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Abstract: A new tetranuclear zinc(II) complex with an asymmetrical Salamo-type chelating ligand,
H3L (5-methoxy-6′-hydroxy-2,2′-[ethylenedioxybis(nitrilomethylidyne)]diphenol), was synthesized
and characterized using FT-IR, elemental analyses, X-ray single crystal diffraction method, UV-Vis, and
fluorescence spectra. The zinc(II) complex possesses the cell parameters a = 8.1960(7) Å, b = 9.8127(8) Å,
c = 16.5428(15) Å, Z = 1, V = 1172.5(2) Å3, R1 = 0.0722, and wR2 = 0.1558, and crystallizes in the triclinic
system, with space group P-1. X-ray crystal structure analysis reveals that Zn1 and Zn2 atoms
are all pentacoordinated and adopt slightly twisted tetragonal pyramidal and trigonal bipyramidal
geometries. The zinc(II) complex forms a 1D supramolecular chain via intermolecular hydrogen bonds
along the b axis. Besides, the fluorescence properties have been discussed.
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1. Introduction

Over the past years, research has shown the Salen-type [1–8] and Salamo-type [9–17] compounds
to be exceptionally good chelating ligands in in the fields of organometallic chemistry and coordination
chemistry. The Salamo metal complexes are widely utilized in various fields such as industrial
catalyses [18,19], biological fields [20,21], ion recognitions [22–24], environmental sciences [25–28],
and magnetic [29,30] and luminescent materials [31–39]. Recently, a lot of researchers have tried
many approaches to change the (–CH=N–(CH2)n–N=CH–) instead of (–CH=N–O–(CH2)n–O–N=CH–)
unit in order to make the exchange reaction and hydrolysis reaction rate of the compounds greatly
reduced and the balance level raised to a very great extent, so the Salamo-type compounds are
more stable than the Salen-type compounds [40–42]. Research on Salen-type compounds has
yet to be fully explored. Besides, their complexes often form supramolecular systems that have
unique structures, a novel bonding pattern, a specific microstructure, and excellent macroscopic
properties by the intermolecular association of the weak non-covalent bonding [43–45]. More ideal
structural variations, drastic changes in characteristics of the previous complexes, and novel properties
could be obtained through the asymmetric configuration. Herein, a new asymmetrical Salamo-type
compound, 5-methoxy-6′-hydroxy-2,2′-(ethylenedioxybis(nitrilomethylidyne))diphenol (H3L) and its
zinc(II) complex, were designed and synthesized and structurally characterized.
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2. Experimental

2.1. Materials and Measurements

3-hydroxysalicyladehyde (99%) and 4-Methoxysalicylaldehyde (98%) were purchased from Alfa
Aesar (New York, NY, USA), while Tianjin Chemical Reagent Factory supplied the remaining reagents.
Elemental analysis for zinc was detected by IRIS ER/S-WP-1 ICP atomic emission spectrometer
(Elementar, Berlin, Germany). C, H, and N were analyzed using GmbH VariuoEL V3.00 automatic
elemental analysis instrument (Elementar, Berlin, Germany). IR spectra (400–4000 cm−1) were recorded
on a Vertex 70 FT-IR spectrophotometer (Bruker, Billerica, MA, USA), with samples prepared as KBr
pellets. UV-vis absorption spectra were recorded on a Shimadzu UV-3900 spectrometer (Shimadzu,
Tokyo, Japan). 1H NMR spectra were determined by German Bruker AVANCE DRX-400/600
spectroscopy (Bruker AVANCE, Billerica, MA, USA). Fluorescence spectra were recorded on an
F-7000 FL spectrophotometer (Hitachi, Tokyo, Japan). X-ray single crystal structure determination of
the zinc(II) complex was carried out on a SuperNova Dual (Cu at zero) four-circle diffractometer.

2.2. Synthesis of H3L

The synthesis of 5-methoxy-6′-hydroxy-2, 2′-[ethanedioxybis(nitrilomethylidyne)]diphenol (H3L)
is given (Scheme 1).

1,2-Bis(aminooxy)ethane and 2-[O-(1-ethyloxyamide)]oxime-5-methoxyphenol were synthesized
according to an analogous method reported earlier [15,46]. A colorless ethanol solution (4 mL) of
2,3-dihydroxybenzaldehyde (256.32 mg, 2.0 mmol) was slowly added to the ethanol solution (4
mL) of 2-[O-(1-ethyloxyamide)]oxime-5-methoxyphenol (425.05 mg, 2.0 mmol), and the mixture was
stirred at 52 ◦C for 6 h. After cooling to room temperature, the precipitate was filtered and washed
successively with ethanol and ethanol-hexane (1:4) (3 × 4 mL), respectively. The product was purified
with recrystallization from ethanol and dried in vacuo to get a yellow powder. Yield: 80.7%. m.p.
110–111.5 ◦C. Anal. calcd. for C17H18N2O6 (%): C 59.84, H 6.21, N 7.41; found: C 59.66, H 6.12, N 7.73.
1H NMR (400 MHz, CDCl3) δ 9.92 (d, J = 7.8 Hz, 2H), 8.19 (d, J = 18.3 Hz, 1H), 7.05 (d, J = 8.4 Hz, 1H),
6.96 (d, J = 7.2 Hz, 1H), 6.87–6.71 (m, 2H), 6.53–6.44 (m, 2H), 4.47 (d, J = 6.7 Hz, 3H), 3.81 (s, 4H).
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2.3. Synthesis of the Zinc(II) Complex

A dropwise solution of Zn(CH3COO)2·H2O (8.78 mg, 4 mmol) in ethanol (9 mL) was added
to a solution of H3L (6.84 mg, 2 mmol) in chloroform (5 mL) at r.t., after which the mixed solution
was stirred for 6 h at 60 ◦C and was then filtered off. The filtrate was allowed to stand at r.t. for
several days, and yellow prismatical single crystals suitable for X-ray crystallographic analysis were
obtained. Yield: 51.6%. Anal. calcd. for C42H48N4Zn4O18 (%): C, 43.54; H, 4.19; N, 4.89; Zn, 22.55.
Found: C, 43.55; H, 4.18; N, 4.84; Zn, 22.58. Table 1 shows the data collection and refinements of the
zinc(II) complex.

2.4. X-ray Crystallography

Single crystal X-ray diffraction data were collected at 173 K on a SuperNova Dual (Cu at
zero) four-circle diffractometer with graphite-monochromated Mo-Kα radiation (λ = 0.71073 Å). The
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structure was solved by the direct methods and all hydrogen atoms were added. All non-hydrogen
atoms were refined anisotropically using a full-matrix least-squares procedure on F2 with
SHELXL-2014 [47,48]. The LP factor and semi-empirical absorption correction by SADABS were
applied to the intensity data. The crystal data and experimental parameters relevant to the structure
determination are listed in Table 1, and the final positional and thermal parameters are available as
supplementary material.

Table 1. Crystal data and structure refinement for the zinc(II) complex.

Molecular Formula C42H48N4Zn4O18

Formula weight 1158.32
Temperature (K) 221
Wavelength (Å) 0.71073
Crystal system triclinic

Space group P-1
a (Å) 8.1960(7)
b (Å) 9.8127(8)
c (Å) 16.5428(15)
α (◦) 106.392(8)
β (◦) 92.669(8)
γ (◦) 111.299(8)

V (Å3) 1172.5(2)
Z

Dcalc (g·cm–3)
1

1.640
µ (mm–1) 2.099

F (000) 592
Crystal size (mm) 0.21× 0.23 × 0.25

Index range
−10 ≤ h ≤ 8,
−12 ≤ k ≤ 12,
−18 ≤ l ≤ 20

Reflections collected 7315
Independent reflections 4569

Rint 0.0620
Completeness to θ 3.43 to 26.02

Data/ restraints/parameters 4569/3/313
GOF 1.027

Final R1, wR2 indices R1 = 0.0722, wR2 = 0.1127
R1

a, wR2
b indices (all data) R1 = 0.1493, wR2 = 0.1555

Largest differences peak and hole (e Å−3) 0.918 and −0.493

a. R1 = Σ‖Fo| − |Fc‖/Σ|Fo|; b. wR2 = [Σw(Fo
2 − Fc

2)2/Σw(Fo
2)2]1/2.

Crystallographic data have been deposited with the Cambridge Crystallographic Data Centre as
supplementary publication, with CCDC-1519979 for the zinc(II) complex. Copies of the data can be
obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB21EZ, UK (Telephone:
+(44)-01223-762910; Fax: +44-1223-336033; E-mail: deposit@ccdc.cam.ac.uk). These data can be also
obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html.

3. Results and Discussion

3.1. FT-IR Spectra

The most important features in the FT-IR spectra data of H3L and its zinc(II) complex are listed in
Table 2.

www.ccdc.cam.ac.uk/conts/retrieving.html
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Table 2. Infrared absorption spectra of H3L and its zinc(II) complex (cm−1).

Compound ν(O–H) ν(C=N) ν(Ar–O) ν(Zn–N) ν(Zn–O)

H3L 3439 1631 1283 - -
[{Zn(L)(µ-OAc)Zn(CH3CH2OH)}2] 3424 1600 1265 509 467

Data obtained from the FT-IR spectra show differences between H3L and its zinc(II) complex,
and the analysis gives hint about the coordination reaction between H3L and zinc(II) atoms, and thus
suggests formation of a new zinc(II) complex. The characteristic C=N stretching band of H3L is found
at 1631 cm−1, and that of zinc(II) complex appears at 1600 cm−1 [49–51]. Upon complexation, this
band shifts by a ca. 31 cm−1 to a lower frequency, and thus indicates that C=N bond order decreases
owing to the binding of the zinc(II) atom to oxime nitrogen atoms [40]. The stretching frequency
band of the Aromatic-O atom appears at 1283 cm−1 for H3L, while for the zinc(II) complex the band
appears at 1265 cm−1 [40,52]. The frequency shift in the Aromatic-O stretching band shows that
interaction between the oxygen atoms of phenolic group and zinc(II) atom results in the Zn–O bonds
formation [46]. Besides, the O–H stretching band of H3L is observed at 3439 cm−1, while the absorption
broad band at 3424 cm−1 in the zinc(II) complex could be ascribed to the –OH group of coordinated
ethanol molecules.

3.2. UV-Vis Absorption Spectra

The data and absorption spectra of H3L and its zinc(II) complex in diluted ethanol solution were
presented in Figure 1. The spectrum of the zinc(II) complex is different from that of the free ligand
H3L. The UV-Vis spectrum of the free ligand H3L exhibits one absorption peak at ca. 275 nm and could
be attributed to the π-π* transition of the benzene rings.

The zinc(II) complex exhibits maximum absorption peak at 289 nm, which indicates that
coordination reaction occurs between the zinc(II) atoms and H3L [46]. Moreover, a new absoption
peak at 340 nm was observed in the zinc(II) complex, contrary to the peak observed at 311 nm in H3L,
which could be attributed to the π-π* transition of the oxime group [46].
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3.3. Crystal and Supramolecular Structure of the Zinc(II) Complex

The zinc(II) complex crystal structure is depicted in Figure 2, while Table 3 shows the list of
important bond distances and bond angles.
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Figure 2. (a) View of the molecular structure of the zinc(II) complex with atom labeling (hydrogen
atoms are omitted for clarity purpose and are drawn at the 30% probability level). (b) View of zinc(II)
atoms of the zinc(II) complex showing coordination polyhedrons.

Table 3. Selected bond distances (Å) and bond angles (◦) of the zinc(II) complex.

Bond Lengths Bond Lengths Bond Lengths

Zn1-O1 2.039(5) Zn1-O2 2.058(5) Zn1-O8 1.963(6)
Zn1-O9 2.026(5) Zn1-O1 # 2.002(5) Zn2-O2 2.010(5)
Zn2-N1 2.083(7) Zn2-O5 1.940(5) Zn2-O7 1.981(6)
Zn2-N2 2.127(7)

Bond Angles Bond Angles Bond Angles

O1-Zn1-O2 79.6(2) O1-Zn1-O8 140.6(2) O1-Zn1-O9 111.2(2)
O1-Zn1-O1 # 77.7(2) O2-Zn1-O8 96.3(2) O2-Zn1-O9 89.6(2)
O2-Zn1-O1 # 156.63(2) O8-Zn1-O9 107.8(2) O8-Zn1-O1 # 97.9(2)
O9-Zn1-O1 # 103.6(2) O2-Zn2-O5 94.0(2) O2-Zn2-O7 91.8(2)
O2-Zn2-N1 85.0(3) O2-Zn2-N2 175.8(2) O5-Zn2-O7 113.1(2)
O5-Zn2-N1 117.4(3) O5-Zn2-N2 89.7(3) O7-Zn2-N1 129.5(3)
O7-Zn2-N2 88.7(2) N1-Zn2-N2 91.5(3)

Symmetry transformations used to generate equivalent atoms: #: 2 − x, 1 − y, −z.

The complex [{Zn(L)(µ-OAc)Zn(CH3CH2OH)}2] belongs to the triclinic system, with space group
P-1, and consists of four zinc(II) atoms and two completely deprotonated (L)3− linkers, with two
ethanol molecules and two bonded acetate ions. As far as we know, this new 2:4 ((L)3− : zinc(II))
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Salamo-type zinc(II) coordination complex ratio is rarely reported when compared to its counterpart
complexes that have the coordination ratio of 1:1 [46], 2:3 [43], and 4:8 [45] (L: zinc(II)). The terminal
zinc(II) atom (Zn2 or Zn2#) is penta-coordinated, and situated at an N2O2 site of the deprotonated
ligand moiety with one O7 atom from µ-acetate ion adopting a slightly twisted trigonal bipyramidal
geometry (τ2 = 0.772) [11]. The central zinc(II) atom (Zn1 or Zn1#) is also penta-coordinated via the
three oxygen atoms (O1, O2 and O1#), one O9 atom from the coordinated EtOH molecule, and one O8
atom from µ-acetate ion forming a slightly distorted tetragonal pyramidal geometry (τ1 = 0.265) [11].
The Zn1 and Zn2 atoms are connected through µ-acetate ion in a familiar M-O-C-O-M fashion.

Table 4 summarizes the inter- and intramolecular hydrogen bonds in the zinc(II) complex.
From Figure 3, the proton (–C9H9B or –C9#H9B#) of ethylenedioxime carbon atom (C9 or C9#) of (L)3–

unit is hydrogen bonded to oxygen atom (O7) of the µ-acetate ions, and the proton (–O9H9 or –O9#H9#)
of the coordinated ethanol molecule is hydrogen bonded to one of phenolic oxygen atom (O5 or O5#)
of the (L)3– unit. Thus, two pairs of intramolecular hydrogen bonds C9–H9B···O7, C9#–H9B#···O7#,
O9–H9···O5 and O9#–H9#···O5# [53–59] are formed. Under the intermolecular force of C7–H7···O6
and C7#–H7#···O6#, a 1D supramolecular chain that extends infinitely in the b axis direction is formed
by the crystal of [{Zn(L)(µ-OAc)Zn(CH3CH2OH)}2], as depicted in Figure 4 [60–67].

Table 4. The intra- and intermolecular hydrogen bonds of the Zn(II) complex.

D–H···A d(D–H) (Å) d(H···A) (Å) d(D···A) (Å) ∠∠∠D–H···A (◦) Symmetry Code

O9–H9···O5 0.86 1.88 2.64 8(2) 147
C9–H9B···O7 0.97 2.53 3.33 6(5) 141
C7–H7···O6 0.93 2.55 3.47 3(4) 171 x, 1 + y, z
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3.4. Fluorescent Properties

As shown in Figure 5, H3L exhibits a broad emission at 406 nm upon excitation at 268 nm, while
the zinc(II) complex displays an intense photoluminescence with maximum emission peak at ca.
415 nm upon excitation at 268 nm, which is considered to be bathochromically shifted when compared
to that of H3L, indicating that molecular inter-atomic forces and degree of conjugation are better in the
zinc(II) complex internal molecules, due to the intraligand π-π* transition [18]. The Zn(II) complex has
a greater fluorescence intensity, and it may have potential as a luminescent material.
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4. Concluding Remarks

In this paper, A new tetranuclear zinc(II) complex has been successfully prepared and
characterized. X-ray crystal structure analysis reveals that the four zinc(II) atoms are all
penta-coordinated, in which two of the zinc(II) atoms lie in the N2O2 coordination spheres of
Salamo-type bis-oxime (L)3− moieties and adopt slightly distorted trigonal bipyramid geometries
(τ2 = 0.772), and the remaining two zinc(II) atoms adopt slightly distorted tetragonal pyramidral
geometries (τ1 = 0.265). Moreover, the zinc(II) complex molecules assemble to form an infinite 1D
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chain-like supramolecular structure via intermolecular C7–H7···O6 and C7#–H7#···O6# hydrogen
bonding interactions. The fluorescence properties show that the Zn(II) complex may has the potential
to be used as a luminescent material.
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