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Abstract: The crystal structures of two ester compounds (a monomer in its methyl ester form, with an
amino isophthalic group, and a dimer in which the two steroid units are linked by a urea bridge
recrystallized from ethyl acetate/methanol) derived from cholic acid are described. Average bond
lengths and bond angles from the crystal structures of 26 monomers and four dimers (some of them
in several solvents) of bile acids and esters (and derivatives) are used for proposing a standard
steroid nucleus. The hydrogen bond network and conformation of the lateral chain are also discussed.
This standard structure was used to compare with the structures of both progesterone and cholesterol.
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1. Introduction

Bile salts (BS) are important biological surfactants, which play crucial roles in several processes of
vertebrates [1,2]. The chemical structure of the most important BS in mammals involves the hydrophobic
and rigid cyclopentanoperhydrophenanthrene nucleus (also characteristic of cholesterol) bearing
one, two, or three hydroxy groups at positions 3, 7, and 12, as well as an isopentanoic lateral chain.
The hydroxy group at position 3 is considered as the head of the molecule, and the carboxylic group
its tail. Bile acids (BA) are compounds resulting from the protonation of the carboxylate group of BS,
and can be conjugated with the amino acids glycine and taurine. Those corresponding to cholic (CA, 1,
Table 1), lithocholic (2), deoxycholic (DCA, 3), chenodeoxycholic (7), and ursodeoxycholic (8) acids are
among the most important and studied BA. The orientation of the OH substituents is such that BS are
facially amphipathic molecules with three-axial chirality [3] that self-aggregate in aqueous solution,
forming aggregates, which usually have low aggregation numbers [4,5].
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Table 1. Chemical structure and numbering of the bile acids (R4 = CO2H), bile acid esters
(R4 = CO2CH3), and 24-amino derivatives (R4 = NH2) reviewed in this paper.
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Modifications of the functional groups lead to a great number of BS derivatives, some
naturally-occurring. For example, typical modifications of the terminal carboxylic acid group are
ester (BE) and amide derivatives, while keto and amine groups are common modifications of the
hydroxy groups. A variety of groups of different natures have also been linked to the steroid nucleus
at the hydroxy group locations, mainly through ester and amide bonds. Compounds obtained by
substitution at C3 have been particularly useful. Examples are derivatives with hydrophobic and
bulky substituents (t-buthylphenyl, naphthyl, adamantyl), saccharides (mannose), and amino acids
(tryptophan). In aqueous solution they behave as surfactants, the aggregates showing a wide range of
structures. The subject has been reviewed recently [18]. On the other hand, the head–tail structure of
BS allows the synthesis of head-to-head [19], head-to-tail [20], and tail-to-tail [21] dimers.
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The ratio of number of steroid groups to number of charged groups (equal to 1 in natural BS) can
be easily modified for monomers, dimers, and oligomers. Consequently, the hydrophobic–hydrophilic
balance of the compound is either increased or reduced, thus modifying its self-aggregation in aqueous
solution. Several papers dealing with the physicochemical properties and applications in fields such
as supramolecular chemistry, biomedicine, and pharmaceutics have been reported [18,22–28].

The characterization of the crystal structures of BS and BA by X-ray analysis has been a topic
of interest [29,30]. This knowledge can be very useful for the proposition of the structure of BS
aggregates in aqueous solution, a strategy firstly and largely employed by Giglio and coworkers [31],
and of the supramolecular structures of BS derivatives [32]. Miyata et al. [33–36] have carried out
studies on BA crystals in a large variety of solvents and guests, also systematically modified the
steroid structure. It can be concluded from these studies that the solid state structure depends on
subtle differences in donor–acceptor relationships among the hydrogen bonding groups of guest
and steroid molecules. The solution of the crystal structures of the four 3,12-dihydroxy epimers
of DCA was used to successfully predict the hydrogen bond network of the 3-oxo-12α-hydroxy
derivative [8]. On the other hand, the ability to form hydrogen bonds by CA plus the characteristics
of head-to-head dimers have been used for designing a crystal, in which a single water molecule is
encapsulated between two cholic residues in an ice-like structure [17]. Miyata et al. have also studied
the supramolecular chirality in crystals generated from chiral [37–40] and achiral [41,42] molecules,
and rationalized a hierarchical organization in BA crystals like that in proteins [3,43,44].

Nowadays interesting and promising applications have emerged, mainly related to the ability of
BA to form inclusion compounds in the solid state. For example, the crystallization may be used for
the resolution of racemates [13,45–50] and for the delayed release of drugs [32].

Although BS have been the object of numerous studies by different techniques concerning to their
surfactant behavior in solution, the number of publications related to their crystal structures is limited,
and much lower than those corresponding to BA and BE. Some structures of the derivatives outlined
before in the solid state have also been reported, including some dimers. In the case of head-to-head
dimers, an internal coordinate system consisting of five angles (three torsion and two common) has
been proposed [51] to describe the relative orientation in the space of the two bile acid residues.

When analyzing the structure of steroid derivatives, most of the studies have mainly focused
the attention on the flexibility of the side chain and on the hydrogen bond network, while the
structure of the steroid nucleus is barely mentioned, with the exception of the D-ring conformation.
Only some recent papers have introduced the analysis of the angle formed by horizontal and vertical
planes [10] and the angle between C3-C10-C13 carbon atoms [51]. The comparison of structural data
from published crystal structures of bile acid derivatives will provide information on the constancy
(or lack thereof) of the geometrical parameters of the steroid nucleus. It will also allow for obtaining
the average geometrical parameters of the steroid nucleus. Thus, average distances and bond angles of
the cyclopentanoperhydrophenanthrene skeleton and the lateral chain can be obtained. This average
structure can be useful as a standard reference for further comparative studies. For example, it will
allow for the analysis of the resulting geometry when important chemical modifications are introduced
to the structure.

In this paper, we analyze the crystal structures of two BEs derived from CA: a dimer with the two
steroid units linked by a urea bridge (30, Table 2), and a monomer with an amino isophthalic residue
attached to the C3 position of the steroid nucleus (24, Table 1). The geometric characteristics of these
two BEs, together with those corresponding to 28 other structures (mainly from CA and DCA solved
by our research group, Tables 1 and 2), are used to construct the standard steroid.
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Table 2. Chemical structure and partial numbering of the dimers analyzed in this paper (30/AcOEt and
30/DMSO make reference to the recrystallization solvent included as a guest in the crystal structure).
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2. Materials and Methods

2.1. Synthesis

To synthesize compound 24, 0.77 mL (4.55 mmol) of DEPC were added to a dispersion of 2 g
(4.75 mmol) of methyl 3β-aminocholate (the synthesis of this reactive has been well-established [53]),
in 15 mL of dimethylformamide under an argon atmosphere. Once the solid was dissolved, 2.32 g
(5.5 mmol) of 5-t-butoxycarbonylaminoisophthalic acid was added, and the mixture was stirred for
10 min (the protection of the amino group of the amino isophthalic acid with di-tert-butyl dicarbonate
(BOC) is also a well-known synthetic process [54]. After cooling at 0 ◦C, 1 mL (7 mmol) of triethylamine
was added dropwise. The reaction mixture was maintained at this temperature for 45 min, and then
at room temperature for 6 h. DMF was evaporated under reduced pressure; the reaction crude
dissolved in 200 mL of ethyl acetate and was washed with 3 × 75 mL of water. The organic phase was
dried with sodium sulphate, concentrated, and purified by column chromatography with 20:1 ethyl
acetate:methanol. Finally, BOC was removed, dissolving 2 g of the product obtained in the last step
in 50 mL of methanol and bubbling HCl gas for 30 min. After evaporation of the solvent, 100 mL of
water was added, and the solution was neutralized with 1 M NaOH until neutral pH in an ice bath.
The solid corresponding to compound 24 was filtered, washed with abundant water, and dried in a
vacuum oven. Its characterization was done by X-ray diffraction.

The synthesis of the dimer listed as compound 30 has been reported previously [51].
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2.2. X-ray Diffraction Analysis

Colorless prismatic crystals of compound 24 were obtained from methanol, and crystals of
compound 30 in ethyl acetate/methanol. X-ray diffraction data for both compounds were collected on
a Bruker Smart-CCD-1000 at the temperature of 100 K. Molecular graphics were made with Mercury
software. CIF files are available as electronic supporting material. CCDC 1812924 and 1812925 contain
the supplementary crystallographic data for compounds 24 and 30, respectively, and can be obtained
free of charge from The Cambridge Crystallographic Data Center.

3. Results and Discussion

3.1. Dimer

The crystal structure of compound 30 from DMSO/methanol has been obtained and published [52]
(we will refer to it as 30/DMSO). In this paper, we instead describe the crystal obtained from ethyl
acetate/methanol (30/AcOEt). Table 3 shows a summary of the crystal data and experimental
details. The dimer crystallized in the P212121 space group, and its packing showed a bilayer structure,
with alternating hydrophobic and hydrophilic layers. The horizontal planes [10] of the two cholic
residues were almost parallel (0.92◦ being the angle between them), meaning that their α-faces are
oriented to the same direction, transmitting the bifacial character of each steroid residue to the dimer.
Within the layers, dimers are located in a face-to-face orientation, with β-interdigitation between C18
and C19 methyl groups (Figure 1a), contributing to the stabilization of the bilayer by hydrophobic
forces (a similar situation appears in 30/DMSO, Figure 1b).

Table 3. Crystal data, data collection, and refinement for 30 recrystallized from AcOEt/MeOH and 24
recrystallized from MeOH.

Compound 30/AcOEt 24

Empirical formula C51H84N2O9,C4H8O2,2(CH4O), H2O C34H50N2O7, H2O
Formula weight 1039.40 616.78
Temperature (K) 100(2) 100(2)
Wavelength (Å) 0.71073 0.71073

Crystal system, space group Orthorhombic, P212121 Monoclinic, P21
a (Å) 7.5548(2) 13.608(3)
b (Å) 15.2458(5) 7.704(10)
c (Å) 49.3048(15) 30.284(5)
α (◦) 90 90
β (◦) 90 96.345(10)
γ (◦) 90 90

Volume (Å3) 5678.9(3) 3155.68(10)
Z, calculated density (g/cm3) 4, 1.216 4, 1.298

Absorption coefficient (mm−1) 0.085 0.092
F (000) 2280 1336

Crystal size (mm3) 0.400 × 0.160 × 0.050 0.21 × 0.10 × 0.05
Theta range (data collection) (◦) 1.570 to 26.412 1.35 to 26.81

Index ranges −9≤ h≤ 9, −18≤ k≤ 19, −61≤ l≤ 52 −17≤ h≤ 17, −9≤ k≤ 9, −38≤ l≤ 38
Data/restraints/parameters 11,614/112/703 7250/3/845

Goodnes-of fit on F2 1.022 1.011
Final R indices [I > 2σ(I) R1 = 0.0746, wR2 = 0.1643 R1 = 0.0518, wR2 = 0.0.978

R indices (all data) R1 = 0.1382, wR2 = 0.1946 R1 = 0.1016, wR2 = 0.1157
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for the common angles, θi, and the torsion (or dihedral) angles, φi, are θ1 = 123.1°, θ2 = 129.5°, φ1 = 
4.7°, φ2 = 174.3° and φ3 = −175.4°. Therefore, the dimer crystallizes as a tet (anti-eclipsed-anti) conformer 
(Figure 3), the same as in 30/DMSO. 

Figure 1. View of the molecular packing along the a axis (a) in the crystal of 30/AcOEt and (b) along
the b axis in the crystal of 30/DMSO.

Additional stabilization arises from the hydrogen bonding network, involving the nitrogen
and oxygen atoms of the urea bridge (all O7H and O12H groups), and one of the two carboxylic
terminal groups of the dimer. The hydrogen bonding pattern in the constituent monomer, with the
free carboxylic group (without hydrogen bonds), is the same as in 30/DMSO. The lateral chains adopt
a tttt conformation in both cases. In the other monomer, the hydrogen bond pattern is the same as in
30/DMSO, except for an additional bond between O7H and water (Figure 2). This difference could
explain why this monomer in 30/AcOEt adopts a ttgitg conformation while in 30/DMSO it also adopts
a tttt one. The angle between horizontal planes is higher in 30/DMSO (4.9◦), and the angles between
vertical planes are 1.2◦ and 8.7◦ in 30/DMSO and 30/AcOEt, respectively.

Crystals 2018, 8, x FOR PEER REVIEW  6 of 16 

 

 
Figure 1. View of the molecular packing along the a axis (a) in the crystal of 30/AcOEt and (b) along 
the b axis in the crystal of 30/DMSO. 

Additional stabilization arises from the hydrogen bonding network, involving the nitrogen and 
oxygen atoms of the urea bridge (all O7H and O12H groups), and one of the two carboxylic terminal 
groups of the dimer. The hydrogen bonding pattern in the constituent monomer, with the free 
carboxylic group (without hydrogen bonds), is the same as in 30/DMSO. The lateral chains adopt a 
tttt conformation in both cases. In the other monomer, the hydrogen bond pattern is the same as in 
30/DMSO, except for an additional bond between O7H and water (Figure 2). This difference could 
explain why this monomer in 30/AcOEt adopts a ttgitg conformation while in 30/DMSO it also adopts 
a tttt one. The angle between horizontal planes is higher in 30/DMSO (4.9°), and the angles between 
vertical planes are 1.2 and 8.7° in 30/DMSO and 30/AcOEt, respectively. 

 
Figure 2. Scheme of the hydrogen bonds involving the two monomers in the dimer 30/AcOEt. 

On the other hand, the monomers in the dimer are placed in such a way that the resulting values 
for the common angles, θi, and the torsion (or dihedral) angles, φi, are θ1 = 123.1°, θ2 = 129.5°, φ1 = 
4.7°, φ2 = 174.3° and φ3 = −175.4°. Therefore, the dimer crystallizes as a tet (anti-eclipsed-anti) conformer 
(Figure 3), the same as in 30/DMSO. 

Figure 2. Scheme of the hydrogen bonds involving the two monomers in the dimer 30/AcOEt.

On the other hand, the monomers in the dimer are placed in such a way that the resulting
values for the common angles, θi, and the torsion (or dihedral) angles, ϕi, are θ1 = 123.1◦, θ2 = 129.5◦,
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ϕ1 = 4.7◦, ϕ2 = 174.3◦ and ϕ3 = −175.4◦. Therefore, the dimer crystallizes as a tet (anti-eclipsed-anti)
conformer (Figure 3), the same as in 30/DMSO.Crystals 2018, 8, x FOR PEER REVIEW  7 of 16 
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Figure 3. Perspective view of the conformer in the crystal structure of 30/AcOEt, showing its
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Although many analogies have been found between 30/DMSO and 30/AcOEt, the main
difference between the two crystal structures concerns the constitution of the bilayers. Although
the bilayers in both structures have similar widths (11.36 Å in 30/DMSO and 10.98 Å in 30/AcOEt),
they are linear in 30/DMSO and corrugated in 30/AcOEt (Figure 1). The result is that the crystals
belong to different space groups, being monoclinic I2 for 30/DMSO. This agrees with the well-known
fact that the solvent can modify the final crystal structure of bile acids and derivatives [14,55,56].

Table 4 shows details of the crystal structures for these and other different BE dimers. As a brief
summary of the conclusions deduced by comparison of the results we can mention: (1) Four of the five
dimers crystallize in the monoclinic crystal system, three of them in the P21 and the other in the I2.
In this case, corresponding to 30/DMSO, apart from the screw axis typical of the P21 crystals, the crystal
structure also presents a centring vector [1/2,1/2,1/2] and a 2-fold rotation axis with direction [0,1,0]
at 0,y,0. The crystal corresponding to the remaining dimer, 30/AcOEt, is orthorhombic P212121. (2) The
tet conformation is the most common one. (3) All these dimers have the tendency to be arranged with
the lateral chains fully or nearly fully extended. (4) With the exception of 28, in the crystal structures
of the other three dimers where the molecules are arranged in bilayers, these are β interdigitated.
The bilayers are corrugated in 30/AcOEt and 28 and linear in 30/DMSO and 27. The thicknesses of
the corrugated bilayers are slightly smaller than the thicknesses of the linear bilayers (Table 4).

Table 4. Some characteristics of the crystal structures of the BE dimers analyzed in this paper.

Dimer Space
Group Conformer Lateral Chain

Conformation
Type of

Bilayer/Width (Å) Interdigitation Ref.

30/AcOEt P212121 tet tttt/ttgitg corrugated/10.98 β this work
30/DMSO I2 tet tttt/tttt linear/11.36 β [52]

28 P21 tet tttt/tgtt corrugated/10.98 - [51]
27 P21 ttt tttg/tttt linear/11.30 β [51]
29 P21 iegtieg ttti/ttgc - - [51]

3.2. Monomer

A summary of the crystal data and experimental details corresponding to this diester derivative
of CA (with a 5-amino-isophthalic group attached to the 3β position of the steroid nucleus, through
an amide bond in compound 24) is listed in Table 3. This dimer crystallizes in the monoclinic P21

space group with one guest water molecule, having the asymmetric unit formed by two different
molecules of the steroid. The main difference between these two molecules concerns the conformation
of the D ring, since the phase angle of pseudorotation values [57] are indicatives of half chair and
close to β-envelope conformations. However, the conformations of the lateral chains are very similar,
both being tgtt.
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Figure 4 presents the view of packing in the crystal along the b axis, and shows a bilayer
organization of α interdigitated molecules, with a width of 13.54 Å. This bilayer is stabilized by
hydrogen bonds between molecules of the same geometry (identical color in Figure 4), as well as by
a π-π stacking between the aromatic rings of two molecules with different geometry (different color
in Figure 4). The aromatic planes are almost parallel (with an angle of 1.97◦), the benzyl rings being
slightly displaced. The distance between their centroids is 3.349 Å (Figure 5) and the distance of the
centroid-aromatic plane is 3.193 Å. These values are similar to those published for other aromatic
compounds [58], including graphite [59]. On the other hand, the limit to the π-π interaction is the
summation of the van der Waals radii between the involved atoms. Alvarez [60] has suggested that an
accurate van der Waals radius for the carbon atom is equal to 1.77 Å. Therefore, the maximum distance
for a π-π interaction would be 3.54 Å, a value which agrees well with the one given above.
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Figure 5. View of the crystal packing of compound 24 along a direction in which the π-π interaction is
clearly seen. The red points correspond to the centroids of the involved aromatic rings.

It is remarkable that only molecules with different symmetry are linked through hydrogen
bonds, the pattern being the same for both molecules. The interaction implies the amide C=O, O7H
and O12H groups. This last group acts as an acceptor from water hosted at the hydrophilic part of
the bilayer. Neither the ester at the lateral chain, nor the amine group in the aromatic substituent
participates in the hydrogen bonding network in the crystal.

3.3. Standard Steroid

We have analyzed the structures of the steroid moiety of all the compounds listed in Tables 1 and 2,
paying attention to the bond distances and bond angles between carbon atoms. Some compounds were
recrystallized from several solvents (resulting in their inclusion as guests), while others crystallized
with two different molecules in the asymmetric unit. The total number of data is 48.

Table 5 shows the values of the mean distances between bonded carbon atoms in the steroid
skeleton, including the 18 and 19 methyl groups and the atoms of the lateral chain. The shortest
and largest lengths are 1.502 ± 0.020 Å and 1.558 ± 0.010 Å, corresponding to C23-C24 and C9-C10
bonds, respectively. As expected, the differences in the distances among the different compounds
analyzed are small, particularly in the more condensed B and C rings. Figure 6a analyzes those
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results according to the standard deviations in the bond lengths, which are less than 0.01 Å (those in
green), between 0.01 and 0.015 Å (those in black), and greater than 0.015 Å (those in red). In a similar
way, we have determined the mean values of all the angles between consecutive carbon atoms in the
steroid nucleus and the lateral chain, the results being recompiled in Table 6 (the angle C2-C3-C4
was not considered for 11 because of the sp2 hybridization of the central atom). The highest value
corresponds to the C13-C17-C20 angle (119.4◦), and the lowest to C17-C13-C14 (100.2◦) inside the
cyclopentane ring. The angle C17-C20-C22 (in the flexible lateral chain) shows the highest standard
deviation, and surprisingly, the angle C9-C10-C19 presents the highest constancy of values for the
compounds analyzed. The results were also analyzed according to their standard deviations in
Figure 6b (color code: ≤0.75◦ green, 0.75–1.50◦ black, and >1.50◦ red).
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Figure 6. Standard steroid according to (a) the bond lengths and (b) bond angles and their respective
standard deviations (see text).

Table 5. Mean distances and standard deviations for the bond lengths of the steroids analyzed in this
paper, and comparison with progesterone and the lateral chain of cholesterol.

Standard Steroid Progesterone Cholesterol

bond mean distance ±
standard deviation (Å) distance/difference (Å)

mean
distance/difference (Å)

C1-C2 1.522 ± 0.012 1.533/−0.011
C2-C3 1.519 ± 0.011 1.498/0.021
C3-C4 1.521 ± 0.012 1.466/0.055
C4-C5 1.537 ± 0.011 1.347/0.190

C5-C10 1.548 ± 0.014 1.527/0.021
C10-C1 1.540 ± 0.011 1.539/0.001
C5-C6 1.534 ± 0.011 1.504/0.030
C6-C7 1.526 ± 0.013 1.521/0.005
C7-C8 1.528 ± 0.009 1.529/-0.001
C8-C9 1.544 ± 0.009 1.538/0.00613

C9-C10 1.558 ± 0.010 1.502/0.05614
C10-C19 1.538 ± 0.010 1.544/−0.006
C9-C11 1.537 ± 0.009 1.535/0.002
C11-C12 1.531 ± 0.008 1.546/−0.015
C12-C13 1.535 ± 0.009 1.535/0.000
C13-C14 1.543 ± 0.010 1.547/−0.004
C14-C8 1.523 ± 0.007 1.524/−0.001
C13-C18 1.535 ± 0.011 1.538/−0.003
C14-C15 1.529 ± 0.012 1.538/−0.009
C15-C16 1.541 ± 0.021 1.543/−0.002
C16-C17 1.556 ± 0.011 1.549/0.007
C17-C13 1.554 ± 0.011 1.564/−0.010
C17-C20 1.539 ± 0.010 1.544/−0.005
C20-C21 1.527 ± 0.011 1.527/0.00
C20-C22 1.540 ± 0.012 1.535/0.005
C22-C23 1.523 ± 0.014 1.516/0.007
C23-C24 1.502 ± 0.020 1.569/−0.067
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Table 6. Mean values and standard deviations for the bond angles of the steroids analyzed in this
paper, and comparison with progesterone and the lateral chain of cholesterol.

Standard Steroid Progesterone Cholesterol

angle mean value ± standard
deviation (◦) angle/difference (◦) mean angle/

difference (◦)
C10-C1-C2 114.6 ± 0.6 114.4/0.2
C1-C2-C3 110.8 ± 1.1 111.7/−0.9
C2-C3-C4 110.5 ± 0.9 117.0/−6.5
C3-C4-C5 113.7 ± 1.4 123.7/−10.0
C4-C5-C10 113.1 ± 0.8 123.0/−9.9
C5-C10-C1 108.0 ± 0.7 109.4/−1.4
C4-C5-C6 111.1 ± 0.9 119.8/−8.7
C5-C6-C7 114.0 ± 1.3 112.0/2.0
C6-C7-C8 111.9 ± 1.4 111.9/0.0
C7-C8-C9 111.1 ± 1.3 110.8/0.4
C8-C9-C10 111.7 ± 0.9 114.8/−3.1
C9-C10-C1 112.4 ± 0.8 108.5/3.9
C9-C10-C5 108.8 ± 0.6 109.5/−0.7
C10-C5-C6 111.9 ± 0.5 117.3/−5.4

C1-C10-C19 106.5 ± 0.7 110.2/−3.7
C5-C10-C19 109.7 ± 0.7 107.3/2.4
C9-C10-C19 111.5 ± 0.5 111.9/−0.4
C7-C8-C14 112.1 ± 0.9 111.3/0.8

C8-C14-C13 114.5 ± 1.1 114.1/0.4
C14-C13-C12 107.3 ± 0.8 107.6/−0.3
C13-C12-C11 111.2 ± 0.7 111.2/0.0
C12-C11-C9 114.4 ± 1.2 112.9/1.5
C11-C9-C10 113.6 ± 0.9 112.8/0.8
C11-C9-C8 111.6 ± 1.2 111.1/0.5
C9-C8-C14 109.7 ± 1.3 107.9/1.8

C8-C14-C15 118.3 ± 1.0 120.2/−1.9
C14-C15-C16 103.9 ± 0.8 103.9/−0.0
C15-C16-C17 107.0 ± 0.7 106.6/0.6
C16-C17-C13 103.1 ± 0.7 104.7/−1.6
C17-C13-C14 100.2 ± 0.8 99.7/0.5
C17-C13-C12 117.1 ± 1.1 116.0/1.1
C13-C14-C15 103.9 ± 0.5 103.5/0.4
C12-C13-C18 109.4 ± 1.0 111.2/−1.8
C14-C13-C18 112.6 ± 0.6 112.4/0.2
C17-C13-C18 110.0 ± 0.9 109.5/0.5
C16-C17-C20 112.3 ± 1.0 114.0/−1.7 111.2/1.1
C13-C17-C20 119.4 ± 1.1 115.9/3.5 120.0/−0.6
C17-C20-C21 112.9 ± 1.1 112.0/0.9
C17-C20-C22 110.3 ± 2.0 110.0/0.3
C21-C20-C22 110.3 ± 0.9 110.5/−0.2
C20-C22-C23 114.5 ± 1.3 115.0/−0.5
C22-C23-C24 113.7 ± 1.7 111.5/2.2

Tables 5 and 6 and Figure 6 define the average steroid nucleus. We can now analyze how this
model steroid changes because of significant modifications in the steroid structure.

As examples, we have chosen progesterone (Figure 7a) to analyze the
cyclopentanoperhydrophenanthrene nucleus, and cholesterol (Figure 7b) for the lateral chain
analysis. Data were obtained from the CIF files reported by Shikii et al. for progesterone [61],
and Shieh et al. for cholesterol [62]. Since the asymmetric unit in the crystal of cholesterol has eight
molecules, mean values of bond distances and bond angles were calculated for comparison purposes.
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Figure 7. Chemical structures of (a) progesterone and (b) cholesterol.

In progesterone, apart from the length corresponding to the C4-C5 double bond, the other lengths
presenting differences with the standard steroid (greater than 0.015 Å) are those corresponding to
the C4-C5 bond’s neighbors (C3-C4 and C5-C10), as well as the C2-C3, C5-C6 and C9-C10 bonds.
Excluding the bond angles in which C2, C3, and C4 atoms (participating in double bonds) are
involved, the remaining values do not differ greatly from those of the standard steroid. In fact,
the differences between them are similar to those observed between the compounds used to define the
standard steroid.

In cholesterol, only the C23-C24 bond length is greater than 0.015 Å in comparison to this length
in the standard steroid. On the other hand, the differences between the bond angles are very small,
the greatest being 2.2◦ in the C22-C23-C24 bond angle.

Although significant changes are not to be expected, we have also calculated the angles between
the horizontal and vertical planes for the steroid molecules in the 48 structures resulting in the crystal
packings. The results are shown in Table 7, and the main conclusion is the confirmation of the validity
of these two planes for comparisons and discussions. The average angle value for the standard steroid
is 88.2 ± 0.5◦. Therefore, the standard steroid defined here behaves very well in the discussed aspects.

Table 7. Values of the angles between the horizontal and vertical planes, and conformations of the
lateral chain in the steroids analyzed in this paper (a and b refer either to the two molecules in the
asymmetric unit, or to the two monomers in a dimer).

Compound Angle Between Horizontal and Vertical Planes (◦) Lateral Chain Conformation

1 88.2 tttg
2 88.4 tgtt
3a 87.9 tgtitg
3b 88.3 tgtitg
4 87.6 gtgc
5 88.0 gttt
6 87.2 tttc
7 88.0 ttgg
8a 89.4 tttitg
8b 87.9 tgtg
9 87.9 tttg
10 88.7 tttt

11a 89.0 tgtt
11b 89.8 tgtt
12 88.9 ttt-
13 88.0 tgtt
14 88.0 tgtt

15/2-propanol 88.4 tgtg
15/acetone 87.7 tttitg
15/DMSO 87.9 tttt

16/acetone a 87.5 ttgt
16/acetone b 87.3 ttgt

16/chlorobenzene 87.9 ttgt
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Table 7. Cont.

Compound Angle Between Horizontal and Vertical Planes (◦) Lateral Chain Conformation

17 87.8 tttt
18 88.4 ttgitg
19 88.0 ttgitg
20 88.3 tttt

21a 88.7 tttt
21b 88.4 tttt
22a 88.7 tttt
22b 88.7 ttgt
23 88.1 tttc

24a 88.1 tgtt
24b 87.8 tgtt

25/DMSO 88.8 ttgitg
25/MeOH 87.9 ttgg
25/acetone 87.7 ttgg

26 87.9 ttgt
27a 88.6 tttg
27b 88.6 tttt
28a 87.9 tgtt
28b 88.4 tttt
29a 86.8 tttitg
29b 87.9 ttgc

30/AcOEt a 87.9 tttt
30/AcOEt b 88.2 ttgitg
30/DMSO a 88.4 tttt
30/DMSO b 88.6 tttt

The analysis of the conformation of the lateral chain can be made through the positions of its atoms
with respect to the horizontal and vertical planes (for example), or through the torsion angles from
C17 to C23. However, the geometric requirements needed for the establishment of hydrogen bonds
a priori indicate that the result can be very variable (see above). Therefore, for discussing the lateral
chains, the second option is more appropriate. Results are recompiled in Table 7. With the exceptions
of derivatives, compounds 4 and 5 (for which it is gauche), the other 46 crystal structures have trans
conformations in the C13-C17-C20-C22 torsion angle. This predominant conformation is a consequence
of the torsion angle C13-C17-C20-C21, which, being in the narrow range −53/−60◦, corresponds to
a minimum in the energy profile for cholanic acids and related compounds [63]. This minimum is
also associated with values of about 60 and −170◦ for C17-C20-C22-C23 (the second torsion angle),
corresponding to gauche and trans conformations, respectively. Of the found conformations, 75% are
trans, and the remaining are gauche. The mentioned minimum has also values around 50 (gauche),
165 (trans), and −95◦ (intermediate between gauche and trans, itg) for C20-C22-C23-C24. For this third
torsion angle, the trans conformation appears in 71% of the crystal structures, while 29% are gauche.
Finally, the conformations found for the torsion angle C22-C23-C24-O24a are the following: trans
55.5%, itg 19%, gauche 17%, and cis 8.5%. Therefore, the variability in the conformations is greater
when we move to the end of the lateral change (although trans conformations are the most common
ones). This fact is a consequence of the fact that the atoms of the carboxylic group adopt positions
controlled by the formation of hydrogen bonds (favored by the flexibility of the lateral chain in cholanic
acids), and such a conformation is not characteristic of a specific BA and their derivatives. Indeed,
the cis conformation appears in two epimers of DCA (compounds 4 and 6), the azide derivative of CA
compound 23, and one of the molecules of the dimer compound 29 (the one in which its lateral chain
does not participate in hydrogen bonding).

Finally, we have recompiled some information about the hydrogen bonding network in the
crystal structures of monomers. We have considered the compounds with hydroxy, oxo, or amide
groups at the C3 position, and hydroxy groups at the C7 or C12 positions, i.e., all the compounds of
Table 3 excluding the amine (compounds 12, 21 and 22), azide (compound 23) and ester (compound 26)
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derivatives. The participation of water as a guest was also considered, but not other solvents. Table 8
shows the mean distances of the donor-H/acceptor systems determined from the analysis of the
structures, where the donor/acceptor behavior is not specified. In the Table, values without standard
deviations were found in only one crystal.

Table 8. Mean values with standard deviations for the donor/acceptor distance in the indicated
hydrogen bonds of the monomers indicated in the text. Units of all data in Å.

O7H O12H O24b=COR OC-O24a-R CO-(NH) (CO)-NH Water

O3H 2.75 ± 0.11 2.720 ± 0.05 2.76 ± 0.08 2.64 ± 0.04

O7H 2.803 2.793 2.851 ± 0.016 2.640 ± 0.015 2.78 ± 0.10 2.79 ± 0.09

O12H 2.88 ± 0.04 2.680 ± 0.030 2.81 ± 0.07 2.86 ± 0.10

O24b=COR 2.803 3.008 ± 0.019 2.75 ± 0.11

OC-O24a-R 2.588 2.978 2.579 ± 0.021

It may be noticed that O3H can form hydrogen bonds with any of the hydrophylic groups present
in the steroids, with the exception of the amide group (when present) and itself. This last observation
also applies to O12H, but not to O7H. In only one structure, compound 8, the carboxylic groups directly
formed a hydrogen bond. All the values are within accepted ones for hydrogen bonds.

In cholesterol, which only has one hydroxy group at C3, only a O3/O3 hydrogen bond is possible.
The average bond length for that bond is 2.87 ± 0.07 Å. In the absence of an appropriate solvent,
progesterone cannot form any hydrogen bond.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4352/8/2/86/s1.
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