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Abstract: We present a study of the magnetic-field effect on spin correlations in the charge ordered
triangular Ising system LuFe2O4+δ through single crystal neutron diffraction. In the absence
of a magnetic field, the strong diffuse neutron scattering observed below the Neel temperature
(TN = 240 K) indicates that LuFe2O4+δ shows short-range, two-dimensional (2D) correlations in the
FeO5 triangular layers, characterized by the development of a magnetic scattering rod along the 1/3
1/3 L direction, persisting down to 5 K. We also found that on top of the 2D correlations, a long range
ferromagnetic component associated with the propagation vector k1 = 0 sets in at around 240 K. On the
other hand, an external magnetic field applied along the c-axis effectively favours a three-dimensional
(3D) spin correlation between the FeO5 bilayers evidenced by the increase of the intensity of satellite
reflections with propagation vector k2 = (1/3, 1/3, 3/2). This magnetic modulation is identical to
the charge ordered superstructure, highlighting the field-promoted coupling between the spin and
charge degrees of freedom. Formation of the 3D spin correlations suppresses both the rod-type
diffuse scattering and the k1 component. Simple symmetry-based arguments provide a natural
explanation of the observed phenomenon and put forward a possible charge redistribution in the
applied magnetic field.

Keywords: single crystal neutron diffraction; magnetic structure; diffuse scattering; charge order;
spin frustration

1. Introduction

The layered oxide LuFe2O4, bearing significant spin and charge frustration in a triangular lattice,
has attracted wide interest thanks to reported high-temperature multiferroic properties, pivotal for
technological applications in spintronics [1–6]. Such properties have been related to the charge
ordering of Fe2+ and Fe3+ cations, which appears as a three-dimensional (3D) long range ordering
below 320 K [2]. An apparent coupling between polarization and magnetism has also been previously
proposed based on the observation of significant changes in the electric polarization when spin
ordering sets in at TN = 240 K [3]. Although the polar nature of the charge ordering was not confirmed
by the later structural study [7], LuFe2O4 remains a focus of intensive investigations as a model
frustrated system.

The parent structure of rhombohedral LuFe2O4 (space group R-3m) (Figure 1) is characterized by
the stacking of three FeO5 face-sharing bipyramidal layers along the c-axis separated by LuO2 rock salt
layers [1,2]. The resulting iron sublattice arrangement consists of three stacked triangular bilayers with
an equal amount of Fe2+ and Fe3+ in the unit cell, and this makes the system geometrically frustrated
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in both the charge and spin channels. Even though intensive experimental and theoretical efforts
to clarify the underlying pattern of spin and charge order have been made, its exact nature is still
controversial [8].
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Figure 1. (a) The crystal structure of LuFe2O4. (b) Two adjacent triangular FeO5 layers shifted by
√

3/3
a within the (ab) plane. (c) The Fe2+-(A) and Fe3+-rich (B) monolayer charge models. Oxygen ions are
omitted for clarity.

A physical picture of the charge order, overcoming the charge frustration in the triangular layers
has been proposed in the so called AB model [2,3,5] where A represents an upper iron layer with
Fe3+ cations surrounded by a honeycomb lattice of Fe2+ cations and a lower B layer has the opposite
Fe2+/Fe3+ arrangement (see Figure 1c). Whereas the AB model has been used to account for the
ferroelectricity observed in LuFe2O4 due to the net electric dipole moment along the c-axis [2,3], X-ray
scattering experiments have suggested an antiferroelectric AB–BA bilayer stacking [6,9]. Later, several
investigations have found that ferroelectric order can be induced based on this antiferroelectric model
when an external electric field is applied [10–12]. A charge order model with AA–BB stacking has also
been recently demonstrated through X-ray diffraction study, inconsistent with charge-ordering-based
ferroelectricity [7].

On the other hand, the exact spin configuration is also under debate. The magnetic properties
of LuFe2O4 are governed by the Ising character of the iron spin in the triangular lattice essentially
due to spin-orbit coupling [8,13]. Both two-dimensional (2D) [1] and 3D magnetic structures [12,14]
have been previously found in different samples, reflecting the important role played by oxygen
stoichiometry [15–18]. In addition, two magnetic phase transitions have been observed by Christianson
et al. via single crystal neutron diffraction study. The first transition, observed below TN = 240 K,
is characterized by finite magnetic correlations within ferrimagnetic (FIM) monolayers stacked
ferromagnetically along the c direction; while at the second transition (TL = 175 K) a significant
broadening of specific magnetic reflections is observed, indicative of an additional decrease in the
magnetic correlation length [14,19]. Moreover, a metamagnetic state in the vicinity of TN, consisting of
nearly degenerate FIM and antiferromagnetic (AFM) spin order has been proposed [20]. A distinct
FIM spin configuration on the bilayers based on the AB charge order model, where all Fe2+ spins in the
adjacent monolayers are FM, while Fe3+ spins are antiparallel to Fe2+ rich layers and nearest neighbour
Fe3+ spins in the Fe3+ rich layer are antiparallel, has been put forward through X-ray magnetic circular
dichroism [10,12,21], and has been supported by theoretical studies using both density functional
theory and Monte Carlo simulations as well as inelastic scattering experiments [21–23]. Apart from
this 2D spin arrangement in the bilayer, Mulders et al. have suggested a long range AFM order along
the c direction that facilitates the long range order of electric dipole moment, suggesting the presence
of spin-charge coupling [12]. A magnetic field vs. temperature phase diagram above 180 K has been
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recently proposed, which reveals that magnetic field promotes the FIM order from the degenerate
AFM–FIM phases [20].

In this work, we present a neutron diffraction experiment on single crystal LuFe2O4+δ under an
applied magnetic field along the Ising direction in the temperature range 5–275 K. The striking effect
of the magnetic field on the magnetic structure from our experiment together with previous works
brings new insights into the complex magnetic field versus temperature phase diagram and reveals
clear evidence for a field-induced coupling between the spin and charge orderings.

2. Results

Figure 2a shows the magnetic susceptibility of LuFe2O4+δ under zero field cooled (ZFC) and field
cooled (FC) conditions measured by applying a magnetic field of 1 T parallel to the c-axis. In accordance
with previous results, the ferrimagnetic order appears below TN = 240 K [1]. A significant irreversibility
between the ZFC and FC data can be seen at around 185 K. However, the second magnetic phase
transition at 175 K reported in Reference [14] is absent in this sample. The magnetization measurements
are consistent with a sample containing a slight oxygen excess [1,3]. As shown in the inset of Figure 2a,
the magnetic hysteresis loop at 200 K is indicative of a net spontaneous moment.
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Figure 2. (a) Magnetic susceptibility of LuFe2O4+δ measured with an applied field of 1 T parallel to
the c-axis. Insets show the magnetic hysteresis loops at 200 and 300 K. (b) The strong spin correlations
along 1/3 1/3 L rod at 5 K and 0 T. The absence of intensity when L < −0.6 and >1 is an artefact of the
magnet coverage.

The neutron diffraction data reveals strong magnetic diffuse scattering, as can be seen in Figure 2b.
This scattering is sharp in the HK0 plane, located in the 1/3 1/3 position, and diffuse along the L
direction forming a rod in the reciprocal space. This scattering persists down to 5 K in the zero field
and is indicative of 2D magnetic correlations in the FeO5 triangular bilayers. As shown in Figure 3a,
the integrated intensity of the reciprocal space cut along the 1/3 1/3 L direction becomes more intense
below 240 K, in good agreement with the magnetization measurement. Remarkably, a long range spin
order associated with a propagation vector k1 = 0 and coupled to the 2D spin correlations is unveiled
below 240 K, and is characterized by sharp magnetic contribution to the 110, 011 and −221 nuclear
reflections, as shown in Figure 3b. This k1 = 0 component is related to a ferromagnetic contribution
with the R-3m’ symmetry as can be appreciated in Figure A1 (an AFM arrangement with the R-3’m’
symmetry would result in null magnetic intensity in the HK0 plane reflections). A net moment for
a single triangular unit of Ising spins is naturally associated with up–up–down (down–down–up)
spin configurations. The presence of the coherent scattering with k1 = 0 implies, in the simplest
case, an averaging between up–up–down, up–down–up and down–up–up configurations for each
triangle. Practically, it means that the numbers of spins with up and down polarization are not equal
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in each triangular layer, resulting in a net ferrimagnetic moment. An illustrative example of such a
ferrimagnetic layer is shown in Figure 3c. The layers are then stacked along the c-axis with a random
shift within the (ab) plane. The strong 2D magnetic scattering rod together with the 3D ferromagnetic
component lead to a physical picture of spin ordering in LuFe2O4+δ from 5 K to 270 K in which the
lack of spin correlations along the c direction coexists with the long range Ising ferrimagnetic order in
each triangular monolayer.
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panel) and a stacking of two adjacent monolayers into a bilayer (lower panel). Red (resp. blue) spheres
represent up (resp. down) spins for the lower diagram.

The magnetic field dependence of neutron magnetic diffraction at 150 K is shown in Figure 4a–c.
The application of an external field along the c direction induces a strong change in the distribution
of the diffuse scattering. Firstly, there is a strong intensity increase around the 1/3 1/3 1/2 position
(Figure 4c), the scattering is peaked at this position but it is still not resolution limited, indicating
a finite correlation length. Moreover, a weaker peak-like feature is observed around the 1/3 1/3
0 satellite reflection and interestingly it is no longer centred at the commensurate position in the
HK0 plane but is slightly off (as can be appreciated from the inset of Figure 4a,b), indicating the
development of incommensurate interactions within the Fe layers. A similar situation is observed in
the diffuse scattering at the 2/3 2/3 L position. The observation of Bragg reflections at the 1/3 1/3 1/2
and 2/3 2/3 1/2 as well as other non-integer L positions clearly indicates that the application of an
external field promotes 3D spin correlations between the FeO5 triangular bilayers with a propagation
vector k2 = (1/3, 1/3, 3/2) with respect to the parent R-3m unit cell. It should be pointed out that
this propagation vector is identical to the structural modulation associated with the charge ordering
reported in Reference [6] and confirmed in the present study, as can be appreciated by the observation
of charge satellite reflections in the high Q region in Figure A2. As presented in Figure 4d,e, the
temperature dependence of integrated intensities of 1/3 1/3 0 and 1/3 1/3 1/2 satellite reflections
under 5 T shows the onset of spin ordering at 260 K, slightly higher than that under 0 T.
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of the 1/3 1/3 0, 1/3 1/3 1/2 and 110 reflections at 150 K under 5 T.

Another outstanding consequence of the magnetic field is the dramatic decrease of integrated
intensities of 110, 011 and −221 reflections. As seen in the inset of Figure 4c, the intensity of 110 peak
monotonically decreases with increasing magnetic field. Under a magnetic field of 5 T, as shown in
Figure 4f, there is no obvious variation of the integrated intensity of the 110 reflection with temperature.
These observations show that the external magnetic field suppresses the k1-related component. It is
also important to stress that the magnetic scattering corresponding to the k2 propagation vector
cannot simply be ascribed to a redistribution of the diffuse scattering intensity but instead includes an
extra component, likely coming from the magnetic scattering related to the k1 propagation vector in
zero field.

3. Discussion

The experimentally observed behaviour can be understood as a magnetic-field-imposed coupling
between the spin and charge degrees of freedom. The component of the magnetic field along the c-axis
transforms as the time-odd, one-dimensional representation Γ2

+(H−) of the parent R-3m space group.
The symmetry of the charge order cannot be uniquely identified from the available diffraction data and
the only solid experimental evidence is that the propagation vector for this type of distortion is (1/3,
1/3, 3/2), in agreement with other experimental results [6]. There are two six-dimensional irreducible
representations associated with this propagation vector whose matrix operators for the generators of
the R-3m space group are specified in Table 1. Whichever of them is responsible for the symmetry
breaking related to the charge ordering, there is always a way to form a tri-linear free-energy coupling
term with a time-odd quantity (magnetic order) with the same periodicity as the charge ordering.
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Specifying the relevant order parameters as (η+, η*+, ξ+, ξ*+, ρ+, ρ*+) for the charge ordering and (η−,
η*−, ξ−, ξ*−, ρ−, ρ*−) for the field-induced magnetic order, the free-energy invariant reads:

H−(η−ξ*+ + ξ−ρ*+ + ρ−η*+ + η+ξ*− + ξ+ρ*− + ρ+η*−) (1)

Table 1. Irreducible representations for generating symmetry elements of the R-3m space group,
associated with the propagation vector k2 = (1/3, 1/3, 3/2).

Irrep {3+|0,0,0} {2xx|0,0,0} {−1|0,0,0}

Γ2
+ 1 −1 1

Y1


0 0
1 0

1 0
0 0

0 0
0 0

0 1
0 0

0 0
0 0

0 0
0 1

0 0
0 0

0 1
0 0

0 0
1 0




1 0
0 0

0 0
1 0

0 0
0 0

0 1
0 0

0 0
0 1

0 0
0 0

0 0
0 0

0 0
0 0

0 1
1 0




0 0
0 0

0 1
0 0

0 0
1 0

0 0
1 0

0 0
0 0

0 1
0 0

0 1
0 0

0 0
1 0

0 0
0 0



Y2


0 0
1 0

1 0
0 0

0 0
0 0

0 1
0 0

0 0
0 0

0 0
0 1

0 0
0 0

0 1
0 0

0 0
1 0




−1 0
0 0

0 0
−1 0

0 0
0 0

0 −1
0 0

0 0
0 −1

0 0
0 0

0 0
0 0

0 0
0 0

0 −1
−1 0




0 0
0 0

0 1
0 0

0 0
1 0

0 0
1 0

0 0
0 0

0 1
0 0

0 1
0 0

0 0
1 0

0 0
0 0


Irrep {1|1,0,0} {1|0,0,1}

Γ2
+ 1 1

Y1



e−
2
3 πi 0
0 e

2
3 πi

0 0
0 0

0 0
0 0

0 0
0 0

e−
2
3 πi 0
0 e

2
3 πi

0 0
0 0

0 0
0 0

0 0
0 0

e−
2
3 πi 0
0 e

2
3 πi




−1 0
0 −1

0 0
0 0

0 0
0 0

0 0
0 0

−1 0
0 −1

0 0
0 0

0 0
0 0

0 0
0 0

−1 0
0 −1



Y2



e−
2
3 πi 0
0 e

2
3 πi

0 0
0 0

0 0
0 0

0 0
0 0

e−
2
3 πi 0
0 e

2
3 πi

0 0
0 0

0 0
0 0

0 0
0 0

e−
2
3 πi 0
0 e

2
3 πi




−1 0
0 −1

0 0
0 0

0 0
0 0

0 0
0 0

−1 0
0 −1

0 0
0 0

0 0
0 0

0 0
0 0

−1 0
0 −1



The subscripts and asterisk indicate time-parity and complex conjugation, respectively. If the
charge ordering transforms as the time-even Y1 representation, then the field-induced magnetic
ordering must belong to the time-odd Y2 representation. On the contrary, if the time-even Y2 is the
relevant representation for the charge ordering, then the time-odd Y1 describes the transformational
properties of the induced magnetic order. Thus the condition to couple the charge and spin degrees
of freedom in the applied magnetic field is that these order parameters must be transformed by the
different representations. At a microscopic level, this implies that the combination of charge and spin
orderings with the symmetries of the Y1 and Y2 representations should result in magnetic structures
with uncompensated (ferrimagnetic) moments which can be coupled to the external magnetic field.
Another conclusion arising from the symmetry consideration is that the coupling invariant does not
vanish only if at least two (out of the three) arms of the (1/3, 1/3, 3/2)-propagation vector star are
involved. Actually the term is maximal when the full star participates in the symmetry breaking
and, therefore, if the charge ordering taking place in the zero-field exploits only a single arm (as for
instance it was suggested in Reference [7]), then the application of the magnetic field should result
in a re-distribution of the charge, making the ordering multi-k. Unfortunately, the current geometry
of the diffraction experiment and the restrictions coming from the magnet do not allow us to verify
this conclusion.

Finally, it is worth noting that following the discussion presented above, the presence of magnetic
scattering in the incommensurate position close to 1/3 1/3 0 might indicate the existence of a minor
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fraction of incommensurate charge ordered phase. We however do not have any experimental evidence
for a structural modulation associated with this periodicity in our sample.

4. Experiments and Methods

The sample used here was cleaved from high-quality single crystal grown by the floating zone
method, and the detailed experimental procedure can be found in Reference [22].

Magnetic susceptibility was measured using a vibrating sample magnetometer (VSM) (Physical
Property Measurement System, Quantum Design, San Diego, CA, USA) between 10 K and 350 K under
magnetic field of 1 T under both zero-field-cooled (ZFC) and field-cooled (FC) conditions. Magnetic
hysteresis loops were measured at 200 and 300 K.

Magnetic-field dependent single crystal neutron diffraction experiments were carried out at
the ISIS pulsed neutron and muon facility of the Rutherford Appleton Laboratory (UK), on the
WISH diffractometer [24] located at the second target station. The single crystal (~0.15 g) was
mounted in a vertical field superconducting cryomagnet with magnetic field up to 13.6 T and
measured over the temperature range of 5–270 K with magnetic field applied along the c-axis.
Group theoretical calculations were done using ISODISTORT [25] and Bilbao Crystallographic Server
(Magnetic Symmetry and Applications) software [26]. Simulations of the neutron single crystal data
were performed with the help of the Jana2006 software [27].

5. Conclusions

We investigated the effect of magnetic field on spin correlations in the charge ordered single
crystal of LuFe2O4+δ through magnetization measurement and neutron diffraction. In the absence
of a magnetic field, the spin and charge subsystems are effectively decoupled. The spin forms 2D
correlations featured by the magnetic diffuse scattering rod in the 1/3 1/3 L direction and a 3D
ferromagnetic component below TN = 240 K. An external magnetic field suppresses the diffuse
scattering and promotes 3D spin correlations with the propagation vector k2 = (1/3, 1/3, 3/2). This
periodicity is common for both the magnetic and charge-ordered sublattices and a combination of these
experimental results with symmetry consideration provides evidence of a magnetic field imposed
coupling between the spin and charge degrees of freedom.
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