each of these sites represents the
corrugation (defined above) felt by a 4He atom. These values are reported in Table 4, and differences
relative to the lateral averages are shown in Table 5. There is a clear trend revealed by this table.
The atom–bond potential is the least corrugated, followed by the isotropic and then (most significantly)
anisotropic ones.

Table 4. Relative difference in VHe–C(z) between the three symmetric sites (Figure 1b). Results are
reported at z = ze (Table 3b). Results are reported only to two decimal places.

VHe–C Vtop − Vhollow (K) Vbridge − Vhollow (K) Vtop − Vbridge (K)

isotropic 9.31 7.93 1.38
anisotropic 15.60 13.29 2.31
atom–bond 5.56 4.93 0.63

Table 5. The difference between VHe–C(ze) and its lateral average VHe–C,4(ze).

VHe–C VHe–C,4−Vhollow (K) VHe–C,4−Vbridge (K) VHe–C,4−Vtop (K)

isotropic 5.86 −2.07 −3.45
anisotropic 9.89 −3.40 −5.71
atom–bond 4.19 −0.74 −1.37

Finally, consider these results in the context of the phase diagram (Figure 5). Stronger corrugation
leads to a lower equilibrium liquid density (Table 2). Regarding the stability of the C1/3 structure,
the deeper the (relative) well depth at an adsorption site (the hollow site; see Section 1), the harder
it is to remove an atom (i.e., the more stable the solid). In this context, the results in Table 4 are also
consistent with Figure 5. Differences on the order of kelvins therefore lead to significant quantitative
changes in the phase diagram. This is despite the fact that well depths (at other z) are much deeper.
Note that making more quantitative statements based only on ze is probably not possible.

For the remainder of (this) Section 3, results based on the isotropic He–C potential are shown
(unless otherwise stated). In Section 4, it is argued that this potential is the most accurate,
though caution is needed.
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3.3. Graphite

Nearly all experimental studies of 4He adsorbed on or scattered from a carbon surface are for
graphite. All of the results presented earlier in this section, however, were for graphene. It is natural
to ask whether these results can therefore be compared to experiment (as will be done in Section 4).
It is also natural to ask the converse, of whether a He–C potential developed for graphite (such as the
isotropic and anisotropic ones; see Section 2) might be inaccurate for studying adsorption on graphene.

4He adsorbed on graphite has been considered in prior calculations [5,6,11–15]. Because of this,
and the fact that changing the He–He interaction will likely lead only to minor quantitative changes
in the phase diagram (Section 3.1), results for these potentials are not (re-)reported in this section.
Instead, quantitative details about the corrugation of the isotropic potential (only; see the remarks at
the end of Section 3.2) are considered in the context of this prior work. This, however, motivates once
more consideration of the atom–bond potential. Note that throughout this section, for one graphene
layer, Nlayers = 1, the results are repeated from Section 3.2. Note also that Nlayers ≥ 2 is referred to
as “graphite”.

A representative and recent prior study using the isotropic potential is that of [5]. Therein, it was
found that the phase diagrams of graphene and graphite are qualitatively similar.

In order to understand this result, consider the changes in corrugation when going from graphene
to graphite. Figure 9 shows the change in He–C potential over the three symmetric sites of the top
graphene layer (Figure 1b), as the number of layers is increased. Qualitatively, the potential appears to
uniformly decrease.

(a) hollow (b) bridge

(c) top

Figure 9. VHe–C(z) over the three symmetric sites of the top graphene layer (Figure 1b) of graphite.
Results are shown for increasing numbers of graphene layers, up to 16.

For the equilibrium separations reported in Table 6, more quantitative results are reported in
Tables 7 and 8. There are two significant observations to make from these tables. One is that the
potentials at the symmetric sites all become stronger relative to the lateral average (Table 8), with
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increased repulsion at the bridge and top sites and attraction at the hollow one, with an increasing
number of layers. That is, the corrugation becomes stronger. The other is that the relative well depth at
the hollow site increases significantly more than the repulsion at either of the other two sites.

Table 6. ze and FWHM for graphite. Results are reported for an increasing number of graphene layers
Nlayers, up to 16. Note that results are reported only for the single-body solution (see Section 3.2).

Nlayers ze (Å) FWHM (Å)

2 2.86 0.89
4 2.855 0.89
8 2.855 0.89

16 2.855 0.89

Table 7. Relative difference in VHe–C(z) between the three symmetric sites over the top graphene layer
(Figure 1b) of graphite. Results are reported at z = ze (Table 6).

Nlayers Vtop − Vhollow (K) Vbridge − Vhollow (K) Vtop − Vbridge (K)

2 9.31 7.93 1.38
4 9.59 8.17 1.42
8 9.59 8.17 1.42
16 9.59 8.17 1.42

Table 8. The difference between VHe–C(ze) and VHe–C,4(ze).

Nlayers VHe–C,4−Vhollow (K) VHe–C,4−Vbridge (K) VHe–C,4−Vtop (K)

2 5.85 −2.08 −3.46
4 6.03 −2.14 −3.56
8 6.03 −2.14 −3.56

16 6.03 −2.14 −3.56

Despite the above, there is relatively little change in the equilibrium separation of atoms (Table 6).
This might be due to that there are more bridge and top sites, as compared to hollow ones.

Increasing corrugation suggests that the solid phase will possibly become (more) stabilized
relative to the liquid. This would have the most significant (qualitative) change for the atom–bond
potential (see Section 3.2).

Motivated by this suggestion, the phase diagram calculated with the atom–bond potential,
for an increasing number of layers, is shown in Figure 10. Corresponding data is reported in Table 9.
As suspected, the increased corrugation acts to stabilize the solid. Whereas for graphene the liquid
remains the ground state at the density of the solid, the addition of even one layer causes the energies to
be within error bars. Note that this situation then does not change (e.g., the solid eventually becoming
the ground state), with an increasing number of layers, within the uncertainties of the calculations.
The interpretation (for this He–C potential) could be that the liquid is stable as the ground-state on
graphite, until reaching the density of the solid, where they are then in equilibrium.

Table 9. The corresponding data to Figure 10.

Nlayers σeq (Å−2) El(σeq) (K) Es(σs) (K) El(σs) (K)

1 0.0413(7) −147.32(3) −146.401(9) −146.79(9)
2 0.0417(5) −159.05(1) −158.20(1) −158.25(9)
4 0.0418(5) −161.67(2) −160.78(1) −160.86(9)
8 0.0416(6) −162.05(1) −161.117(9) −161.21(9)
16 0.0417(6) −162.09(2) −161.21(1) −161.26(9)
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Figure 10. Phase diagram of 4He adsorbed on graphite. Note that these results were calculated using
the atom–bond He–C potential.

4. Discussion

The phase diagrams of 4He adsorbed on graphene and graphite were calculated; the results are
presented in Section 3. Particular focus was placed on the importance of the He–He (Section 3.1) and
He–C (Section 3.2) interactions. By careful consideration also of other approximations and convergence
(see Section 2), the simulations are otherwise (numerically) exact.

The He–He interaction (Section 3.1) was found to have only a quantitative effect on the phase
diagram (for the pairwise potentials considered). The He–C interaction (Section 3.2), however,
had much more significant and both qualitative and quantitative effects. The results were found to be
relatively insensitive to the consideration of graphene (Sections 3.1 and 3.2) or graphite (Section 3.3).
They are therefore discussed non-specifically below.

Assuming the validity of the pairwise forms of these potentials (see Section 2), for the moment,
their accuracy may be assessed through comparison to both experiment and first-principles data.

Consider first the comparison to experiment. Several properties of the phase diagram can be
compared. The equilibrium liquid density has been determined from heat-capacity measurements [19],
and is about 0.04 Å−2. While the phase diagrams (Figure 3) for the He–He potentials of Aziz and
Przybytek et al. are similar, the latter is in better quantitative agreement (Table 1) with this. Considering
therefore only the latter potential for this discussion, it is found (Section 3.2) that only the isotropic
and atom–bond He–C potentials are consistent with this (Table 2). The anisotropic potential, however,
does not lead to a ground-state liquid, and has an equilibrium liquid density that is much too low.

Another property that can be compared is the equilibrium separation of atoms. Both the isotropic
and anisotropic He–C potentials agree very well (Table 6) with the experimental value of ze = 2.85 Å [36].
ze for the atom–bond potential, however, is much too large.

The stability of the C1/3 structure is a well-established feature of the experimental phase diagram
(as discussed in Section 1). The atom–bond potential, however, does not exhibit an unambiguous
stable solid phase. Even for the case of graphite (Section 3.3), for which the solid and the liquid
are in equilibrium, it is likely that corrections to the remaining approximations (see below) would
destabilize the solid.

There is also the experimental possibility of an equilibrium between the liquid and C1/3
structure [19]. While none of the considered He–C potentials are consistent with this possibility,
corrections to the remaining approximations (see below) may lead to this, by “softening” the
interactions.

In addition to the phase diagram, it is also possible to compare binding energies. These are known
from scattering experiments [37]. Computationally, these are computed as the energy levels of the
single-body Schrödinger equation (as discussed in Section 3.2). For graphite, this has already been
done for the isotropic and anisotropic [29] and atom–bond [23] potentials. The former two give similar
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results, with all values slightly underestimated. The latter overestimates them, most significantly for
the lowest energy levels.

The above comparisons provide important insight into the approximations to the He–C interaction.
Consider, in particular, the corrugation. That of the atom–bond potential is much too weak; the isotropic
one is a bit too strong; and, finally, that of the anisotropic one is much too strong.

The above insight is consistent with comparisons to first-principles data [23]. While the atom–bond
potential, for example, is quite accurate for the bridge and top sites (Figure 1b), it significantly
underestimates the well depth for the hollow one. Note that the importance of this would also impact
the potential at the equilibrium separation of atoms. The statements above for the relative differences
in the isotropic and anisotropic potentials are also consistent with this.

All of the interactions considered assume that the He–He and He–C interactions can be
approximated separately and by a sum of pairwise potentials (Section 2). An important consideration
is therefore the extent to which many-body effects play a role. Note that with consideration of a fixed
carbon lattice, and the interpretation of the He–C potential as that of a 4He atom with the entire
carbon lattice (Section 2), such “many-body effects” refer to the addition of a 4He atom(s) to the
above interactions.

Consider first the many-body effects in the He–He interaction. The first correction to this would be
that of He–He–He. The aforementioned (Section 2) recent evaluation [28] of different He–He potentials
found, for three considered models of three-body interactions, that the effect for 4He3 was less than
0.001 K. It therefore seems unlikely that there would be quantitative changes to the results reported
herein, based on this or higher-order interactions.

Another consideration is the many-body effects related to the He–C interaction, the first correction
being that of He–He–C; in other words, a substrate-mediated change in the He–He interaction.
A standard approximation to this, meaningful for graphite, is given by the so-called McLachlan
interaction [38]. This has also been considered in prior work [5] (see also Section 3.2). Based on this,
the energy of the liquid at its equilibrium density is increased by 0.20(1) K, while that of the solid is
increased by 0.37(1) K. Assuming that the former can be considered as a uniform shift in the liquid
curve of the phase diagram, it can be qualitatively said that this correction would soften the He–He
interaction, and destabilize the solid.

Quantitatively, the many-body corrections to the He–C interaction would be enough to play
an important role in the phase diagram. Even a relative shift in the stability of the solid by 0.17(1) K,
based on the above discussion, would be enough to make the liquid the equilibrium ground-state for
the isotropic potential (see Table 2), and lead to a coexistence region with the solid [19].

5. Conclusions

The phase diagrams of 4He adsorbed on graphene and graphite were calculated using quantum
simulation methods. By careful consideration of convergence, the methods used (Section 2) are
(numerically) exact up to the approximations of the He–He and He–C interactions (and the adiabatic
approximation). These were investigated in detail in Sections 3 and 4.

The results were shown to be qualitatively insensitive to the form of modern pairwise He–He
potentials, which has now been calculated and fit to an analytical form (Przybytek et al.) with high
accuracy. Quantitatively, however, the results (Section 3.1) are slightly improved (Section 4). It was
discussed (Section 4) that many-body effects are not likely to change this.

The He–C interaction, however, plays a significant role both qualitatively and quantitatively.
Modern pairwise potentials all give significantly different results (Section 3.2). Consider first though
that such potentials do all give similar lateral-averaged shapes (Figure 7). Therefore, the average
corrugation, irrespective of the potential, seems correct. The phase diagram (Figure 5), however,
depends significantly on the choice of potential. Based on the discussion in Section 4, it seems clear that
the corrugation of the anisotropic potential is much too strong, and that of the atom–bond potential
too weak. The isotropic potential is also a bit too strong, although it seems to be the most accurate.
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Many-body effects though are also expected (Section 4) to play an important quantitative role. Details
on the corrugation and many-body effects seem to be needed on the order of kelvins. This is far below
the accuracy of modern approximations to the He–C interaction.

Only phase diagrams were considered in this work. Not considered, for example, were properties
of the systems. A notable example is superfluidity, and its possible leading to a supersolid phase
(as discussed in Section 1). Quantitative accuracy for such properties may be even more challenging
than for the phase diagram though, because of sensitivities to the He–He and He–C interactions.
Therefore, considering them without a more accurate He–C interaction hardly seems worthwhile.

Looking forward, it is clear that what is needed is a better understanding of and a more accurate
approximation to the He–C interaction. This includes both in the pairwise interaction between a helium
atom and the carbon surface, and any substrate-mediated change in the He–He interaction. Treating
the carbon atoms quantum mechanically [10] will also be important. Only with these considerations
can quantitatively meaningful statements be made. These will be the subjects of future work.

Author Contributions: J.M.M. proposed and supervised the research. All authors performed the calculations,
analyzed the results, and wrote the paper.

Acknowledgments: Jeffrey M. McMahon acknowledges startup support from Washington State University and
the Department of Physics and Astronomy thereat.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Cazorla, C.; Boronat, J. Simulation and understanding of atomic and molecular quantum crystals.
Rev. Mod. Phys. 2017, 89, 035003, doi:10.1103/RevModPhys.89.035003. [CrossRef]

2. McMahon, J.M.; Morales, M.A.; Pierleoni, C.; Ceperley, D.M. The properties of hydrogen and helium under
extreme conditions. Rev. Mod. Phys. 2012, 84, 1607–1653, doi:10.1103/RevModPhys.84.1607. [CrossRef]

3. Boninsegni, M.; Prokof’ev, N.V. Colloquium: Supersolids: What and where are they? Rev. Mod. Phys. 2012,
84, 759–776, doi:10.1103/RevModPhys.84.759. [CrossRef]

4. Zimmerli, G.; Mistura, G.; Chan, M.H.W. Third-sound study of a layered superfluid film. Phys. Rev. Lett.
1992, 68, 60–63, doi:10.1103/PhysRevLett.68.60. [CrossRef] [PubMed]

5. Gordillo, M.C.; Boronat, J. 4He on a Single Graphene Sheet. Phys. Rev. Lett. 2009, 102, 085303,
doi:10.1103/PhysRevLett.102.085303. [CrossRef] [PubMed]

6. Gordillo, M.C.; Cazorla, C.; Boronat, J. Supersolidity in quantum films adsorbed on graphene and graphite.
Phys. Rev. B 2011, 83, 121406, doi:10.1103/PhysRevB.83.121406. [CrossRef]

7. Kwon, Y.; Ceperley, D.M. 4He adsorption on a single graphene sheet: Path-integral Monte Carlo study.
Phys. Rev. B 2012, 85, 224501, doi:10.1103/PhysRevB.85.224501. [CrossRef]

8. Happacher, J.; Corboz, P.; Boninsegni, M.; Pollet, L. Phase diagram of 4He on graphene. Phys. Rev. B 2013,
87, 094514, doi:10.1103/PhysRevB.87.094514. [CrossRef]

9. Gordillo, M.; Boronat, J. Phase Diagrams of 4He on Flat and Curved Environments. J. Low Temp. Phys. 2013,
171, 606–612. [CrossRef]

10. Gordillo, M.C. Diffusion Monte Carlo calculation of the phase diagram of 4He on corrugated graphene.
Phys. Rev. B 2014, 89, 155401, doi:10.1103/PhysRevB.89.155401. [CrossRef]

11. Gottlieb, J.M.; Bruch, L.W. Ground state of monolayer 4He/graphite: Quantum liquid versus quantum solid.
Phys. Rev. B 1993, 48, 3943–3948, doi:10.1103/PhysRevB.48.3943. [CrossRef]

12. Whitlock, P.A.; Chester, G.V.; Krishnamachari, B. Monte Carlo simulation of a helium film on graphite.
Phys. Rev. B 1998, 58, 8704–8715, doi:10.1103/PhysRevB.58.8704. [CrossRef]

13. Pierce, M.E.; Manousakis, E. Monolayer Solid 4He Clusters on Graphite. Phys. Rev. Lett. 1999, 83, 5314–5317,
doi:10.1103/PhysRevLett.83.5314. [CrossRef]

14. Pierce, M.E.; Manousakis, E. Role of substrate corrugation in helium monolayer solidification. Phys. Rev. B
2000, 62, 5228–5237, doi:10.1103/PhysRevB.62.5228. [CrossRef]

15. Corboz, P.; Boninsegni, M.; Pollet, L.; Troyer, M. Phase diagram of 4He adsorbed on graphite. Phys. Rev. B
2008, 78, 245414, doi:10.1103/PhysRevB.78.245414. [CrossRef]

https://doi.org/10.1103/RevModPhys.89.035003
http://dx.doi.org/10.1103/RevModPhys.89.035003
https://doi.org/10.1103/RevModPhys.84.1607
http://dx.doi.org/10.1103/RevModPhys.84.1607
https://doi.org/10.1103/RevModPhys.84.759
http://dx.doi.org/10.1103/RevModPhys.84.759
https://doi.org/10.1103/PhysRevLett.68.60
http://dx.doi.org/10.1103/PhysRevLett.68.60
http://www.ncbi.nlm.nih.gov/pubmed/10045112
https://doi.org/10.1103/PhysRevLett.102.085303
http://dx.doi.org/10.1103/PhysRevLett.102.085303
http://www.ncbi.nlm.nih.gov/pubmed/19257750
https://doi.org/10.1103/PhysRevB.83.121406
http://dx.doi.org/10.1103/PhysRevB.83.121406
https://doi.org/10.1103/PhysRevB.85.224501
http://dx.doi.org/10.1103/PhysRevB.85.224501
https://doi.org/10.1103/PhysRevB.87.094514
http://dx.doi.org/10.1103/PhysRevB.87.094514
http://dx.doi.org/10.1007/s10909-012-0790-5
https://doi.org/10.1103/PhysRevB.89.155401
http://dx.doi.org/10.1103/PhysRevB.89.155401
https://doi.org/10.1103/PhysRevB.48.3943
http://dx.doi.org/10.1103/PhysRevB.48.3943
https://doi.org/10.1103/PhysRevB.58.8704
http://dx.doi.org/10.1103/PhysRevB.58.8704
https://doi.org/10.1103/PhysRevLett.83.5314
http://dx.doi.org/10.1103/PhysRevLett.83.5314
https://doi.org/10.1103/PhysRevB.62.5228
http://dx.doi.org/10.1103/PhysRevB.62.5228
https://doi.org/10.1103/PhysRevB.78.245414
http://dx.doi.org/10.1103/PhysRevB.78.245414


Crystals 2018, 8, 202 16 of 17

16. Bretz, M.; Dash, J.G.; Hickernell, D.C.; McLean, E.O.; Vilches, O.E. Phases of He3 and He4 Monolayer Films
Adsorbed on Basal-Plane Oriented Graphite. Phys. Rev. A 1973, 8, 1589–1615, doi:10.1103/PhysRevA.8.1589.
[CrossRef]

17. Bretz, M.; Dash, J.G.; Hickernell, D.C.; McLean, E.O.; Vilches, O.E. Erratum: Phases of He3 and
He4 monolayer films adsorbed on basal-plane oriented graphite. Phys. Rev. A 1974, 9, 2814–2814,
doi:10.1103/PhysRevA.9.2814.2. [CrossRef]

18. Carneiro, K.; Ellenson, W.D.; Passell, L.; McTague, J.P.; Taub, H. Neutron-Scattering Study of the Structure
of Adsorbed Helium Monolayers and of the Excitation Spectrum of Few-Atomic-Layer Superfluid Films.
Phys. Rev. Lett. 1976, 37, 1695–1698, doi:10.1103/PhysRevLett.37.1695. [CrossRef]

19. Greywall, D.S.; Busch, P.A. Heat capacity of fluid monolayers of 4He. Phys. Rev. Lett. 1991, 67, 3535–3538,
doi:10.1103/PhysRevLett.67.3535. [CrossRef] [PubMed]

20. Crowell, P.A.; Reppy, J.D. Reentrant superfluidity in 4He films adsorbed on graphite. Phys. Rev. Lett. 1993,
70, 3291–3294, doi:10.1103/PhysRevLett.70.3291. [CrossRef] [PubMed]

21. Przybytek, M.; Cencek, W.; Komasa, J.; Łach, G.; Jeziorski, B.; Szalewicz, K. Relativistic and
Quantum Electrodynamics Effects in the Helium Pair Potential. Phys. Rev. Lett. 2010, 104, 183003,
doi:10.1103/PhysRevLett.104.183003. [CrossRef] [PubMed]

22. Przybytek, M.; Cencek, W.; Komasa, J.; Łach, G.; Jeziorski, B.; Szalewicz, K. Erratum: Relativistic and
Quantum Electrodynamics Effects in the Helium Pair Potential [Phys. Rev. Lett. 104, 183003 (2010)].
Phys. Rev. Lett. 2012, 108, 129902, doi:10.1103/PhysRevLett.108.129902. [CrossRef]

23. Bartolomei, M.; Carmona-Novillo, E.; Hernández, M.I.; Campos-Martínez, J.; Pirani, F. Global Potentials
for the Interaction between Rare Gases and Graphene-Based Surfaces: An Atom–Bond Pairwise Additive
Representation. J. Phys. Chem. C 2013, 117, 10512–10522, doi:10.1021/jp401635t. [CrossRef]

24. Born, M. Die Gültigkeitsgrenze der Theorie der idealen Kristalle und ihre Überwindung. In
Festschrift zur Feier des Zweihundertjährigen Bestehens der Akademie der Wissenschaften in Göttingen; Springer:
Berlin/Heidelberg, Germany, 1951; pp. 1–16.

25. Aziz, R.A.; Chen, H.H. An accurate intermolecular potential for argon. J. Chem. Phys. 1977, 67, 5719–5726,
doi:10.1063/1.434827. [CrossRef]

26. Aziz, R.A.; Janzen, A.R.; Moldover, M.R. Ab Initio Calculations for Helium: A Standard for Transport
Property Measurements. Phys. Rev. Lett. 1995, 74, 1586–1589, doi:10.1103/PhysRevLett.74.1586. [CrossRef]
[PubMed]

27. Cencek, W.; Przybytek, M.; Komasa, J.; Mehl, J.B.; Jeziorski, B.; Szalewicz, K. Effects of adiabatic, relativistic,
and quantum electrodynamics interactions on the pair potential and thermophysical properties of helium.
J. Chem. Phys. 2012, 136, 224303, doi:10.1063/1.4712218. [CrossRef] [PubMed]
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