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Abstract: A fully vectorial algorithm based on the surface integral equation method for the modelling
of leaky modes in photonic crystal fibers (PCFs) by solely solving the complex propagation constants
of characteristic equations is presented. It can be used for calculations of the complex effective index
and confinement losses of photonic crystal fibers. As complex root examination is the key technique
in the solution, the new algorithm which possesses this technique can be used to solve the leaky
modes of photonic crystal fibers. The leaky modes of solid-core PCFs with a hexagonal lattice of
circular air-holes are reported and discussed. The simulation results indicate how the confinement
loss by the imaginary part of the effective index changes with air-hole size, the number of rings of
air-holes, and wavelength. Confinement loss reductions can be realized by increasing the air-hole
size and the number of air-holes. The results show that the confinement loss rises with wavelength,
implying that the light leaks more easily for longer wavelengths; meanwhile, the losses are decreased
significantly as the air-hole size d/Λ is increased.
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1. Introduction

Leaky modes are modes that propagate in the guide irradiating power and decay exponentially
along the direction of propagation. In classical optical fibers, two types of leaky modes are known:
tunneling leaky modes that arise because of the curvature of the boundary between the core and
the cladding and refracting leaky modes that arise from the beams that fall within the boundary
with angles smaller than the critical angle [1]. From historical records, the leaky mode concept
was first described in 1956 by Marcuvitz [2], who noted the close analogy to quantum-mechanical
tunneling. He stated that this solution to the wave equation gives a field representation in a center
range with a complex propagation constant, but that the field becomes infinite at the infinite transverse
spatial limit [3]. In 1961, Cassedy and Cohn obtained the first measurement of a leaky mode and
confirmed the existence of a leaky wave due to a line current source above a grounded dielectric
slab [4]. In general, we notice that leaky modes were first described in the context of the textbook by
Snyder and Love [1]. The analysis of leaky modes has been practical for designing various photonic
and optoelectronic devices, such as depressed inner cladding single-mode fibers [5–7], sensors [8–10],
and bent fibers [11–13].

Photonic crystal fibers (PCFs), which are also called holey fibers or microstructured optical fibers,
have aroused great attention since they have the attractive advantage of control of light [14–16].
PCFs consist of a single material, typically silica, with a lattice of multiple air-holes around the core
running along the fiber axis. The cladding of the fiber is comprised of a two-dimensional periodic array
of air-holes at the transverse section, and the core is a central defect formed by breaking the periodic
structure. It is known that certain periodic structures with broken periodicity exhibit the phenomenon
of light localization at defects [17]. The most common type of PCF is solid-core PCF because it is
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easy to fabricate. For solid-core PCFs, the guidance mechanism is due to modified total internal
reflection, which is similar to what occurs in conventional fibers. PCFs exhibit a lot of remarkable
properties, such as an endless single-mode, unusual chromatic dispersion effect, design flexibility,
supercontinuum generation, an extremely large or small effective core area at the single-mode region,
and high nonlinearity [18–21]. These distinctive features of PCFs have promising applications in a
variety of fields, from communication fiber links to optoelectronic devices. In the solid-core PCFs that
this paper will investigate, the modes that decay while propagating are referred to as leaky modes [22].
Since the refractive index profile of a solid-core PCF is similar to the W-type waveguide [3], there are
no truly bound modes due to the PCF’s structure with outermost cladding of a high refractive index
which is equal to that of the fiber core. Although light is mostly confined in the core of the PCF, some
light can leak out through the channels between adjacent air-holes due to the cladding having a finite
number of air-hole rings and so generally modes in PCFs are leaky. Therefore, confinement losses are
unavoidable even with the nonexistence of material absorption or scattering losses. Computationally,
confinement loss is modelled through determining the leaky mode solutions of the vector wave
equation corresponding to a complex refractive index or propagation constant [22].

An efficient numerical approach based on the surface integral equation method (SIEM) [23–26] is
used to examine the propagation properties of PCFs. The SIEM provides very accurate results that
only need an extremely small number of unknowns. The SIEM studies PCFs that are composed of
two homogeneous media and only needs to consider the fields at the interface between the two media.
Consequently, the computational unknowns and the degrees of freedom can be significantly reduced,
and the computational efficiency will be enhanced without the loss of accuracy. Nevertheless, these
papers only focus on studying guided modes. In this paper, a fully vectorial algorithm based on the
SIEM is developed for the analysis of leaky modes in PCFs. This allows for a significant expansion in
the applied aspects of the SIEM.

In recent years, several numerical techniques have been applied to leaky modes of PCFs. In 2001,
White et al. [27] calculated the confinement loss of a leaky mode by using the multipole method,
which is used for the accurate computation of the complex propagation constant of PCFs with a finite
number of air-holes, but it is confined to structures that only have circular holes. The finite element
method (FEM) has successfully been used to model the leaky modes of PCFs [28–30]. FEM is accurate
and versatile, but a large number of unknowns are unavoidably needed since the cross-section of
PCFs must be discretized into many finite elements. Therefore, FEM requires extensive computing
resources, such as memory and computing time. The beam propagation method is able to evaluate the
confinement loss of leaky modes [31]; however, this method is numerically intensive and can present
difficulties in distinguishing between modes with similar propagation constants.

In this work, there is proposed a fully vectorial algorithm based on the surface integral equation
method that is able to calculate the confinement loss and complex effective refractive index of PCFs.
The new algorithm can model the leaky modes of PCFs with a finite number of air-holes. It can analyze
how the confinement loss by the imaginary part of the effective refractive index changes with air-hole
size, the number of air-hole rings, and wavelength.

2. Surface Integral Equation Formulation

A photonic crystal fiber is described by two homogeneous regions that are the air in the holes and
the silica in the background, respectively. Suppose F represents any field components in Cartesian
coordinates, then F is the solution of the Helmholtz equation at every individual region:

∇2
t F(

⇀
r ) + k2F(

⇀
r ) = 0 (1)
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where∇2
t denotes the Laplacian operator for the transverse plane. Using Green’s formula, Equation (1)

can be converted to a surface integral as:
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where the Γ denotes the boundary contour of two homogeneous regions and d/dn denotes an inward

normal derivative. The two-dimensional Green’s function G is given by G = (−j/4)H(2)
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can be acquired by moving the observation point
⇀
r to the boundary, where P

∫
indicates the Cauchy

principle value integral with the singularity at the point of
⇀
r =

⇀
r
′

being removed.

k = {

√
k2

0n2 − β2 k2
0n2 > β2

−j
√

β2 − k2
0n2 β2 > k2

0n2
(4)

Here, k0 is the free space wave number; β is the propagation constant; and n is the refractive index of
the homogeneous region. Note that k may be a real or pure-imaginary quantity in Ref. [23], but it can
be in the form of a complex value due to the fact that β is also a complex value for a leaky mode in
this paper. The fully vectorial algorithm for the modelling of leaky modes in photonic crystal fibers
by solely solving for the complex propagation constants of the characteristic equation is presented.
As complex root examination is the key technique in the solution, this new algorithm possesses this
technique and can be utilized for solving the leaky modes of photonic crystal fibers. For leaky modes,
the complex transverse wave number, k, is determined by

k = ±
√

k2
0n2 − β2. (5)

Because the transverse magnetic fields are continuous at a permittivity discontinuity, this way
is of considerable convenience in utilizing the transverse magnetic fields (Hx and Hy), where the

longitudinal fields (Hz and Ez) can be acquired respectively from the relations of jωε
→
E = ∇×

→
H and

∇ ·
→
H = 0 as

jωEz =
1
ε

(
∂Hn

∂l
− ∂Hl

∂n

)
(6)

jβHz =
∂Hn

∂n
− ∂Hl

∂l
(7)

where Hn and Hl stand for the normal and the tangential components of the magnetic field, respectively.
Meanwhile, d/dn and d/dl represent the partial derivatives along the normal and the tangential
directions, respectively. Explicitly, from the coordinate transformation, Hn and Hl can be calculated by
Hx and Hy as

Hn = Hx cos θ + Hy sin θ (8)

Hl = Hx sin θ − Hy cos θ. (9)

Here, θ is the angle between the inward normal direction and the x axis. Therefore, a complete
depiction of the entire guidance structure by Hx and Hy and their normal derivatives at the boundary
can be obtained from Equations (6) and (7). From the integral Equations (2) and (3), the propagation



Crystals 2018, 8, 177 4 of 9

characteristics and corresponding field distributions are acquired by matching the continuity of the Ez

and Hz fields.

3. Numerical Result

To demonstrate the validity of the fully vectorial algorithm based on the SIEM, the confinement
loss of an all-silica PCF depicted in Figure 1a is calculated. The air-hole pitch Λ is 6.75 µm, the air-hole
diameter d is 5.0 µm, λ = 1.45 µm, and ns = 1.45. Figure 1b,c show the magnetic-field vector
distribution of the real part and the field intensity distribution of the imaginary part, respectively,
of the fundamental mode HE11 for a PCF of two air-hole rings. It also can solve the transverse
field distributions of the real part and the imaginary part of the TE01, HE21, and TM01 modes
(second-order mode) shown in Figure 2.
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Figure 1. (a) Schematic of the solid-core photonic crystal fiber (PCF) with two air-hole rings, where Λ
is the air-hole pitch, d is the air-hole diameter, and the background material is silica. (b) The transverse
magnetic-field vector distribution of the real part, and (c) the field intensity distribution of the imaginary
part of HE11 mode (fundamental mode) for the PCF with 2 air-hole rings (18 air-holes).
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Figure 2. Transverse magnetic-field vector distributions of the real part of (a) TE01, (b) HE21,
and (c) TM01 modes (second-order mode) for the PCF. Field intensity distribution of the imaginary
part of (d) TE01, (e) HE21, and (f) TM01 modes for the PCF with 2 air-hole rings (18 air-holes).
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Table 1 shows a direct comparison of these modes with precise results obtained by the multipole
method [27]. Each mode can be qualitatively examined by plotting the modal fields. The propagation
constant, β, is related to the effective index of the propagation mode neff by β = (2π/λ)·neff.
This algorithm yields the complex effective index, and thus the confinement losses can be calculated as
follows [32]:

Loss (confinement loss : dB/m) =
20× 106

ln10
2π

λ
Im[ne f f ]. (10)

Clearly, the results show significant agreement between the present algorithm and the multipole
method in both the confinement loss and complex effective index shown in Table 1. By convergence
discussions, it will be able to obtain more accurate solutions and save computational time. Figure 3
shows the dependence of the relative error on the number of segments for the two air-hole ring
configuration. The PCF cross-section is illustrated in the inset of Figure 3. The number of segments
used for discretizing the boundary of all air-holes is an important numerical parameter relative
to the accuracy and speed of calculation. It is shown that the relative error rapidly converges
with a larger number of segments. From Figure 3, the error shows a small variation when the
number of segments exceeds 400. In practice, the number of segments is 432 for modelling PCFs
with 2 air-hole rings (18 air-holes), which discretize the boundary of each air-hole by 24 segments.
Therefore, the total number of unknowns is only 28 × 18 × 2 = 864 for the 18 air-hole configuration
(two unknowns, Hx and Hy, are assigned to each segment). The method has been beneficial in
providing high computational efficiency.

Table 1. Comparison of mode class, complex effective index, and confinement loss for the algorithm
based on the surface integral equation method (SIEM) and the multipole method [27] in Figure 1a.

Mode Class
SIEM

neff

Loss
(dB/m)

Multipole Method
neff

HE11 1.4453471152 + i2.684 × 10−8 1.01 1.4453471163 + i2.578 × 10−8

TE01 1.4384402631 + i4.062 × 10−7 15.29 1.4384402675 + i4.101 × 10−7

HE21 1.4383130349 + i6.974 × 10−7 26.25 1.4383130373 + i6.898 × 10−7

TM01 1.4382295027 + i1.256 × 10−6 47.28 1.4382295029 + i1.268 × 10−6
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Figure 3. Dependence of the relative error on the number of segments for the 2 air-hole ring
(18 air-holes) configuration.

Figure 4 shows the dispersion curves (complex effective index versus wavelength) of the
fundamental leaky mode for a PCF with 2 air-hole rings (18 air-holes), where nsilica = 1.45 and
d/Λ = 0.74 (air-hole size). Because of the finite number of rings of air-holes in the PCF, all modes are
leaky and confinement losses can be acquired from the imaginary part of neff. This indicates that the
location of the leaky modes is situated in the imaginary part of neff curve.
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Figure 4. Dispersion curves of the fundamental leaky mode for a PCF with two air-hole rings
(18 air-holes), where Λ = 6.75 µm, d = 5 µm, and nsilica = 1.45.

A schematic cross-section of a solid-core PCF with a hexagonal lattice of circular air-holes
(refractive index nh (air) = 1) is shown in Figure 5a. It is formed by 4 air-hole rings (60 air-holes)
embedded in silica (refractive index nsilica = 1.46), where d/Λ is the air-hole size (d is the air-hole
diameter; Λ is the air-hole pitch). Figure 5b demonstrates the intensity profile of the fundamental leaky
mode for the PCF with 2 air-hole rings (18 air-holes) having d/Λ = 0.4 and λ/Λ = 0.5. The hexagonal
symmetry and the leakage due to the interruption of the air-holes can be clearly seen. The field
confinement depends on the air-hole size and on the number of rings of air-holes. From the results of
the mode class in Table 1, it can be found that the high-order modes have greater confinement loss
than the fundamental mode.
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Figure 5. (a) Schematic cross-section of the PCF with 4 air-hole rings (60 air-holes). The d/Λ is the
air-hole size, and the background material is silica. (b) Intensity profile of the fundamental leaky mode
for a PCF having 2 air-hole rings (18 air-holes), d/Λ = 0.4 and λ/Λ = 0.5.

Figure 6 displays the wavelength responses of the neff of the fundamental mode for a 2 ring,
18 air-hole PCF with nsilica = 1.46 and d/Λ = 0.6. It is shown that the real part of neff decreases
and the imaginary part of neff increases significantly as the wavelength is increased. Consequently,
the confinement loss increases significantly in a wide wavelength range.

Figure 7 indicates the confinement losses of an all-silica PCF versus the air-hole size d/Λ for
various numbers of air-hole rings at λ/Λ = 0.5. The confinement losses are monotonically decreased
with the air-hole size and the number of air-hole rings. It can be seen that both a small air-hole size and
a smaller number of air-holes induce a larger loss, but reduce rapidly if the air-hole size is enlarged or
if a larger number of air-holes are employed. The inset of Figure 7 shows the refractive index profile.
The refractive index n1 of the core is equal to the outer cladding, while the refractive index n2 of the
inner cladding is smaller than n1. The radii of the core and inner cladding are indicated by a and b,
respectively. Due to the PCF’s structure with outermost cladding of a high refractive index which
is equal to the fiber core, there are no truly bound modes. Because of the low refractive index that
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air-holes offer the field confinement, the reduction of loss by increasing the air-hole size or the number
of air-holes demonstrates that the inner cladding has a lower refractive index or a larger radius.Crystals 2018, 8, x FOR PEER REVIEW  7 of 9 
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Figure 8 shows the loss spectra of various air-hole sizes d/Λ for a 3 air-hole ring (36 air-holes)
PCF. They indicate that the confinement loss increases with wavelength, implying that a light leak
increases more easily for longer wavelengths. It can be found that the losses decrease significantly as
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4. Conclusions

In this paper, there is presented a fully vectorial algorithm based on the surface integral equation
method for modelling leaky modes in photonic crystal fibers by solely solving for complex propagation
constants of characteristic equations. This method leads to an efficient code that is used to deal with
a finite number of air-holes. It can be used for calculations of the full complex effective index and
confinement loss of photonic crystal fibers. As complex root examination is the key technique in the
solution, the new algorithm which possesses this technique can be used for solving the leaky modes
of photonic crystal fibers. Due to the PCF’s structure with outermost cladding of a high refractive
index which is equal to the fiber core, there are no truly bound modes so that all modes are leaky.
The leaky modes of solid-core PCFs with a hexagonal lattice of circular air-holes are reported and
discussed. The simulation results indicate how the confinement loss by the imaginary part of the
effective index changes with air-hole size, the number of air-hole rings (or the number of air-holes),
and wavelength. It can be understood that a reduction of confinement loss by increasing the air-hole
size and the number of air-holes demonstrates that the inner cladding has a lower refractive index or a
larger radius. The results show that the confinement loss rises with wavelength, implying that a light
leak increases more easily for longer wavelengths; meanwhile, the losses decrease significantly as the
air-hole size d/Λ is increased.
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