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Abstract: Here we report the synthesis and characterization of a mononuclear gadolinium complex
(Gd) and two heteronuclear Zn-Gd complexes (ZnGd and Zn2Gd), which contain two similar
three-armed ligands that display an external compartment suitable for lanthanoid ions, and
two internal compartments adequate for zinc (II) ions [H3L′ = (2-(3-formyl-2-hydroxy-5-methyl
phenyl)-1,3-bis[4 -(3-formyl-2-hydroxy-5-methylphenyl)-3-azabut-3-enyl]-1,3-imidazolidine; H3L =
2-(5-bromo-2-hydroxy-3-methoxyphenyl)-1,3-bis[4-(5-bromo-2-hydroxy-3-methoxyphenyl)-3-azabut
-3-enyl]-1,3-imidazolidine]. The synthetic methods used were varied, but the use of a metalloligand,
[Zn2(L)AcO], as starting material was the key factor to obtain the heterotrinuclear complex Zn2Gd.
The structure of the precursor dinuclear zinc complex is mostly preserved in this complex, since
it is based on a compact [Zn2Ln(L)(OH)(H2O)]3+ residue, with a µ3-OH bridge between the three
metal centers, which are almost forming an isosceles triangle. The asymmetric spatial arrangement of
other ancillary ligands leads to chirality, what contrasts with the totally symmetric mononuclear
gadolinium complex Gd. These features were confirmed by the crystal structures of both complexes.
Despite the presence of the bulky compartmental Schiff base ligand, the chiral heterotrinuclear
complex forms an intricate network which is predominately expanded in two dimensions, through
varied H-bonds that connect not only the ancillary ligands, but also the nitrate counterions and
some solvated molecules. In addition, some preliminary magnetic resonance imaging (MRI)
studies have been made to determine the relaxivities of the three gadolinium complexes, with
apparently improved T1 and T2 relaxivities with increasing zinc nuclearity, since both transversal
and longitudinal relaxivities appear to enhance in the sequence Gd < ZnGd < Zn2Gd.

Keywords: gadolinium; heteronuclear zinc-gadolinium complexes; chiral complex; H-bonded
network; Magnetic resonance imaging (MRI); negative contrast agent

1. Introduction

Coordination chemistry of lanthanoids has experienced a considerable development in recent
years, because this field is closely related to that of single-molecule magnets (SMMs) or single-ion
magnets (SIMs). Their promising applications include innovative information technologies, such
as molecular magnetic memories for high-density data storage, molecular quantum information
processors, molecular transistors, or spintronics devices, to cite only some of their many potential
applications [1].
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Concurrently, a particular interest has been devoted to heteronuclear {3d-4f }-coordination
complexes [2–11], this combination can lead to interesting results, since it appears that it could
modulate some properties, or even afford other remarkable properties, and hence, new polyfunctional
molecules could arise from this combination [10,11].

In particular, among common 3d ions used for these latter purposes, the combination of zinc ions
with lanthanoids in heteronuclear complexes is especially significant. Thus, it appears to influence
the anisotropy barrier [7,8,10–12], in some case by simple changes in the ancillary ligands [10].
Furthermore, its presence can also influence on different luminescent properties [10,11,13,14].

In this sense, we have been recently involved in a research program focused on studying
hybrid Zn-Ln polynuclear complexes containing the polytopic ligands shown in Scheme 1 [15–17].
As a result of our previous work with these two ligands, we have found that complexes as
{[ZnDy(HL)(NO3)(OAc)(CH3OH)](NO3)}·1.25CH3OH·0.25H2O; [Zn2Dy(L)(NO3)2(OAc)2(H2O)]; and
[Zn2Er(L)(NO3)2(OAc)2(H2O)]·1.5H2O behave as field-induced single ion magnets (SIMs) [15] while
[Zn2Dy(L′)(NO3)3(OH)] is a bifunctional field-induced fluorescent SIM [16]. Furthermore, we
have recently presented the structure of [Zn2Ho(L)(ald)(HO)(H2O)(MeCN)](NO3)2·EtOH (Hald =
5-bromo-2-hydroxy-3-methoxy benzaldehyde) with a curious 2D H-bonded network [17].
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Scheme 1. Three-armed Schiff base ligands used in this work.

As an extension of this research program, we have revisited the two ligands shown in Scheme 1,
with differentiated compartments for 3d and 4f metal ions, to prepare some gadolinium(III) complexes
in presence, or not, of zinc(II) ions. Our aim is getting further insight into the features of these Zn-Gd
compounds, although it must be mentioned that some preliminary results have been previously
presented as a proceeding [18]. Thus, we have combined H3L or H3L′ with gadolinium(III) and
zinc(II) ions, in different proportions, to obtain a mononuclear gadolinium complex, as well as one
heterodinuclear and one heterotrinuclear Zn-Gd complex.

Our interest, in this case study, is not focused on their magnetic behavior, since gadolinium(III) is
a magnetically isotropic ion, but its ability and application as contrast agent (CAs) or zinc sensor for
magnetic resonance imaging (MRI) is more than noteworthy [19–27].

This technique has been explored as a non-invasive technique that allows imaging of intact,
opaque organisms in three dimensions without photobleaching or light scattering. However, MRI has
relatively poor sensitivity if compared to other molecular imaging modalities, and, therefore, contrast
agents (CAs) are often used to enhance imaging contrast between pathological and normal tissues.
Most commonly, these are para- or superparamagnetic compounds that shorten the relaxation times
of water molecules it encounters, i.e., relaxation agents. Contrast agents influence both longitudinal
(1/T1) and transverse (1/T2) relaxation rates, and clinically approved CAs can be categorized into two
main types: T1-shortening or positive agents, and T2-shortening or negative agents [25].

Superparamagnetic iron oxide nanoparticles (SPIONs) have been widely studied as T2 agents,
molecular complexes and nanoparticles based on GdIII are commonly employed as T1 agents [26,27].
Thus, many molecular gadolinium chelates that shorten the longitudinal relaxation time (T1) of
water protons to produce ‘positive’ contrast (bright) have been commercialized for their clinical use
(e.g., DOTA, Dotarem, DTPA, Magnevist, ProHance), and hence, they have been widely studied [25].
However, current clinically used CAs possess relatively low contrast efficacy (relaxivity, r1), and
large amounts of these compounds have to be administered to achieve sufficient contrast, which
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entails a safety concern. In fact, this concern has been recently stated by the European Agency
of Medicines, which, in line with the Pharmacovigilance Risk Assessment Committee’s (PRAC)
March 2017 recommendations, advertises that all intravenous linear agents should be suspended [28].
Consequently, there is a current need for more efficient CAs with improved relaxivity. In this way, it has
been shown that the relaxivity of some CAs can be enhanced by the presence of other species. These
imaging probes are called ‘smart’ or responsive MR probes, and they are particularly attractive, as
they modulate their relaxivity leading to signal amplification upon molecule target interaction [29–31].

Among this kind of contrast agent, some zinc(II) responsive probes have been reported
since the first one described in 2001 [32], but, unfortunately, none of them show particularly
large changes in r1 relaxivity in response to zinc(II). Most of this kind of CAs are based on
1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), or diethylenetriaminepentaacetic
acid (DTPA) derivatives, to which Gd3+ is coordinated, with an appended unit designed to bind Zn2+

ions [33–35], but less work has been done with other chelating agents. Furthermore, in spite of the
numerous papers assessing gadolinium complexes as Zn2+ responsive imaging probes, as far as we
know, heteronuclear Zn-Gd complexes have not been presented as potential MRI CAs.

Taking into account all the outlined considerations, we have made some preliminary studies
to assess the longitudinal (r1) and transverse (r2) relaxivities of the three compounds containing
gadolinium, and the results achieved are described herein.

2. Experimental

2.1. Materials and Methods

All chemical reagents were purchased from commercial sources and used as received without
further purification. Elemental analysis of C, H, and N was performed on a FISONS EA 1108 analyzer.
Infrared spectra were recorded in the ATR mode on a Varian 670 FT-IR spectrophotometer in the range
4000–500 cm−1. X-ray powder diffraction (XRD) patterns for samples of crystallized metal complexes
were measured on a Philips powder diffractometer fitted with a Philips control unit (PW1710), a
vertical Philips goniometer (PW1820/00) and an Enraf Nonius generator (FR590). The instrument was
equipped with a graphite diffracted beam monochromator, and a copper radiation source [λ(Kα1) =
1.5406 Å] operating at 40 kV and 30 mA. The X-ray powder diffraction patterns (XRPD) have been
collected by measuring the scintillation response to Cu Kα radiation in the angular range 5 < 2θ < 30,
with a step size of 0.02◦ and counting time of 4 s per step.

2.2. Synthesis of the Complexes

H3L′ (Scheme 1) was obtained in situ by template synthesis, as explained below, and previously
reported [36], whilst H3L (Scheme 1) was prepared prior to its use as described in literature [11]. This
ligand was also employed to synthetize the related homodinuclear zinc(II) complex [Zn2(L)(OAc)]
following a method also previously reported [11].

2.2.1. Mononuclear Gd Complex

2-hydroxy-5-methyl-1,3-benzenedicarboxaldehyde (0.13 g, 0.79 mmol) solved in acetonitrile
(10 mL) was added to a solution of triethylenetetramine (0.038 g, 0.26 mmol) in methanol (20 mL).
The mixture was stirred for 30 min, and finally Gd(NO3)3·6H2O (0.12 g, 0.26 mmol) was added to the
obtained yellow solution. The new mixture was stirred for 4 h at room temperature and the resultant
yellow solution was concentrated in a rotaevaporator, reducing its volume up to 15 mL. The solution
was stored at a low temperature in the fridge, and after one day, single crystals precipitated and some
of them were separated for X-ray diffraction studies. These studies demonstrated that they were
of [Gd(H3L′)(NO3)(H2O)](NO3)2·4H2O (Gd). The remaining crystals were filtered and dried in air,
what could have led to a partial losing of the hydration water, as it was subsequently characterized as
[Gd(H3L′)(NO3)(H2O)](NO3)2·2H2O. In order to distinguish these crystals from the more hydrated
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and fresh ones used for XRD studies, this crude crystalline solid will be named as Gd′. Yield: 0.087
g (34%). Elemental analysis calcd. for C33H42GdN7O18 (981.87): C 40.37, H 4.31, N 9.98%. Found: C
40.19, H 4.32, N 9.76%. FT-IR (ATR, ν̃/cm−1): 3271 (H2O), 1642 (C=O), 1632 (C=N), 1305, 1281 (NO3

−).

2.2.2. Heteronuclear Zn-Gd Complexes

Zn(OAc)2·2H2O (0.021 g, 0.094 mmol) was added to a chloroform (5 mL) solution of H3L (0.074 g,
0.094 mmol). Subsequently, Gd(NO3)3·6H2O (0.042, 0.094 mmol) and 5 mL of methanol were added to
the resultant yellow solution. The mixture was stirred at room temperature for 2 h and a finely divided
yellow powder precipitated. The solid was separated by centrifugation, dried in air, and characterized
by AE, FT-IR, and X-ray diffraction studies as ZnGd(HL)(NO3)2(OAc)·MeOH·3H2O, which will be
abbreviated as ZnGd. These reactions are summarized in Scheme 2. Yield: 0.072 g (60%). Elemental
analysis calcd. for ZnGdC33H44N6O18Br3 (1275.12): C 31.06, N 6.59, H 3.45%. Found: C 30.83, N 6.37,
H 3.26%; IR spectrum (ATR, ν̄, cm−1): 1636, 1648 (C=N); 1557 (OOC); 1285, 1300 (NO3−); 3264 (OH).
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Scheme 2. Simplified synthetic routes used to prepare the heterodi- and heterotrinuclear complexes:
ZnGd and Zn2Gd. The structure of Zn2Gd is based on its crystal structure, and that of ZnGd reflects its
analogy to similar compounds X-ray characterised (see text). Solvents have been omitted for simplicity.

Many attempts of recrystallization of ZnGd were made in different solvents (MeOH, MeCN,
CH2Cl2, acetone and mixtures of them), but they have only led to very small needle-like single crystals,
which were not suitable to solve the crystal structure, but one of these needles (0.18 × 0.02 × 0.01 mm)
diffracted enough to determine accurately the unit cell parameters: a = 10.82(3) Å, b = 16.29(5) Å, c =
26.67(7) Å, α, γ = 90, β = 97.37 (6)◦, V = 4659(37) Å3, and to compare its diffraction pattern with that of
its analogue [ZnDy(HL)(NO3)(OAc)(MeOH)](NO3)·1.25MeOH·0.25H2O [15], whose cell parameters
extraordinary resemble those found for ZnGd. This led to comparing their calculated X-ray powder
diffraction patterns, what confirmed their similitude (Figure S1 of the Supplementary Materials). This
fact, among other reasons (vide infra), has led to propose the structure sketched in Scheme 2.

With the aim of obtaining a heterotrinuclear complex, a CH3CN/CH3OH mixture (16/8 mL)
was used to solve the metalloligand [Zn2L(OAc)] (0.23 g, 0.237 mmol), and then Gd(NO3)3·6H2O
(0.107 g, 0.237 mmol) was added. The resulting solution was stirred at room temperature for 4 h,
giving rise to a yellow precipitate. These reactions are summarized in Scheme 2. The solid was
separated by centrifugation and dried in air. This solid was characterized as [Zn2Gd(L)(OH)(H2O)5]
(NO3)3·0.75CH3CN·3CH3OH. To simplify its mention, this finely divided crude but crystalline solid
it will be named as Zn2Gd′, to distinguish it from those crystals obtained with a slightly different
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solvation. Yield: 0.136 g (39%). Elemental analysis calcd. for Zn2GdC34.5H55.25N7.75O25.25Br3 (1490.08):
C, 27.78; N: 7.28; H, 3.71%. Found: C, 28.43; N, 7.35; H, 3.87%. IR (ATR, ν̄, cm−1): 1635 (C=N); 1302
(NO3

−); 3380 (OH).
Although the solid obtained was apparently microcrystalline, many attempts were made to obtain

good quality single crystals of the heterotrinuclear compound without a totally satisfactory result. The
best results were obtained from a very slow evaporation of a CH3OH/CH2Cl2 solution of Zn2Gd′

with a little of CH3CN yielded some crystals, which were studied with single crystal X-ray diffraction
techniques although they did not diffract intensely. These studies revealed the crystal structure of
[Zn2Gd(L)(OH)(H2O)5]2(NO3)6·1.5CH3CN·2.25H2O, and it will be named as Zn2Gd for simplicity.
The similitude between Zn2Gd and Zn2Gd′ was confirmed by the similarity of their X-ray powder
diffraction patterns.

2.3. Crystal Structure Determination

In the case of Zn2Gd, several crystals were selected, but despite its good appearance they were
poly-twined and diffracted rather poorly. Despite this inconvenience the best data set could be used to
solve and refine the crystal structure. Unfortunately, in the case of ZnGd, the data obtained were only
useful to determine the unit cell. Diffraction data of these two complexes and those of Gd were collected
at 100 K on a Bruker Kappa APEXII CCD diffractometer employing graphite monochromatized Mo-Kα

(λ = 0.71073 Å) radiation. Multi-scan absorption corrections were applied using SADABS [37].
The structures were solved by standard direct methods, employing SHELXT [38], and then it

was refined by full-matrix least-squares techniques on F2, using SHELXL [39]. Non-hydrogen atoms,
including counterions and solvated molecules, were anisotropically refined. Unfortunately, the quality
of the measured data for Zn2Gd was not completely satisfactory, because any crystals did not diffract
very intensely. Additionally, the data collected appeared as corresponding to a poly-twinned crystal,
by this was not the actual nature of this crystal, this appearance was caused by the formation of ice
crystals around the crystal during the measurement, as a consequence of the low work temperature
and a high humidity. Thus, these undesired reflections have interfered with the data collected for our
complex. These circumstances led to refining the thermal parameters of this crystal structure with
some restraints as a RIGU order, and other restrictions (ISOR and SIMU) for punctual atoms, especially
those related to a particular aromatic ring (C121–C126). In addition, some relatively high residual
point charges are close to heavy atoms as Br and Gd, but they appear meaningless in the model, so
it could be the result of the commented undesired reflections. Some solvated molecules with partial
occupation were isotropically refined.

Hydrogen atoms were mostly included in the structure factor calculations in geometrically
idealized positions, but those hydrogen atoms potentially involved in classic H bonds were mostly
located in Fourier maps, and then they were refined with thermal factors depending on the parent
atoms. A significant effort was made to model these solvated molecules, as the H-bond scheme is
remarkably intricate. Although the quality of this diffraction data is not totally satisfactory, the nature
and the global spatial arrangement of the complex and other species present in the crystal appears
indubitable, although the precision of some geometric parameters could be not so conclusive, therefore
it will not be thoroughly discussed.

In the case of Gd, the central arm of the ligand is disordered on two different positions at 50%.
Solvated water molecules are also very disordered, and their partial occupation sites are so low that
they were isotropically treated. Despite the efforts made, no H atoms could be found, and since the H
scheme was not clear they were not even considered in the final calculations. By contrast, the H atoms
of the ligands could be found in Fourier maps and they were refined with thermal factors depending
on the parent atoms.

Crystal data and experimental parameters relevant to the structure determinations are listed in
Table S1 of the Supplementary Materials. Supplementary crystallographic data for this paper have
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been deposited at Cambridge Crystallographic Data Center (CCDC-1563554 and 1570865) and can be
obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html.

2.4. Magnetic Resonance Imaging Measurements

All studies were conducted on a 9.4 T horizontal bore magnet (Bruker BioSpin, Ettlingen,
Germany) with 440 mT/m gradients and a quadrature volume coil (7 cm in diameter) or a quadrature
radio-frequency transmit-receive resonator was used for data acquisition. MRI post-processing was
performed using ImageJ software [40].

Agar phantoms were made following a method previously described [41] with different
concentrations, ranging from 0.05 to 1.5 mM for ZnGd and from 0.1 to 1 mM for Zn2Gd′. The
relaxivity constants r1 were calculated as the slope of the curve obtained by fitting the T1

−1 values
versus the metal concentration in mM in water (Gd′) or methanol (ZnGd and Zn2Gd′).

Weighted images were acquired using a RAREVTR sequence with 10.8 ms echo time, 6 repetition
time between 900–12,000 ms and effective echo time 21.62 ms. T2-weighted images were acquired using
a multi slice multi echo sequence of 11.32 ms echo time, 3000 ms repetition time, 16 echoes, 14 slices, 1
average, field of view of 7.5 cm × 7.5 cm and matrix size of 300 × 300. In all cases, acquired images
completely cover the region of interest in phantoms with 14 slices of 1 mm and in-plane resolution of
250 × 250 µm2/pixel.

3. Results and Discussion

3.1. Synthetic Method

Mononuclear Gd (Figure 1) was readily obtained by template synthesis, as other analogous
TbIII, DyIII, or ErIII mononuclear complexes containing this ligand [16], by simple mixing of
triethylenetetramine, 2-hydroxy-5-methyl-1,3-benzenedicarboxaldehyde, and gadolinium nitrate in
1:3:1 molar ratios. After cooling only 24 h in the fridge, single crystals of Gd could be isolated. In
contrast, multiple attempts to isolate a similar mononuclear gadolinium(III) complex derived from
H3L were made without success. This was not surprising, as this type of three-armed ligand derived
from triethylenetetramine and aromatic aldehydes is prone to yielding dinuclear lanthanoid complexes
of the [Ln(L)]2 type, with a sandwich structure [42–47].
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As commented, in this case, we were interested in obtaining a mononuclear gadolinium complex,
and preferably with the lanthanoid ion only occupying the external compartment. Thus, the internal
compartments of the ligand which are adequate for enclosing Zn2+ ions [36] remain uncoordinated, and
the comparison with those containing one or two zinc ions could be more useful for the subsequent MRI
study. In this sense, it is also remarkable that one water molecule is coordinated to the gadolinium(III)
ion. This ligand was not chosen to prepare heteronuclear complexes, as no other Zn-Ln complexes
could be obtained, apart from [Zn2Dy(L′)(NO3)3(OH)], and this complex does not include coordinated
water molecules, only a bridging µ3-hydroxide ligand [16].

The synthetic method used to obtain new heteronuclear Gd-Zn complexes with H3L, was selected
according to our previous experience with this three-armed ligand [15]. Thus, without surprise, direct
reaction of H3L, Zn(OAc)2·2H2O and Gd(NO3)3·6H2O, both with 1:1:1 and 1:2:1 molar ratios, only led
to obtaining ZnGd (Scheme 2), as it had also occurred when the same ligand had been combined with
ErIII, TbIII, and DyIII [15].

As previously commented in the experimental section, the molecular structure of this
heterodinuclear Zn-Gd complex could not be crystallographically determined, as all the single crystals
obtained diffracted rather poorly. However, they diffracted enough to determine accurately the
parameters of its unit cell. The values obtained for these latter one (vide supra) demonstrate that
an almost total resemblance exists between these cell parameters and those previously reported for
[ZnDy(HL)(NO3)(OAc)(MeOH)](NO3) [15]. In fact, their respective volumes are 4659 and 4654 Å3,
respectively. This resemblance also occurs not only between their respective X-ray powder diffraction
patterns, but also between their IR spectra (Figures S1 and S2 of the Supplementary Materials). Hence,
they clearly appear to be isostructural. Furthermore, [ZnDy(HL)(NO3)(OAc)(MeOH)](NO3) is also
equivalent to [ZnLn(HL)(NO3)(OAc)(H2O)](NO3) (Ln = Er or Tb) [15], being the four complexes
obtained with the same synthetic method, also employed in this case, although the crystal parameters
of the two latter ones are not comparable. Consequently, only some doubt could remain about the
nature of the solvent molecule coordinated to the gadolinium(III) ion, which could be methanol
or water, as proposed in (Scheme 2). A similar coincidence between cell parameters exist for the
already mentioned isostructural compounds [Ln(H3L′)(NO3)(H2O)](NO3)2·complexes (Ln = Gd, Tb,
Dy, Er) [16], and for other isostructural series even with different solvated molecules [48].

Likewise, after checking different synthetic routes, we had to employ the neutral homodinuclear
metalloligand [Zn2(L)(OAc)], as starting material to prepare heterotrinuclear zinc-gadolinium
complexes, by using a similar method to that previously employed to prepare heterotrinuclear
complexes of the [Zn2Ln(L)(NO3)2(OAc)2(H2O)] type (Ln = Dy, Er) [15]. Thus, the result of mixing
[Zn2(L)(OAc) with gadolinium(III) nitrate has finally allowed obtaining Zn2Gd (Figure 2). However,
in spite of using a similar synthetic method, this complex does not contain any coordinated acetate
or nitrate ligands, but a hydroxide (O1H) ligand connecting the three metal ions, while three nitrate
anions are acting as simple counterions.
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Figure 2. Ellipsoid view of one of the two [Zn2Gd(L)(OH)(H2O)5]3+ cations present in the asymmetric
unit of Zn2Gd. This can be considered as unit 1, so all the atoms contain a 1 as first figure in the
numbering scheme. This figure shows an (S,S,S) enantiomer of this chiral complex. A figure of the
other unit has been included in the supporting information, and it is chemically equivalent.

3.2. Coordination Environments of the Complexes

The main geometric parameters of Gd are collected in Table S2 of the Supplementary Materials.
In the [Gd(H3L′)(NO3)(H2O)]2+ cation present in Gd (Figure 1), the three armed ligand is neutral, so
totally protonated, and it is acting as hexadentate, by using only its six O donor atoms to bind the
GdIII center. Accordingly, and as expected, the four the nitrogen atoms of H3L′ remain uncoordinated,
but protonated in the complex, totally in the case of those of the external arms, or partially, since
both imidazolidine N atoms are also holding an H atom with 50% occupation sites. Therefore, this
indicates a keto more than phenol character for the O donor atoms of the three arms. This keto nature
is confirmed by the C–O distances corresponding to these bonds [O(1)–C(1) and O(3)–C(13)] of about
1.29 Å (Table S2 of the Supplementary Materials) This tautomerism is not uncommon, and it can be also
observed in its analogues [Ln(H3L′)(NO3)(H2O)](NO3)2 (Ln = Tb, Dy, Er)] [16], or those isostructural
complexes similar to ZnGd {[ZnLn(HL)(NO3)(OAc)(HOX)](NO3)} (Ln = Dy, Er and Tb, X = H or Me)
where one of the internal compartments also remains empty [15].

The coordination sphere of Gd3+ is completed by three additional oxygen atoms: two of them
coming from a bidentate nitrate ligand, and one from a water molecule. This gives rise to an O9

coordination environment, considered as a ‘muffin’ according to calculations made with SHAPE
software [49] (Figure 3).
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Figure 3. Pseudo-polyhedra formed by the coordination environments of the metal centers present in
Gd (left), and in one of the cations of Zn2Gd (unit 1, right). For heterotrinuclear complexes the two
zinc(II) ions corresponding to (S,S,S) enantiomers have been also included.

The asymmetric unit of Zn2Gd contains two chemically comparable, but crystallographically
inequivalent [Zn2Gd(L)(OH)(H2O)5]3+ cations (unit 1 and unit 2). Accordingly, just an ellipsoid
diagram for unit 1 is shown in Figure 2, while unit 2 is shown in Figure S3 of the Supplementary
Materials. Thus, there are four units of this complex in the triclinic unit cell of Zn2Gd. Main geometric
parameters corresponding to this complex are listed in Table S3 of the Supplementary Materials.

Figure 2 shows that L3− is acting as trinucleating in Zn2Gd, with both internal N2O
compartments accommodating two zinc(II) ions. This contrasts with the only zinc atom enclosed
in the dinucleating HL2− entity present in ZnGd (Scheme 2), or in other equivalent complexes
[ZnLn(HL)(NO3)(OAc)(ROH)](NO3) (Ln = Dy, Er, Tb and R = Me or H) [15], and of course, with the
two empty internal compartments observed for Gd.

In contrast with the pentacoordinated zinc atoms of the symmetric [Zn2(L)(OAc)] precursor, only
one of the zinc atoms remains pentacoordinated (Zn12 in unit 1 and Zn22 in unit 2), while the other
ones are hexacoordinated. This change is probably favored by the substitution of the µ2-η1:η1 bridging
acetate by a tiny µ3-OH bridge. This distortion also leads to a significant folding of the calculated
planes formed by N,O,O,N donor sets to ca. 73.4◦, when it was of only ca. 26.3◦ in [Zn2(L)(OAc)].
Furthermore, a water molecule occupies one of the apexes opposite to the central phenoxy group
of L3−. The values of the Addison parameter τ [50] (0.38 for Zn12 and 0.43 for Zn22) are indicative
of highly distorted square pyramid geometries, where the central phenol oxygen atom occupies
the apical position. In spite of this distortion, all the bond distances and angles are within normal
ranges [15–17,36]. The hexacoordinated zinc atoms display pseudo-octahedral geometries (Figure 3).
Different coordination numbers for the two neighboring zinc ions are also present in other related
heterotrinuclear complexes of the type [Zn2Ln(L)(OAc)2(NO3)2(H2O)] (Ln = Dy, Er), but all of them
contrast with the two pseudo-octahedra found around the two zinc(II) ions present in the related
[Zn2Ho(L)(ald)(HO)(H2O)3(MeCN)](NO3)2·EtOH [17].

This asymmetry related to the coordination environments of the two zinc atoms leads to this
complex to be chiral. As a consequence, and despite the symmetry of the three-armed H3L ligand
(Scheme 2), its central imidazolidine ring displays up to three asymmetric centers: both nitrogen atoms
and the carbon atom that connects them. In both ellipsoid diagrams shown in Figure 2 and Figure S3
of the Supplementary Materials, we can see enantiomers only displaying S configurations for their
stereocenters. Of course, although both units of the complex present in the asymmetric unit correspond
coincidentally to the (S,S,S) enantiomer, the triclinic crystal is centrosymmetric, as it belongs to the
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crystal group P-1, and therefore it is racemic, so that the other two units also present in the unit cell are
(R,R,R) enantiomers.

The above described [Zn2(L)(OH)(H2O)] fragment of Zn2Gd differs from the original
[Zn2(L)(OAc)] metalloligand used as starting material, but it is also acting as a ligand towards the
GdIII ion. This latter one is coordinated to the phenolate and methoxy O atoms of both external arms
of the Schiff base, as well as to the hydroxide bridge. The coordination sphere of the gadolinium(III)
ion is completed up to 9 by four water molecules, giving rise to a GdO9 environment (Figure 3). In this
distorted GdO9 polyhedron, all the distances and angles are within their normal ranges [4,5,8,11,12,51],
so this does not deserve further consideration.

The deviation of the coordination sphere with respect to an ideal nine-vertex polyhedron was
calculated with the SHAPE software [49], and results indicate a muffin-like appearance, also near
to a spherical capped square antiprism (Figure S2 and Table S4 in the Supplementary Materials.
This muffin-like polyhedron that surrounds the gadolinium(III) ion shares one edge with each zinc
pseudo-polyhedron, whilst these polyhedra around both zinc centers also share one edge (Figure 3), as
occurs for [Zn2Ho(L)(ald)(HO)(H2O)3(MeCN)](NO3)2·EtOH [17].

The presence of this µ3-OH anion, which is absent in other complexes also derived from L3− and
[Zn2(L)(OAc)] [11], lead to compare these complexes with [Zn2Dy(L′)(NO3)3(OH)] [16]. Thus, the tight
µ3-η1:η1:η1-HO− bridge leads to the three metal ions to appear as an isosceles triangle, with d(Zn···Zn),
is ca. 3.0 Å, while the Zn···Ln distances are about 3.45 Å for both complexes. These intramolecular
distances are similar to those found for complexes of the type [Zn2Ln(L)(OAc)2(NO3)2(H2O)] (Ln =
DyIII and ErIII) [15], and for other Zn-Ln complexes with polycompartmental Schiff bases [8,9,17], and
also with the 3-EtO-salen2− ligand [17,52,53]. By contrast, asymmetric heterodinuclear complexes of
the type of ZnGd, this is {[ZnLn(HL)(NO3)(OAc)(HOX)](NO3)} [Ln = Dy, Er and Tb, X = H or CH3)],
exhibit Zn···Ln distances of about 4.7 Å that are clearly longer.

3.3. Packing Schemes for the Complexes

The H-bond scheme of Gd is very simple. The three-armed ligand, despite being totally
protonated, displays these three H atoms involved in intramolecular bonds related to imine-amine
tautomerism (Figure 1). Hence, the spatial arrangement of the ligand is curiously equivalent to that
shown when it is fully deprotonated and with all its compartments occupied. Only the intermolecular
H bonds are connecting the coordinated water molecule to both nitrate counterions.

Contrasting with this latter scheme, the heterotrinuclear Zn2Gd is forming a particularly intricate
H bonding scheme (Table S5 and Figure S5 of the Supplementary Materials). Thus, since the quality of
the diffraction data is not optimal, and in order to simplify this study, we will focus our attention mostly
on classic H-bonds. In addition to classic O–H···O and some O–H···N bonds, several bifurcations,
and many C–H···A interactions (A = O or Br) have been also detected (Table S5 of the Supplementary
Materials).

It is evident that L3−, as other related three-armed ligands, has an enwrapping character,
so this partially prevents an intermolecular propagation of classic H bonds. Despite this,
the coordinated water molecules and the hydroxide anion are effective H donors, so that
an expansion of multiple classic O–H···O bonds occurs, and as it has been observed for
[Zn2Ho(L)(ald)(HO)(H2O)3(MeCN)](NO3)2·EtOH [17], this propagation curiously occurs practically
with a predominately 2D arrangement, as Figure 4 shows.
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showing the multiple H-bonds between cations, anions and coordinated or occluded solvent molecules.
Significant interactions are represented as discontinuous light blue lines. Only metal atoms have been
labelled for clarity.

The frontal part of the L3− ligands with the N and O donor atoms shows not only a coordinating
character that encloses metal ions, but also a more hydrophilic character than its rear side [54]. In fact,
this rear side, which shoes a more clearly hydrophobic nature, with the C–H bonds of imidazolidine,
ethylene chains, and aromatic rings pointing towards the outside. This predominance of C–H bonds
to form the surface of these layers (Figure 4 and Figure S4 of the Supplementary Materials) could
influence on its solubility, as it can lead to forming extended hydrophobic surfaces that have been
previously observed [17,54]. In this particular case only a few water molecules are occluded in the
middle of these layers by means of an H-bond involving a solvated water molecule (O2w) and a nitrate
counterion (Figure 4).

3.4. MRI Studies

The potentiality of crude solids of the three gadolinium complexes, this is: Gd′, ZnGd, and
Zn2Gd′, as potential MRI contrast agents was evaluated. Thus, both longitudinal r1 and transversal r2

relaxivities were measured, and the obtained results are summarized in Table 1, while Figure 5 shows
the plots of 1/T2 vs. concentration of the species.

Table 1. Relaxivities for the complexes per GdIII ion.

Compound r1 (mM−1 s−1) r2 (mM−1 s−1)

Gd′ 0.71 29.33
ZnGd 4.90 38.63

Zn2Gd′ 7.14 84.82
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As Gd′ is soluble in water, the longitudinal r1 relaxivity of a water solution of Gd′ was measured
at 22 ◦C and 9.4 T, yielding a value of 0.71 mM−1 s−1 (Figure 5). This value demonstrates that, in
spite of the nonacoordination displayed by the Gd3+ ion in this complex, and the presence of a water
molecule in its inner sphere, even fixed by classic hydrogen bonds [55] Gd′ shows a low r1 relaxation
and, accordingly, it is not appropriate as contrast agent.

With regard to the heteronuclear Zn-Gd complexes, the relaxometric properties of ZnGd and
Zn2Gd′ as T1 agents were also studied, but with a significant handicap, as both complexes are scarcely
soluble in water. Consequently, the experiments were performed in methanol.

For ZnGd, the r1 value of 4.90 mM−1 s−1 (Table 1) extracted from methanol solutions is
comparable with those found for other commercial agents [56], so it may be considered as a potential
T1 contrast agent. Nevertheless, the r2 value is 38.63 mM−1 s−1 (Figure 5) and, therefore, the T1/T2

(r2/r1) ratio is 7.9, a value that strongly differs from 1. As a consequence, this precludes the use of
ZnGd as a positive MRI contrast [27]. However, the quite high r2 value found for this heteronuclear
Zn-Gd complex, in connection to the T1/T2 ratio higher than 6 (a condition for being used as a T2

contrast agent), appears to indicate that it is more suitable as a negative MRI contrast, while the most
usual T2 agents were based on magnetic iron oxide nanoparticles [29]. This behavior as negative
contrast appears to be confirmed by in vitro MRI experiments with agarose gel phantoms. Thus, as
Figure 6 shows, the T2-weighted phantoms show that darker images can be obtained by increasing the
complex concentration.
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Figure 6. T2-weighted MR image for six different increasing concentrations (clockwise) of ZnGd (0.05,
0.2, 0.5, 1, 1.2, and 1.5 mM), with the reference at the top center.

Similarly, the ability of Zn2Gd′ to act as potential MRI CA was also tested in methanol. In this
case, the value obtained for r1 is 7.14 mM−1 s−1, which represents about a 150% of the relaxation time
for the solution containing ZnGd. This result appear to suggest that an increasing Gd:Zn molar ratio
in the complex could improve its relaxometric properties. The r1 relaxivity value found of Zn2Gd′
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(7.14 mM−1 s−1) is even higher than those values reported for some classical commercial T1 CAs [56].
However, as occurred before, calculated r2 value is even higher (84.83 mM−1 s−1), while the T1/T2

ratio of 11.88 clearly shows that instead of a T1 contrast, Zn2Gd′ could be proposed as a potential
candidate for T2 CA.

At this point, it should be noted that all the classical T2 contrast agents based on
superparamagnetic iron oxide nanoparticles (SPIONs) [57] have been recently forbidden, and that,
currently, Ferumoxytol [58] is the only Food and Drug Administration-approved SPION that is being
used as an MRI contrast agent [59]. It should be mentioned that calculated relaxivities for Ferumoxytol
are r1 38 mM−1 s−1 and r2 83 mM−1 s−1 at 0.47 T [60]. Accordingly, the r2 value of 84.83 mM−1 s−1 for
Zn2Gd′ is even greater than the one reported for the only approved SPION MRI species.

The ability of Zn2Gd′ to act as a negative contrast has also been checked in vitro and the
T2-weighted phantom shows a progressive darkening when the concentration of complex increases
(Figure 7).
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As a result of the MRI studies performed, it seems that the presence of zinc intrinsically ligated
into a gadolinium complex could notably enhance the relaxometric properties of the compound, given
that the heterodinuclear ZnGd shortens both T1 and T2 relaxation times. It must be noted that ZnGd
is supposed to only contain a coordinated water molecule, as occurring for Gd′. This behavior is
even enhanced in the case of the heterotrinuclear Zn2Gd′ complex, but in this case, there are four
coordinated water molecules to the external gadolinium ion, and this fact could also contribute to
increase these r values. In any case, the r1 and r2 values increase in the order Gd′ < ZnGd < Zn2Gd′,
what could indicate that the higher the Zn:Gd molar ratio in the sample, the greater the relaxation
times are.

The r1 factors found for ZnGd and Zn2Gd′ are comparable or even greater than those for
commercial contrast agents. Nevertheless, the T1/T2 ratio is in both cases even higher than 6, what
indicates that they could not be used as positive, but maybe as negative contrast agents. The r2 value
for Zn2Gd′ could be comparable to that of the only SPION approved as a T2 contrast.

It cannot be ignored that the heteronuclear Zn-Gd complexes described herein are rather insoluble
in water, and, accordingly, they cannot be effective MRI agents. Nevertheless, it must be also taken
into account that classical T2 contrast agents have been mostly forbidden, due to their toxicity and fatal
anaphylactic reactions. In addition, most of the T1 CAs are also nowadays considered as potentially
toxic, and consequently European Agency of Medicines is dealing with the suspension of all the
classical commercial intravenous linear probes [25]. Consequently, and especially nowadays, there is a
need for contributions for more efficient CAs with improved relaxivity.

Although, we are presenting herein some complexes based on linear ligands with low water
solubility, a useful contribution of this work could be the presence of zinc ions in this agents
accompanying to typical metal ions as gadolinium(III). This presence appears to increase the relaxation
times. Although many zinc(II) responsive probes have been reported since 2001 [31], to the best of our
knowledge, only two heteronuclear Zn-Gd complexes has been tested as potential contrast agents until
now as T1 agents, but not as potential negative contrasts [61,62]. Accordingly, the findings of this work
could suppose an incipient contribution in the search for new CAs: the potential use of heteronuclear
Zn-Gd complexes as T2 contrast agents.
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4. Conclusions

The ligands H3L and H3L′, with differentiated compartments for 3d and 4f metal
ions, allow isolating the mononuclear [Gd(H3L′)(H2O)(NO3)](NO3)2·2H2O (Gd), heterodinuclear
{[ZnGd(HL2)(NO3)(OAc)(CH3OH)](NO3)}·3H2O (ZnGd), and heterotrinuclear {[Zn2Gd(L2)(OH)
(H2O)5](NO3)3}·0.75CH3CN·3CH3OH (Zn2Gd) complexes. Gd could be prepared by a template
method, and is totally symmetric, but the synthesis of the heteronuclear complexes needed the
previous preparation of the free ligand, or even the of the metalloligand [Zn2(L)(OAc)] as a precursor.
Zn2Gd is chiral due to the asymmetry of the different coordination environments around the two
zinc atoms.

Despite the presence of multiple and varied potential donors and acceptors for H bonding, the
packing scheme of Gd is very simple, but that of Zn2Gd—which is mostly based on classic O–H···O
bonds, is intricate and basically bidimensional—and with a rather hydrophobic surface, which could
affect its solubility in water.

The crystal structures of mononuclear Gd and heteronuclear Zn2Gd demonstrate that both GdO9

cores contain at least one water molecule coordinated to the GdIII ion. The relaxometric properties of
these two compounds and that of ZnGd were studied, with clearly different results. Thus, Gd′·yield
low r1 and r2 parameters, without any interest as potential contrast agent. These r values notably
increase in the sequence Gd′·< ZnGd < Zn2Gd′, suggesting that the relaxometric properties could
improve as the Zn:Gd ratio increases. The r1 and r2 values, as well as the T1/T2 ratios indicate that
Zn2Gd′ could be relevant as a T2 CA, given that its r2 value is even greater than that reported for
the only approved SPION T2 agent. Therefore, although the low solubility in water of the complexes
described herein prevents their use as CAs, the findings summarized could be worthy for future
design and search for new CAs, proposing heteronuclear Zn-Gd as potential candidates for T2 MRI
contrast agents.
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