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Abstract:



A novel hexanuclear Co(II) coordination compound with a nonsymmetrical Salamo-type bisoxime ligandH4L, namely [{Co3(HL)(MeO)(MeOH)2(OAc)2}2]·2MeOH, was prepared and characterized by elemental analyses, UV–vis, IR and fluorescence spectra, and X-ray single-crystal diffraction analysis. Each Co(II) is hexacoordinated, and possesses a distorted CoO6 or CoO4N2 octahedrons. The Co(II) coordination compound possesses a self-assembled infinite 2D supramolecular structure with the help of the intermolecular C–H···O interactions. Meanwhile, the photophysical properties of the Co(II) coordination compound were studied.
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1. Introduction


Salen (N,N′-Disalicylideneethylenediamine) and its derivatives play an important role in inorganic chemistry [1,2,3,4,5,6,7,8,9,10], which are gained via the condensation reaction of diamines with salicylaldehyde or its analogues, and can coordinate to transition metal ions in a tetradentate chelating mode to form a neutral metal coordination compound [11,12,13,14,15,16,17,18]. Such coordination compounds have been extensively investigated as nonlinear optical materials [19], catalysts [20,21], strong activities with DNA, and so on [22,23,24,25,26,27,28,29]. In addition, some of these coordination compounds possess interesting magnetic properties [30,31,32]. Meanwhile, supramolecular chemistry has recognized Salen-type coordination compounds because of intermolecular hydrogen bonding interactions, C–H···π and π···π stacking interactions consist in chelate rings and the associated aromatic rings [33,34,35,36,37,38,39,40,41,42]. In recent years, our focus switched to the syntheses, structures, and properties of metal coordination compounds with Salamo (2,2′-[Ethylenedioxybis(nitrilomethyli-dyne)]diphenol) and its various derivatives derived from its constitutional units with different substituent groups [43,44,45,46,47,48,49]. The structural motifs of these coordination compound molecules may be affected by several factors, such as the performance of the ligands, the property of the central atoms, anion effects, solvent effects, and so on[50,51,52,53,54,55,56,57,58,59]. Transition metal Salamo-type coordination compounds have aroused widespread concerns for their photophysical properties [60,61,62,63,64,65,66]. Previous studies have been carried out on the mononuclear coordination compounds [67,68]. However, there are relatively few studies on multinuclear Salamo-type bisoxime coordination compounds. Though mono-, di-, and trinuclear Co(II) coordination compounds have been reported [69,70,71], the study of the synthesis and corresponding properties of multinuclear Co(II) coordination compounds are relatively few [72,73,74].



The purpose of the present work is the structural characterization of polynuclear Co(II) coordination compounds derived of nonsymmetrical Salamo-type bisoxime ligands. Here, the ligand H4L and its corresponding hexanuclear Co(II) coordination compound ([{Co3(HL)(MeO)(MeOH)2(OAc)2}2]·2MeOH) was gained. In addition, the supramolecular buildings and photophysical behaviors of the Co(II) coordination compound are discussed.




2. Experimental


2.1. Materials and Physical Measurements


All chemicals were of analytical reagent grade. Elemental analyses for C, H, and N were gained using a GmbH VarioEL V3.00 automatic elemental analysis instrument (Berlin, Germany), elemental analysis for Co was detected by an IRIS ER/S·WP-1 ICP atomic emission spectrometer (Berlin, Germany). UV–vis and fluorescence spectra were measured on a Shimadzu UV-2550 spectrometer (Shimadzu, Japan) and F-7000 FL spectrometer (Hitachi, Tokyo, Japan), respectively. Infrared (IR) spectra were performed on a VERTEX-70 FT-IR spectrophotometer (Bruker, Billerica, MA, USA), with samples prepared as KBr (500–4000 cm−1). 1H-NMR spectra were carried out via German Bruker AVANCE DRX-400 spectroscopy (Bruker AVANCE, Billerica, MA, USA). Single-crystal X-ray structure determination was performed on a SuperNova Dual (Cu at zero) Eos four-circle diffractometer. Melting points were measured via a microscopic melting point apparatus (Beijing Taike Instrument Limited Company, Beijing, China).




2.2. Preparations and Characterizations


2.2.1. Preparation and Characterization of H4L


1,2-Bis(aminooxy)ethane was obtained by an early reported method [75,76,77]. Yield: 85.2%. Anal. Calcd for C2H8N2O2 (%): C, 26.08; H, 8.76; N, 30.42. Found: C, 25.98; H, 8.90; N, 30.38. The synthetic route to H4L is depicted in Scheme 1.



Monooxime compound was obtained by a modified method [32]. After purification by column chromatography, single condensation product of ethylene oxide single condensing 1,2-diamine-2,4-dihydroxyacetophenone was obtained. Reaction of ethylene oxide single condensing 1,2-diamine-2,4-dihydroxyacetophenone with 2,3-dihydroxybenzaldehyde provided one nonsymmetrical Salamo-type compound H4L. Yield: 88.7%. Anal. Calcd. for C17H18N2O6 (%): C, 58.89; H, 4.82; N, 8.17. Found: C, 59.23; H, 4.91; N, 8.01. 1H-NMR (400MHz, CDCl3): δ = 2.28(s, 3H, –CH3), 4.45–4.53(m, 4H, –CH2–CH2–), 5.12(s, 1H, O–H), 5.59(s, 1H, O–H), 6.42(m, 2H, Ar–H), 6.75(dd, J = 1.52, 1.28Hz, 1H, Ar–H), 6.85(t, J = 1.36, 1.20, 1.16Hz, 1H, Ar–H), 6.97(dd, J = 1.56, 1.68Hz, 1H, Ar–H), 7.28(d, J = 9.12Hz, 1H, Ar–H), 8.22(s, 1H, N=C–H), 9.91(s, 1H, O–H), 11.38(s, 1H, O–H) ppm.




2.2.2. Preparation and Characterizationof the Co(II) Coordination Compound


A methanol solution (3 mL) of Co(OAc)2·4H2O (37.3 mg, 0.150 mmol) was added dropwise to a methanol solution (4 mL)of H4L (17.3 mg, 0.050 mmol). The color of the mixed solution immediately turned to brown, and then continuing stirring for 2 h. The resultant solution was allowed to slowly evaporate at room temperature. Brown diamond single crystals suitable for X-ray diffraction studies were obtained after four weeks. Yield: 68.5%. Anal. Calcd. for C50H72Co6N4O28 (%): C, 39.23; H, 4.74; N, 3.66; Co, 26.10. Found: C, 39.62; H, 4.57; N, 3.38; Co, 25.78.





2.3. X-ray Structure Determination of the Co(II) Coordination Compound


X-ray diffraction data were collected on a SuperNova Dual (Cu at zero) Eos four-circle diffractometer via graphite monochromatized Mo-Kα radiation (λ = 0.71073 Å) at 298(2) K. Unit cell parameters were determined by least squares analysis. The LP factor and semi-empirical absorption corrections were applied to the intensity data. The structure was solved by the direct method (SHELXS-97), and all hydrogen atoms were added theoretically. All non-hydrogen atoms were refined anisotropically using a full-matrix least-squares procedure on F2 with SHELXL-97. Anisotropic thermal parameters were assigned to all non-hydrogen atoms. The hydrogen atoms were generated geometrically. Some reflections with high intensities, which made the detector overflow, were automatically omitted by the diffractometer. So some reflections were missing. The crystallographic and structural refinement data for the Co(II) coordination compound are summed in Table 1. Supplementary crystallographic data for this paper have been deposited at the Cambridge Crystallographic Data Centre (1519431) and can be obtained free of charge viawww.ccdc.cam.ac.uk/conts/retrieving.html.


Table 1. Crystallographic and structural refinement data for the Co(II) coordination compound.









	Molecular formula
	C50H72Co6N4O28



	Molecular weight/g·mol–1
	1530.63



	Color
	Light-brown



	Habit
	Block-shaped



	Crystal size (mm)
	0.21 × 0.23 × 0.31



	Crystal system
	Monoclinic



	Space group
	C2/c



	Unit cell dimension
	



	a (Å)
	17.9738(8)



	b (Å)
	15.0717(8)



	c (Å)
	24.5022(14)



	α (°)
	90



	β (°)
	102.627(5)



	γ (°)
	90



	V (Å3)
	6477.0(6)



	Z
	4



	Dc(g·cm–3)
	1.570



	μ(mm–1)
	1.585



	F(000)
	3144



	θ range for data collection (°)
	3.2–26.0



	Index ranges
	−22 ≤ h ≤ 22, −18 ≤ k ≤ 18, −29 ≤ l ≤ 30



	Reflections collected
	14,114



	Completeness to θ = 25.00 (%)
	99.7



	Data/restraints/parameters
	6381/0/415



	Final Rindices(I > 2σ(I))
	R1 = 0.0504, wR2 = 0.1227



	R indices(all data)
	R1 = 0.0694, wR2 = 0.1111



	Largest diff. peak and hole (e·Å–3)
	0.51 and −0.43











3. Results and Discussion


3.1. Description of the Crystal Structure


Asdepicted in Figure 1, the centrosymmetric neutral homomultinuclear Co(II) coordination compound has been revealedby single crystal X-raydiffraction (Table 2). It crystallizes in the monoclinic crystal system, space group C2/c, and consists of six Co(II) atoms, two (HL)3‒ units, two μ2-acetato ions, two bidentate chelating acetate ions, two coordinated deprotonated methanol molecules, four coordinated methanol molecules, and two crystallizing methanol molecules. This 6:2 (Co(II) atom: Ligand) type of Co(II) coordination compound is unprecedented in the early reported Salamo-based Co(II) coordination compounds bearing the structures of 1:1 [44,58], 3:2 [44,47,74], 4:2 [15] and 8:4 [78]. (Figure 1) The whole coordination compound molecule is symmetrical and therefore only shows Co1, Co2, and Co3 coordination situation can explain the structure of the whole coordination compound. The terminal Co1 atom is located in the N2O2 coordination sphere, the axial position is occupied by two oxygen atoms from two coordinated methanol molecules. The Co2 atom is surrounded by quadruple phenol oxygen atoms (O1, O5, O7 and O7#1) from two (HL)3‒ moieties, one μ2-acetato oxygen atom (O2) and one deprotonated methanol oxygen atom (O6). Meanwhile, the Co3 atom coordinates with one phenol oxygen atom (O7) from one (HL)3‒ moiety, one μ2-acetato oxygen atom (O13), two oxygen atoms (O6 and O6#1) of two coordinated deprotonated methanol molecules and two bidentate chelate acetato oxygen atoms (O11 and O12) which adopt a familiar Co–O–C–O–Co fashion. Each Co(II) atom bears a hexacoordinate sphere and possesses distorted CoO6 or CoO4N2 octahedrons.The hydrogen atoms of two μ2-acetato ions (H10B, H10C, H10D and H10B#1, H10C#1, H10D#1; H22A, H22B, H22C and H22A#1, H22B#1, H22C#1) are disordered equally over two different positions, which were allowed for during refinement.


Figure 1. (a) Crystal structure and atom numberings of the Co(II) coordination compound; (b) Coordination polyhedrons for Co(II) atoms.
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Table 2. Selected bond lengths (Å) and angles (°) for the Co(II) coordination compound.













	Bond
	Dist.
	Bond
	Dist.
	Bond
	Dist.





	Co2–O1
	2.117(3)
	Co3–O6
	2.061(2)
	Co1–O1
	2.019(3)



	Co2–O2
	2.141(3)
	Co3–O6#1
	2.089(3)
	Co1–O5
	2.025(2)



	Co2–O5
	2.029(2)
	Co3–O7
	2.150(2)
	Co1–O8
	2.112(3)



	Co2–O6
	2.067(3)
	Co3–O11
	2.208(3)
	Co1–O9
	2.214(3)



	Co2–O7
	2.073(2)
	Co3–O12
	2.116(3)
	Co1–N18
	2.165(3)



	Co2–O7#1
	2.209(2)
	Co3–O13
	2.041(3)
	Co1–N25
	2.113(4)



	Co3–Co3#1
	2.9071(10)
	Co3–C18
	2.511(4)
	Co3#1–O6
	2.089(3)



	Co2#1–O7
	2.209(2)
	
	
	
	



	Bond
	Angles
	Bond
	Angles
	Bond
	Angles



	O1–Co2–O2
	90.80(11)
	O11–Co3–C18
	30.08(12)
	Co3–O6–Co2
	101.80(10)



	O1–Co2–O7#1
	153.79(9)
	O12–Co3–Co3#1
	146.40(9)
	Co3–O6–Co3#1
	88.94(11)



	O2–Co2–O7#1
	88.85(10)
	O13–Co3–O6
	91.72(11)
	C20–O6–Co2
	121.2(3)



	O5–Co2–O1
	76.15(10)
	O13–Co3–O6#1
	93.82(14)
	C20–O6–Co3
	122.4(2)



	O5–Co2–O2
	86.34(10)
	O13–Co3–O7
	170.00(10)
	C20–O6–Co3#1
	115.2(3)



	O5–Co2–O6
	101.62(10)
	O13–Co3–O11
	92.80(13)
	Co2–O7–Co2#1
	92.10(9)



	O5–Co2–O7#1
	77.67(9)
	O13–Co3–O12
	98.46(11)
	Co2–O7–Co3
	98.68(9)



	O5–Co2–O7
	163.15(10)
	O13–Co3–C18
	97.74(13)
	Co3–O7–Co2#1
	94.82(9)



	O6–Co2–O1
	102.51(11)
	C18–Co3–Co3#1
	176.17(11)
	C15–O7#1–Co2#1
	105.67(19)



	O6–Co2–O2
	165.75(10)
	O1–Co1–O5
	78.47(10)
	C15–O7–Co2#1
	133.1(2)



	O6–Co2–O7
	80.59(9)
	O1–Co1–O8
	98.60(14)
	C15–O7–Co3#1
	121.9(2)



	O6–Co2–O7#1
	81.45(10)
	O1–Co1–O9
	87.35(11)
	Co1–O8–H8
	111(4)



	O7–Co2–O1
	119.97(10)
	O1–Co1–N18
	161.07(12)
	C24–O8–Co1
	132.9(3)



	O7–Co2–O2
	88.43(10)
	O1–Co1–N25
	86.34(13)
	Co1–O9–H9
	98(4)



	O7–Co2–O7#1
	86.23(9)
	O5–Co1–O8
	91.60(11)
	C23–O9–Co1
	122.5(3)



	O6#1–Co3–Co3#1
	45.14(7)
	O5–Co1–O9
	90.46(11)
	C18–O11–Co3
	88.4(3)



	O6–Co3–Co3#1
	45.92(8)
	O5–Co1–N18
	83.09(11)
	C18–O12–Co3
	92.5(2)



	O6–Co3–O6#1
	87.96(11)
	O5–Co1–N25
	164.65(13)
	C10–O13–Co3
	126.2(4)



	O6–Co3–O7#1
	82.40(10)
	O8–Co1–O9
	173.99(13)
	O4–N18–Co1
	124.2(2)



	O6–Co3–O7
	78.93(9)
	O8–Co1–N18
	86.09(14)
	C10–N18–Co1
	127.3(3)



	O6–Co3–O11#1
	161.75(10)
	O8–Co1–N25
	92.93(14)
	O3–N25–Co1
	120.9(3)



	O6–Co3–O11
	108.83(11)
	N18–Co1–O9
	88.55(13)
	C7–N25–Co1
	128.9(3)



	O6–Co3–O12#1
	101.92(11)
	N25–Co1–O9
	86.53(14)
	Co1–O5–Co2
	103.33(11)



	O6–Co3–O12
	165.23(11)
	N25–Co1–N18
	111.85(14)
	C16–O5–Co2
	112.6(2)



	O6–Co3–C18
	137.80(13)
	Co1–O1–Co2
	100.48(11)
	C16–O5–Co1
	132.1(2)



	O6–Co3#1–C18
	131.87(12)
	C1–O1–Co2
	128.5(3)
	Co2–O6–Co3#1
	101.10(11)



	O7–Co3–Co3#1
	90.21(6)
	C1–O1–Co1
	129.0(2)
	O12–Co3–O7
	91.39(10)



	O7–Co3–O11
	93.59(11)
	C21–O2–Co2
	128.6(3)
	O12–Co3–O11
	60.23(11)



	O7–Co3–C18
	91.63(12)
	O12–Co3–O7
	91.39(10)
	O12–Co3–O11
	60.23(11)



	O11–Co3–Co3#1
	153.05(8)
	
	
	
	







Symmetry transformations used to generate equivalent atoms: #1‒x+1, ‒y+1, ‒z+1.








In the crystal structure of the Co(II) coordination compound, there are five significant intramolecular hydrogen bonds (O9–H9···O2, O10–H10···O11, C2–H2···O11, C17–H17C···O3 and C8–H8B···O9) and two intermolecular C12–H12···O13 and O14–H14A···O12 interactions (Figure 2). In addition, there is a pair of π···π interactions Cg1···Cg1 (Cg1=C1–C2–C3–C4–C5–C6) (Figure 3) in the Co(II) coordination compound [79]. Meanwhile, the hydrogen bonds interactions existing in the Co(II) coordination compound are described in graph sets (Figure 4) [80]. Furthermore, the molecules are linked by intermolecular interactions form a 2D infinite planar (Figure 5). Putative hydrogen bonds for the Co(II) coordination compoundare listed in Table 3.


Figure 2. View of the intramolecular (a) and intermolecular (b) interactions of the Co(II) coordination compound.
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Figure 3. π···π stacking interactions of the Co(II) coordination compound.
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Figure 4. Graph set assignments for the Co(II) coordination compound.



[image: Crystals 08 00144 g004]





Figure 5. View of the 2D layered structure of the Co(II) coordination compound.
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Table 3. Putative hydrogen bondings (Å), (°) in the Co(II) coordination compound.













	D–H···A
	d(D–H)
	d(H···A)
	d(D···A)
	∠D–H···A
	Symmetry Code





	C12–H12···O13
	0.93
	2.35
	3.275(5)
	171
	−1/2+x,–1/2+y,z



	O9–H9···O2
	0.85
	1.77
	2.616(4)
	171
	



	O10–H10···O11
	0.82
	1.99
	2.759(5)
	157
	



	O14–H14A···O12
	0.82
	1.90
	2.718(5)
	175
	−x,y,1/2 − z



	C2–H2···O11
	0.93
	2.46
	3.191(5)
	135
	



	C8–H8B···O9
	0.97
	2.45
	3.291(6)
	145
	



	C17–H17C···O3
	0.96
	2.19
	2.543(8)
	100
	










3.2. IR Spectroscopy


IR spectra (Table 4) of H4L and its corresponding Co(II) coordination compound exhibit different bands in the region of 400–4000 cm−1. H4L shows a characteristic C=N stretching band at 1630 cm−1, while the C=N stretching band of the Co(II) coordination compound appears at 1592cm−1 [64]. For the ligand H4L, the Ar–O stretching band appears at 1260 cm−1, which is observed at 1255 cm−1 for the Co(II) coordination compound. The characteristic C=N and Ar–O stretching frequencies are shifted to lower frequencies, exhibiting that the Co–N and Co–O bonds are formed [69,71]. The O–H stretching frequency of H4L appears at 3373 cm−1, whereas the Co(II) coordination compound shows a stretching band at 3421 cm−1, which is attributed to vibrations of the coordinated methanol molecules. For the Co(II) coordination compound, the ν(Co–O) and ν(Co–N) frequencies are observed at 463 and 519 cm−1, respectively [74,81].


Table 4. Major IR bands for H4L and its Co(II) coordination compound(cm−1).





	Compound
	ν(O–H)
	ν(C=N)
	ν(Ar–O)
	ν(Co–O)
	ν(Co–N)





	H4L
	3373
	1630
	1260
	–
	–



	Co(II)
	3421
	1592
	1255
	463
	519










3.3. UV–Vis Spectroscopy


The UV–vis spectra of H4L and its Co(II) coordination compound were measured in 1×10−6 mol·L−1 CH2Cl2 solution. It is noteworthy that the absorption peaks of the Co(II) coordination compound are evidently different from those of H4L (Figure 6). Electronic absorption spectrum of H4L composes of two relatively intense peaks centered at 275 and 299 nm, attributed to the intra-ligand π–π* transitions of the benzene rings and the C=N bonds, respectively. Compared with H4L, the absorption peaks of the Co(II) coordination compound appears at 277 and 311 nm, which are bathochromically shifted by ca. 2 and 12 nm, exhibiting the Co(II) ions have coordinated with H4L. The new peak of the Co(II) coordination compound appears at ca. 385 nm, attributed to L→M charge-transfer transition [82,83].


Figure 6. UV–vis spectra of H4L and its Co(II) coordination compound in CH2Cl2 (1 ×10−6M).
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3.4. Fluorescence Properties


The fluorescence properties of H4L and its corresponding Co(II) coordination compound were studied are depicted in Figure 7. H4L displays strong emission peak at ca. 412 nm upon excitation at 271 nm, and it should be attributed to the intra-ligand π–π* transition. The Co(II) coordination compound displays lower photoluminescence with maximum emission at ca. 360 nm. Compared with H4L, emission intensity of the Co(II) coordination compound evidently reduces, showing that the Co(II) ions possess a certain degree of fluorescence quenching, which makes the conjugated system larger, and also indicates it may be a purple device. The solid-state fluorescence spectra of the ligand H4L and its Co(II) coordination compound are depicted in Figure 8. Compared to liquid fluorescence spectroscopy, the ligand H4L and its corresponding Co(II) coordination compound have strong fluorescence in solid-state fluorescence spectroscopy.


Figure 7. Fluorescence spectra of H4L and its Co(II) coordination compound in dilute CH2Cl2 solutions (c = 1 ×10−6M, λex = 271 nm).
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Figure 8. Fluorescence spectra of the ligand H4L and its Co(II) coordination compound in the solid state.
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4. Conclusions


In summary, we have synthesized and characterized a nonsymmetrical Salamo-type N2O2 ligand, and obtained an unprecedented hexanuclear Co(II) coordination compound, [{Co3(HL)(MeO)(MeOH)2(OAc)2}2]·2MeOH. X-ray crystal structure analysis of the Co(II) coordination compound revealed that each Co(II) is hexacoordinated, and possesses distorted CoO6 or CoO4N2 octahedrons. The Co(II) coordination compound possesses a 2D layered structure through intermolecular C–H···O interactions. In addition, the fluorescence properties indicate that coordinated Co(II) ions resulted to the fluorescence quenching of H4L.
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Scheme 1. Synthetic route to H4L. 
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