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Abstract: This special issue looks at the potential applications of GaN-based crystals in both fields of
nano-electronics and optoelectronics. The contents will focus on the fabrication and characterization
of GaN-based thin films and nanostructures. It consists of six papers, indicating the current
developments in GaN-related technology for high-efficiency sustainable electronic and optoelectronic
devices, which include the role of the AlN layer in high-quality AlGaN/GaN heterostructures for
advanced high-mobility electronic applications and simulation of GaN-based nanorod high-efficiency
light-emitting diodes for optoelectronic applications. From the results, one can learn the information
and experience available in the advanced fabrication of nanostructured GaN-based crystals for
nano-electronic and optoelectronic devices.
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1. Applications of GaN-Based Compounds

Reviewing the application of semiconductor compounds, it stemmed from the replacement of
vacuum tube by transistors in electronics [1,2]. The first “point-contact transistor” was invented by
J. Bardeen and W. H. Brattain with “three-electrode elements” utilizing semiconductor materials, p-type,
and n-type germaniums [1]. As the germanium crystal was substituted by silicon crystal to make a
p-n-p bipolar junction transistor [3] or metal-oxide-semiconductor field effect transistor (MOSFET) [4],
the electronic property of transistor was tremendously enhanced and the silicon-based electronic
industry was then established. However, the VI-elements (i.e., Ge, Si) are basically indirect band
structure, which is not suitable for the application of photo-electronic devices. When the IV-elements
(Si or Ge) are replaced by GaAs-based III-V compounds, the electron mobility of MOSFET can be
significantly increased [5] and quantum effects (e.g., normal and fractional quantum Hall effects) can be
clearly detected [6,7]. In addition to the high-speed transistor applications, the direct band structures of
GaAs-based III-V compounds extended the semiconductor materials to photo-electronic applications,
in which the IV-elements (Si or Ge) are exclusive due to the indirect band structure. In such a way,
the GaAs-based heterostructures were successfully utilized in the information and communication
technology [8]. Moreover, many opto-electronic devices were invented with GaAs-compounds such
as light-emitting diodes (LED) and laser diodes (LD). In other words, GaAs-based III-V compounds
can be designed to apply in both electronic and opto-electronic devices. However, the light-sources
made of GaAs-based compounds (group III-arsenides) were limited to the emitting photon wavelength
greater than 760 nm (red light) due to the bandgap energy (i.e., Eg = 1.424 eV of GaAs). On the
other hand, the direct bandgap energy of group III-nitrides can cover the range from 0.7 eV (InN),
3.4 eV (GaN), to 6.2 eV (AlN). Therefore, the III-nitrides can offer a simple material system, replacing
III-arsenides to integrate both electronic and opto-electronic technologies with the optical properties
from the wavelength of far infrared to deep ultraviolet. For instance, the present opto-electronic
application of GaN-based compounds is in light-emitting diodes (LEDs) for white light sources. Today,
energy-savings and environmental-friendliness are two important criteria to evaluate sustainable
light sources. In 2014, Isamu Akasaki, Hiroshi Amano, and Shuji Nakamura received the Nobel
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Prize in Physics “for the invention of efficient blue light-emitting diodes which have enabled bright
and energy-saving white light sources”. A new energy-efficient white light source was created in a
revolutionary way by using the blue InGaN-based light-emitting diode. The incandescent light bulb
was prohibited by United Nations after the year of 2014; indicating that “incandescent light bulbs lit
the 20th century and the 21st century will be lit by LED lamps” [9]. A smart selection of materials can
merit the energy-saving and environmentally-friendly criteria to integrate both nano-electronic and
opto-electronic technologies by one material family: GaN-based compounds.

2. Nanotechnology and Fabrication of GaN Crystal

Currently, the competition of Si-based IC technology between industrial manufactories has
been reduced to less than 10-nm scales (e.g., Taiwan Semiconductor Manufacturing Company
presented an EUV technology for 7-nm FinFET in 2017 International Solid-State Circuits Conference,
San Francisco, CA, USA). The selection of smart materials for the next generation of nano-electronic
and opto-electronic devices will be more compatible with nanotechnology in advance. III-nitride
materials are direct band gaps with a wide range of energy gap from 0.7 eV (far infrared) to 6.2 eV
(deep ultraviolet). In recent decades, nanotechnology has been applied to the fabrication of GaN
wurtzite crystal for nano-electronic and opto-electronic devices. The carriers in the quantum-devices
can be well-confined to two-dimensional, one-dimensional, or even zero-dimensional (quantum dot)
systems for spintronic application [10,11] or high-power laser diodes [12], in which the properties
of nano-metered optoelectronic devices will be efficiently enhanced by quantum effects for a wide
variety of applications. Among the wide bandgap semiconductors, group III-nitrides (GaN, AlN, InN,
and their ternary alloys) are expected to be the most suitable material family for the implementation of
DUV LEDs and LDs. Moreover, as a white light source, the commercial white-light LED is based on
the invention of Shuji Nakamura, which is made of a blue light of InxGa1-xN/GaN quantum-well (QW)
mixed with a complementary yellow-green phosphor (e.g., Ce-doped YAG) to create a white light.
The phosphor-assisted InxGa1-xN/GaN white-light LED diminishes its luminous efficiency to thermal
radiation during the energy conversion. Besides, the thermal radiation will generate heat to degrade the
performance and lifetime of the LED. In 2009, Ikai Lo et al. developed a self-assembling nanotechnology
to grow a three-dimensional (3D) hexagonal InxGa1-xN/GaN-microdisk from a nanometer-scaled
nucleation on LiAlO2 substrate for the application of white-light micro-LED without any assistance of
phosphors [13,14]. The phosphor-free white-light micro-LEDs will benefit greatly by a high luminous
efficiency and avoid the thermal aging by rare-earth doped phosphors. The red-green-blue micro-LEDs
can be utilized not only in the sustainable white light source but also in full-color high-resolution
display for the applications of smartphone and virtual reality (VR).

3. Current Perspectives in the Applications of Nanostructured GaN

The trend of GaN-based materials is obviously focused on the nanostructured process and
fabrication for nano-electronic and opto-electonic devices to optimize the application of quantum
effects. In this special issue, six papers were collected. In the first paper, Y. Kawakami’s group
studied the interface formation of AlN on sapphire substrate by EVPE, which is a new AlN
bulk fabrication method using Al and N2 as precursors, for AlN bulk crystals that are promising
substrates for AlGaN-based deep ultraviolet light emitters and high-frequency electronic devices
with high-breakdown voltages [15]. For the second paper, Wuu’s group investigated the role of
AlN insertion layer in stress control of GaN on Si(111) substrate by metalorganic chemical vapor
deposition (MOCVD) for high-frequency and high-power electronic devices [16]. Horng’s group
studied the effects of a corona-discharge plasma treatment on the performance of an AlGaN/GaN
metal-oxide-semiconductor high-electron mobility transistor fabricated on Si substrates [17]. Wu and
Jeng presented a simple behavioral model with experimentally extracted parameters for packaged
cascode gallium nitride (GaN) field-effect transistors (FETs) [18]. K. Ding, V. Avrutin, Ü. Özgür,
and H. Morkoç reviewed the recent progress in growth aspects of group III-nitride heterostructures
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for deep ultraviolet (DUV) light-emitting diodes (LEDs), with particular emphasis on the growth
approaches for attaining high-quality AlN and high Al-molar fraction AlGaN [19]. Finally,
Han-Youl Ryu theoretically evaluated the light extraction efficiency (LEE) of GaN-based nanorod blue
light-emitting diode (LED) structures using finite-difference time-domain (FDTD) simulations [20].

In light of the results reported in the issue, the readers may have learned the information
and experience for the advanced fabrication of nanostructured GaN-based compounds in both
nano-electronic and optoelectronic applications. The trend of nano-meter scaled fabrication requires
the high quality of GaN-based compounds for device applications to guarantee the mean-free path of
carriers longer than the size of device scale. In this special issue, the authors presented the various
technologies, theoretically and experimentally, to improve the quality and efficiency of GaN/AlGaN
heterostructures for nano-electronic and optoelectronic devices; revealing the perspectives of GaN
quantum device applications.
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