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Abstract: Two newly designed complexes, [Zn(L1)(EtOH)] (1) and [{Zn(L2)(OAc)2}2Zn]·CHCl3 (2)
derived from salamo and half-salamo chelating ligands (H2L1 and HL2) have been synthesized
and characterized by elemental analyses, IR and UV-VIS spectra, fluorescence spectra, and X-ray
crystallography. Complex 1 shows a slightly distorted tetragonal pyramid and forms an infinite
3D supramolecular structure. All of the Zn(II) ions in complex 2 are hexa-coordinated with slightly
distorted octahedral geometries. Complex 2 possesses an infinite 2D space structure. The fluorescence
titration experiments were used to characterize fluorescence properties of complexes 1 and 2. And the
normalized fluorescent spectra exhibit that complexes 1 and 2 have favourable fluorescent emissions
in different solvents.
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1. Introduction

As we know, Salen-type ligands (R–CH=N–(CH2)2–N=CH–R) and their metal complexes
have been extensively investigated in modern coordination chemistry for several decades [1–5],
which have been extensively investigated in potential application in biological fields [6–13],
electrochemical conducts [14,15], nonlinear optical materials [16–20], magnetic materials [21–25],
luminescence properties [26–32], and supramolecular architecture [33–37], and so on. Chemical
modifications of substituent or functional groups in the Salen N2O2 ligands are effective in exchanging
the structures or the main functions of complexes, such as salamo ligand, a Salen analogue,
(R–CH=N–O–(CH)n–O–N=CH–R) is one of the most versatile ligands and the large electronegativity of
oxygen atoms is expected to strongly affect the electronic properties of the N2O2 coordination sphere,
which can lead to different and novel structures and properties of the resulting complexes [38].

Due to the unique structure of salamo-type complexes, a study shown that it is at least 104 times
more stable than salen-type complexes [39]. The Zn(II) ion does not produce spectroscopic or magnetic
signals because of its 3d104s0 electronic configuration, when the Zn(II) ion forms complexes with
ligands, the complexes generally have fluorescence properties [40,41]. Although these salamo-type
Zn(II) complexes are currently being studied and developed, the solvent effects on the salamo-type
Zn(II) complexes are still very rare. In order to further study the syntheses, crystal structures
and fluorescence properties of the Zn(II) complexes with the salamo-type ligands, herein, two new
complexes [Zn(L1)(EtOH)] (1) and [{Zn(L2)(OAc)2}2Zn]·CHCl3 (2) with salamo and half-salamo ligands
H2L1 and HL2 have been reported, especially the study of the half-salamo ligand and its complex is
reported firstly. Half-salen ligands and their metal complexes have been extensively investigated in
modern coordination chemistry for a long time [42,43], but at present, no literature has shown that
half-salamo ligands and their metal complexes have been synthesized.
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2. Experimental

2.1. Materials and Methods

7-Hydroxyl-4-methyl-coumarin and 3-methoxysalicylaldehyde of 98% purity were purchased
from Alfa Aesar and used without further purification (New York, NY, USA). The other reagents and
solvents were analytical grade reagents from Tianjin Chemical Reagent Factory (Tianjin, China).

C, H and N analyses were obtained using a GmbH VarioEL V3.00 automatic elemental analysis
instrument (Berlin, Germany). Elemental analyses for zinc were detected with an IRIS ER/S-WP–1
ICP atomic emission spectrometer (Berlin, Germany). Melting points were obtained by the use of
a microscopic melting point apparatus made by Beijing Taike Instrument Company Limited and
were uncorrected. IR spectra were recorded on a Vertex70 FT-IR spectrophotometer, with samples
prepared as KBr (500–4000 cm−1) and CsI (100–500 cm−1) pellets (Bruker AVANCE, Billerica, MA,
USA). UV-VIS absorption spectra were recorded on a Shimadzu UV-3900 spectrometer (Shimadzu,
Japan). Luminescence spectra in solution were recorded on a Hitachi F-7000 spectrometer (Shimadzu,
Japan). 1H NMR spectra were determined by a German Bruker AVANCE DRX-400 spectrometer
(Bruker AVANCE, Billerica, MA, USA). X-ray single crystal structure determinations were carried out
on a Bruker Smart Apex CCD diffractometer (Bruker AVANCE, Billerica, MA, USA).

2.2. Synthesis of H2L1

The major reaction steps involved in the synthesis of H2L1 and HL2 are given in Scheme 1.
8-Formyl-7-hydroxy-4-methylcoumarin was prepared according to reported procedure [44]. 1,2-Bis
(aminooxy)ethane was synthesized following the literature [45–47].
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Scheme 1. Synthetic route to H2L1and HL2.

H2L1: A solution of 8-formyl-7-hydroxyl-4-methyl-coumarin (768.76 mg, 2.9 mmol) in methanol
(25 mL) was added to a solution of 1,2-bis(aminooxy)ethane (92.00 mg, 1.0 mmol) in methanol (25 mL).
The suspension solution was stirred and refluxed at 65 ◦C for 4 h, and then a yellowish solid of the
salamo-type ligand (H2L) was obtained, which was collected by suction filtration. Yield: 83.2%, m.p.
287-288 ◦C. Anal. Calcd for C24H20N2O8 (%): C, 62.07; H, 4.34; N, 6.03. Found: C, 61.84; H, 4.41; N,
6.06. 1H NMR (400 MHz, CDCl3), δ 10.72 (s, 2H), 8.95 (s, 2H), 7.50 (d, J = 8.9 Hz, 2H), 6.93 (d, J = 8.9 Hz,
2H), 6.14 (s, 2H), 4.54 (s, 4H), 2.40 (s, 6H).

2.3. Synthesis of HL2

HL2: An methanol solution (25 mL) of 3-methoxysalicylaldehyde (1 mmol, 152.6 mg) was
added dropwisely to 1,2-bis(aminooxy)ethane (1.5 mmol, 138.0 mg) in methanol solution (25 mL).
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The resulting mixed solution was heated for 3 h between 55 and 60 ◦C temperature range.
The solution was concentrated in vacuo and the residue was purified by column chromatography
(SiO2, chloroform/ethyl acetate, 30:1) to afford a colourless flocculent crystalline solid, then the
half-salamo-type ligand (HL2) was obtained, which was collected by suction filtration. Yield: 79.4%.
m.p. 91-92 ◦C. Anal. Calc. for C10H14N2O4 (%): C 53.09; H 6.24; N 12.38. Found: C 53.21; H 6.19; N
12.29. 1H NMR (400 MHz, CDCl3), δ 9.87 (s, 1H), 8.22 (s, 1H), 6.91 (dd, J = 7.9, 1.5 Hz, 1H), 6.86 (s, 1H),
6.80 (dd, J = 7.7, 1.7 Hz, 1H), 5.52 (s, 2H), 4.40–4.33 (m, 2H), 4.00–3.94 (m, 2H), 3.91 (s, 3H).

2.4. Synthesis of Complex 1

To a ethanol solution (2 mL) of zinc(II) acetate dehydrate (0.01 mmol, 2.19 mg), and a solution
of H2L1 (0.01 mmol, 4.64 mg) in 6 mL of dichloromethane was added dropwise, and immediately
the mixed solution colour changed to yellow. The mixture solution was filtered and the filtrate was
allowed to stand for two weeks. Through partial solvent evaporation, single crystals suitable for X-ray
diffraction analysis were obtained after two weeks. Yield: 48.2%. Anal. Calcd for C26H24N2O9Zn
([Zn(L1)(EtOH)] (1)) (%): C, 54.42; H, 4.22; N, 4.88; Zn, 11.39. Found: C, 54.29; H, 4.29; N, 4.80; Zn, 11.25.

2.5. Synthesis of Complex 2

To a methanol solution (1 mL) of zinc(II) acetate dehydrate (0.03 mmol, 6.57 mg), and a solution of
HL2 (0.02 mmol, 9.28 mg) in 2 mL of chloroform was added dropwise, The colour of the mixing solution
turned to yellow immediately, then the mixture was filtered and the filtrate was obtained. The single
crystals suitable for X-ray diffraction studies were obtained by vapour diffusion of diethyl ether into
the filtrate for two days at room temperature. Yield: 52.6%. Anal. Calcd for C29H39Cl3N4O16Zn3

([{ZnL2(OAc)2}2Zn]·CHCl3 (2)) (%): C, 34.76; H, 3.92; N, 5.59; Zn, 19.57. Found: C, 34.55; H, 3.98; N,
5.37; Zn, 19.26.

2.6. Crystal Structure Determinations of Complexes 1 and 2

The crystal diffractometer provides a monochromatic beam of Mo Kα radiation (0.71073 Å)
produced using Graphite monochromator from a sealed Mo X-ray tube was used for obtaining crystal
data for complexes 1 and 2 at 173.00(10) and 292.38(10), respectively. The LP factor semi-empirical
absorption corrections were applied using the SADABS program. The structures were solved by
the direct methods (SHELXS-2014) [48]. The H atoms were included at the calculated positions and
constrained to ride on their parent atoms. All non-hydrogen atoms were refined anisotropically using
a full-matrix least-squares procedure on F2 with SHELXL-2014 [48]. The crystal data and experimental
parameters relevant to the structure determinations are listed in Table 1.

Crystallographic data have been deposited with the Cambridge Crystallographic Data Centre
as supplementary publication, No. CCDC 1564063 and 1564062 for complexes 1 and 2. Copies of the
data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB21EZ, UK
(Telephone: (44) 01223 762910; Fax: +44-1223-336033; E-mail: deposit @ccdc.cam.ac.uk). These data can
be also obtained free of charge at www.ccdc.cam.Ac.uk/conts/retrieving.html.

Table 1. Crystal data and structure refinement parameters for complexes 1 and 2.

Complex 1 2

Formula C26H24N2O9Zn C29H39Cl3N4O16Zn3
Formula weight 573.84 1002.16
Temperature (K) 173.00(10) 292.38(10)
Wavelength (Å) 0.71073 0.71073
Crystal system Monoclinic Triclinic

Space group P21/n P–1

www.ccdc.cam. Ac.uk/conts/retrieving.html
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Table 1. Cont.

Complex 1 2

Unit cell dimensions
a (Å) 12.811(3) 13.1694(13)
b (Å) 13.4725(9) 13.3568(13)
c (Å) 15.393(3) 16.1452(14)
α (◦) 90 94.664(8)
β (◦) 107.665(19) 113.074(10)
γ (◦) 90 112.722(9)

V (Å3) 2531.6(8) 2317.6(4)
Z 4 2

Dc (g cm-3) 1.506 1.430
µ (mm-1) 1.028 1.775
F (000) 1184 1012

Crystal size (mm) 0.24 × 0.19 × 0.17 0.22 × 0.18 × 0.14
θ Range (◦) 3.338–25.008 3.34–26.02

Index ranges −13 ≤ h ≤ 15, −10 ≤ h ≤ 16,
−16 ≤ k ≤ 14, −16 ≤ k ≤ 16,
−14 ≤ l ≤ 18 −19 ≤ l ≤ 15

Reflections collected 8334 16,912
Independent reflections 4446 9102

Rint 0.0996 0.0522
Completeness 99.6% 99.79%

Data/restraints/parameters 4446/16/349 9102/1/502
GOF 1.001 0.963

Final R1, wR2 indices 0.0581/0.0934 0.0633/0.1473
R1, wR2 indices (all data) 0.0721/0.1598 0.1236/0.1774

Largest differences 0.926/-0.772 0.873/-0.587
peak and hole (e Å-3)

3. Results and Discussion

Complexes 1 and 2 constructed from salamo and half-salamo chelating ligands (H2L1 and HL2)
have been synthesized, and characterized by IR spectra, UV-VIS spectra, and X-ray crystallography
analyses. The fluorescence titration experiments were used to characterize fluorescence properties of
complexes 1 and 2. The normalized fluorescent spectra exhibits that complexes 1 and 2 have favourable
fluorescent emissions in different solvents.

3.1. IR Spectra

The FT-IR spectra of H2L1 and HL2 with their corresponding complexes 1 and 2 exhibit various
bands in the 4000–400 cm−1 region (Figure 1). A typical C=N stretching band of the free ligands
H2L1 and HL2 appears at 1619 and 1604 cm−1, and that of complexes 1 and 2 at 1581 and 1597 cm−1,
respectively [49]. The C=N stretching frequencies are shifted to low frequencies, indicating that the
Zn(II) atoms are coordinated by azomethine nitrogen atoms of (L1)2−and (L2)1− moieties. Therefore,
the conclusion could be made that H2L1 and HL2 coordinated with Zn(II) atoms [50]. The typical C=O
stretching band at 1728 cm−1 was exhibited by the free ligands H2L1, where at 1712 cm−1 show the
C=O stretching band in complex 1. The free ligands H2L1 and HL2 exhibit Ar–O stretching frequencies
at 1288 and 1249 cm−1, while the Ar–O stretching frequencies of the complexes 1 and 2 appear at 1226
and 1242 cm−1, respectively. The Ar–O stretching frequencies are shifted to low frequencies, which
could be evidence of the Zn–O bond formation between Zn(II) atoms and oxygen atoms of phenolic
groups [51].

The far-IR spectra (550–100 cm−1) of both complexes 1 and 2 were also obtained so as to identify
the bonds of Zn–O and Zn–N frequencies. The bands at 447 and 463 cm−1 of complexes 1 and 2 can be
attributed to ν(Zn–O), while the bands at 516 and 564 cm−1 are assigned to ν(Zn–N) [52].



Crystals 2017, 7, 267 5 of 18Crystals 2017, 7, 267  5 of 18 

 

4000 3500 3000 2500 2000 1500 1000 500

T

Wavenumber,cm-1

H
2
L1

Complex 1

HL2

Complex 2

1619

1604

1581

1597

1728

1712

1288

1249

1226

1242

447

463

516

564

1387

1391

1479

1454

1073

1081

1047

1068

 
Fig. 1 The FT-IR spectra of the ligands and their complexes 1 and 2 (cm−1) 

The far-IR spectra (550–100 cm−1) of both complexes 1 and 2 were also obtained so as to identify 
the bonds of Zn–O and Zn–N frequencies. The bands at 447 and 463 cm−1 of complexes 1 and 2 can be 
attributed to ν(Zn–O), while the bands at 516 and 564 cm-1 are assigned to ν(Zn–N) [52]. 

3.2. Crystal Structure of Complex 1  
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Figure 1. The FT-IR spectra of the ligands and their complexes 1 and 2 (cm−1).

3.2. Crystal Structure of Complex 1

As depicted in Figure 2 and Table 2, complex 1 crystallizes in the monoclinic space group P21/n,
which consists of one Zn(II) ion, one completely deprotonated (L1)2− unit, and one coordinated
ethanol molecule. The Zn(II) ion is penta-coordinated by two oxime nitrogen (N1 and N2) atoms
and two phenoxo oxygen (O3 and O6) atoms, the four atoms are all from one deprotonated (L)2−

unit, and one oxygen (O9) atom from the coordinated ethanol molecule (Figure 2a). The coordination
environment around the Zn(II) ion is best described as a slightly distorted trigonal bipyramidal
geometry, which obtains the geometry adopted by the Zn(II) ion, and the τ value was estimated to be
τ = 0.845 (Figure 2b) [53,54]. The phenolic oxygen (O3) and the oxime nitrogen (N2) of the (L1)2− unit
and one oxygen (O9) atom of the coordinated ethanol molecule constitute, together, the basal plane
(Zn1-O3, 1.940(5) Å; Zn1-N2, 2.036(7) Å and Zn1-O9, 2.049(6) Å), and other phenolic oxygen (O6) and
oxime nitrogen (N1) atoms of the (L1)2− unit occupy the axial positions (Zn1-O6, 1.994(5) and Zn1-N1,
2.187(7) Å). The three coordination atoms on the base plane and the Zn(II) ion is 0.062(3) Å displaced
from the mean plane [55,56]. Additionally, four of the intramolecular C10–H10···O2, C11–H11A···O9,
C13–H13···O7, and C25–H25B···O6 hydrogen bonds were formed (Table 3). The protons (-C10H10)
and (-C13H13) of (L1)2− unit are hydrogen bonded to two of ester oxygen (O2 and O7) atoms of
(L1)2− units, respectively, and the proton (-C11H11A) of the (L1)2− unit is hydrogen bonded to one
oxygen (O9) atom of the coordinated ethanol molecule. Meanwhile, the proton (-C25H25B) of the
coordinated ethanol molecule is hydrogen bonded to one phenoxo oxygen (O6) atom of the (L1)2− unit.
The formation of intramolecular hydrogen bonds may result in a relatively stable chemical property of
complex 1 [57,58].
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Table 2. Selected bond lengths (Å) and angles (◦) for complex 1.

Bond

Zn1-O3 1.940(5) Zn1-N1 2.187(7)
Zn1-O6 1.994(5) Zn1-N2 2.036(7)
Zn1-O9 2.049(6)
Angles

O3-Zn1-O6 97.1(2) O3-Zn1-O9 111.5(2)
O3-Zn1-N1 86.7(2) O3-Zn1-N2 125.1(3)
O6-Zn1-O9 91.7(2) O6-Zn1-N1 175.8(2)
O6-Zn1-N2 87.0(2) N1-Zn1-O9 88.5(3)
N2-Zn1-O9 123.2(3) N2-Zn1-N1 89.4(3)

Table 3. Hydrogen bonding and C-H···π stacking interactions (Å, ◦) for complex 1.

D-H···A D-H H···A D···A D-H···A
C10-H10 ···O2 0.93 2.30 2.670(11) 103

C11-H11A···O9 0.97 2.59 3.421(10) 143
C13-H13···O7 0.93 2.25 2.636(10) 104

C25-H25B ···O6 0.97 2.46 3.055(14) 119
C2-H2 ···O4 0.93 2.58 3.454(12) 158

C11-H11B ···O8 0.97 2.49 3.281(9) 139
C12-H12A···O1 0.97 2.51 3.424(12) 157
C12-H12B···O3 0.97 2.56 3.494(11) 161
C21-H21···O3 0.93 2.54 3.277(11) 137
O9-H9···O8 0.86 1.99 2.725(10) 144

C26-H26B···Cg3 0.96 2.99 3.398(17) 107

Note: Cg3 = O2–C1–C2–C3–C4–C9.

As shown in Figure 3 and Table 3, six pairs of intermolecular hydrogen bonds, O9-H9···O8,
C2-H2···O4, C11-H11B···O8, C12-H12A···O1, C12-H12B···O3, and C21-H21···O3 are formed.
In addition, the Cg3 (O2–C1–C2–C3–C4–C9) of pyrone rings as acceptors forms one hydrogen bond with
the protons (-C26H26B) of coordinated ethanol molecules. The space skeleton of complex 1 adopts a 3D
supramolecular structure by the action of hydrogen bond and C-H···π stacking interactions [34,59,60].
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Figure 3. View of the 3D supramolecular structure of complex 1 showing the O-H···O, C-H···O,
hydrogen bonds, and C-H···π stacking interactions.

3.3. Crystal Structure of Complex 2

X-ray crystallographic analysis of complex 2 reveals an asymmetric trinuclear structure. It crystallizes
in the triclinic system, space group P-1, consists of three Zn(II) ions, two completely deprotonated
(L2)1− units, four coordinated acetate ions. Selected bond lengths and angles are listed in Table 4.

Table 4. Selected bond lengths (Å) and angles (◦) for complex 2.

Bond

Zn1-O2 2.017(4) Zn1-O9 2.203(4)
Zn1-O10 2.191(5) Zn1-O11 2.112(4)
Zn1-N1 2.218(5) Zn1-N2 2.077(5)
Zn2-O1 2.269(4) Zn2-O2 2.006(4)
Zn2-O5 2.336(4) Zn2-O6 2.001(4)

Zn2-O12 2.032(4) Zn2-O13 2.022(4)
Zn3-O6 2.006(4) Zn3-O14 2.147(4)

Zn3-O15 2.209(5) Zn3-O16 2.160(5)
Zn3-N3 2.206(5) Zn3-N4 2.085(5)
Angles

O2-Zn1-O9 155.36(16) O2-Zn1-O10 96.75(16)
O2-Zn1-O11 95.76(15) O2-Zn1-N1 81.53(17)
O2-Zn1-N2 99.03(17) O9-Zn1-N1 94.48(18)
O10-Zn1-O9 59.04(16) O10-Zn1-N1 93.23(19)
O11-Zn1-O9 89.09(16) O11-Zn1-O10 89.72(18)
O11-Zn1-N1 176.21(18) N2-Zn1-O9 105.28(18)
N2-Zn1-O10 164.21(18) N2-Zn1-O11 88.08(17)
N2-Zn1-N1 89.72(18) O1-Zn2-O5 84.12(15)
O2-Zn2-O1 74.99(15) O2-Zn2-O5 85.59(16)

O2-Zn2-O12 97.76(16) O2-Zn2-O13 100.51(15)
O6-Zn2-O1 84.90(16) O6-Zn2-O2 152.58(15)
O6-Zn2-O5 73.79(16) O6-Zn2-O12 101.12(15)

O6-Zn2-O13 96.80(16) O12-Zn2-O1 91.08(15)
O12-Zn2-O5 173.26(15) O13-Zn2-O1 171.40(15)
O13-Zn2-O5 88.25(16) O13-Zn2-O12 96.84(15)
O6-Zn3-O14 92.82(15) O6-Zn3-O15 95.64(16)
O6-Zn3-O16 155.32(16) O6-Zn3-N3 82.60(17)
O6-Zn3-N4 99.71(18) O14-Zn3-O15 88.68(17)

O14-Zn3-O16 88.30(16) O14-Zn3-N3 174.96(19)
O16-Zn3-O15 59.72(16) O16-Zn3-N3 96.74(19)
N3-Zn3-O15 93.87(19) N4-Zn3-O14 88.59(17)
N4-Zn3-O15 164.52(19) N4-Zn3-O16 104.96(18)
N4-Zn3-N3 90.08(19)
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As shown in Figure 4, the two terminal Zn(II) ions (Zn1 and Zn3) were both located in the
cis-N2O coordination cavity of the deprotonated (L2)1− units, the carboxylate oxygen (O9 and O10)
and (O15 and O16) atoms from coordinated acetate ions chelate to Zn1 and Zn3, and carboxylate
oxygen (O11 and O14) atoms from the µ2-acetate bridge to Zn1 and Zn3 in axial positions (Figure 4a).
The dihedral angle between the coordination planes of O10–Zn1–O2 and N2–Zn1–O9 is 4.18(2), the
dihedral angle between the coordination planes of N4–Zn3–O16 and N6–Zn3–O15 is 2.12(2), indicating
slight distortion octahedral geometry from the square planar structure. Then, the coordination sphere
of the central Zn(II) (Zn2) atom is completed by double µ2-phenoxo oxygen (O2 and O6) atoms
from two (L2)1− moieties, two µ2-acetato oxygen (O12 and O13) atoms and two oxygen (O5 and O1)
atoms from methoxyl groups. As a result the central Zn2 atom finally has an O2O2O2 coordination
environment. Then, all of the hexa-coordinated Zn(II) ions of complex 2 have slightly distorted
octahedral symmetries (Figure 4b) [61,62].
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Figure 4. (a) Molecular structure and atom numberings of complex 2 with 30% probability displacement
ellipsoids (hydrogen atoms are omitted for clarity). (b) Coordination polyhedra for Zn1, Zn2, and Zn3
ions of complex 2.

As depicted in Figure 5, in complex 2, four pairs of intramolecular hydrogen bonds N2-H2A···O13,
N4-H4A···O12, C8-H8B···O9 and C22-H22B···O16 are formed. The protons (-N2H2A and -N4H4A) of
(L2)1- units form hydrogen bonds with two oxygen (O13 and O12) atoms of µ2-acetate ions, respectively.
The protons (-C8H8B and -C22H22B) from ethylenedioxime carbon atoms of (L2)1- units form hydrogen
bonds with carboxylate oxygen (O9 and O16) atoms of coordinated acetate ions [63].

As illustrated in Figure 6 and Table 5, a large number of intermolecular hydrogen bonds and
C-Cl···π, C-H···π stacking interactions in complex 2. The 2D supramolecular structure of complex 2 is
composed of two parts. The first part was linked by intermolecular N2-H2B···O9, N4-H4B···O16 and
C29-H29···O15 [41,64] hydrogen bonding interactions. The other part was made up of the C-Cl···π [27],
C-H···π stacking interactions. The Cg7 (C15-C20) and Cg6 (C1-C6) of phenyl rings as acceptors form two
hydrogen bonds with the protons (-C29Cl2 and -C10H10B) of adjacent molecules. The intermolecular
hydrogen bonds and C-Cl···π, C-H···π stacking interactions of complex 2 not only make its spatial
structure more diversified, but also may cause better chemical stability [27,59].
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Figure 5. Intramolecular C-H···O and N-H···O hydrogen bonds of complex 2 (hydrogen atoms, except
those forming hydrogen bonds, are omitted for clarity).

Crystals 2017, 7, 267  9 of 18 

 

 

Figure 5. Intramolecular C-H···O and N-H···O hydrogen bonds of complex 2 (hydrogen atoms, except 
those forming hydrogen bonds, are omitted for clarity). 

As depicted in Figure 5, in complex 2, four pairs of intramolecular hydrogen bonds N2-
H2A···O13, N4-H4A···O12, C8-H8B···O9 and C22-H22B···O16 are formed. The protons (-N2H2A and 
-N4H4A) of (L2)1– units form hydrogen bonds with two oxygen (O13 and O12) atoms of μ2-acetate 
ions, respectively. The protons (-C8H8B and -C22H22B) from ethylenedioxime carbon atoms of (L2)1– 
units form hydrogen bonds with carboxylate oxygen (O9 and O16) atoms of coordinated acetate ions 
[63]. 

 

Figure 6. View of the 2D supramolecular structure of complex 2 showing the N-H···O, C-H···O 
hydrogen bonding, and C-Cl···π, C-H···π stacking interactions. 

Table 5 Hydrogen bonding and C-H···π and C-Cl···π interactions (Å, °) for complex 2. 

D-H⋅⋅⋅A D-H H⋅⋅⋅A D⋅⋅⋅A D-H⋅⋅⋅A 

N2-H2A ⋅⋅⋅O13 0.90 2.06 2.890(7) 153 

N4-H4A⋅⋅⋅O12 0.90 2.10 2.945(8) 155 

C8-H8B⋅⋅⋅O9 0.90 2.03 2.860(7) 154 

C22-H22B ⋅⋅⋅O16 0.90 2.13 2.965(8) 153 

Figure 6. View of the 2D supramolecular structure of complex 2 showing the N-H···O, C-H···O hydrogen
bonding, and C-Cl···π, C-H···π stacking interactions.

Table 5. Hydrogen bonding and C-H···π and C-Cl···π interactions (Å, ◦) for complex 2.

D-H···A D-H H···A D···A D-H···A
N2-H2A ···O13 0.90 2.06 2.890(7) 153
N4-H4A···O12 0.90 2.10 2.945(8) 155
C8-H8B···O9 0.90 2.03 2.860(7) 154

C22-H22B ···O16 0.90 2.13 2.965(8) 153
N2-H2B ···O9 0.97 2.33 3.253(9) 158

N4-H4B ···O16 0.97 2.38 3.300(8) 157
C29-H29···O15 0.98 2.35 3.19(2) 145
N2-H2A ···O13 0.90 2.06 2.890(7) 153
C29-Cl2···Cg7 1.687 3.979 4.652(18) 102.7

C10-H10B ···Cg6 0.96 2.69 3.481(9) 140

Note: Cg7 = C15–C20; Cg6=C1–C6.

3.4. UV-VIS Spectra

The UV-VIS absorption spectra of the free ligands H2L1 and HL2 with their corresponding complexes
1 and 2 in the dichloromethane solutions (1.0× 10−5 mol/L) at 298 K are shown in Table 6 and Figure 7.
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Table 6. Absorption maxima and molar extinction coefficients for complexes 1 and 2.

Compound c A(ε) B(ε) C(ε)

H2L1 1.0 × 10-5 291 (5.7 × 10-4) 329 (3.7 × 10-4) 345 (3.0 × 10-4)
Complex 1 1.0 × 10-5 252 (2.4 × 10-4) 304 (2.8 × 10-4) 344 (3.9 × 10-4)

HL2 1.0 × 10-5 270 (4.6 × 10-4) 322 (0.8 × 10-4)
Complex 2 1.0 × 10-5 271 (3.3 × 10-4) 325 (0.6 × 10-4)
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Figure 7. The UV-VIS spectra of the free ligands H2L1 and HL2 with their corresponding complexes 1 
and 2 (cm−1) 

Table 6 Absorption maxima and molar extinction coefficients for complexes 1 and 2. 

Compound c A(ε) B(ε) C(ε) 
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Figure 7. The UV-VIS spectra of the free ligands H2L1 and HL2 with their corresponding complexes 1
and 2 (cm−1).

Obviously, the absorption peaks of the ligand H2L1 and HL2 differ from those of their corresponding
complexes 1 and 2 . The absorption spectrum of the free salamo-type ligand H2L1 consists of three
relatively intense bands centered at 291, 329 and 345 nm, which may be assigned to the π-π* transitions
of the phenyl rings of coumarin and the oxime group [44,65]. Upon coordination of the ligand, the
absorption intensities are weakened compared with the free ligand H2L1, which indicate that the oxime
nitrogen atoms are involved in coordination to the Zn(II) atoms. Likewise, the absorption spectrum of
the half-salamo ligand HL2 consists of two relatively intense bands centred at 271 and 323 nm, which
may be assigned to the π-π* transitions of the phenyl rings and the oxime group [45,65]. On the other
hand, because of complex 2 is synthesized by the half-salamo ligand HL2, when the Zn(II) atoms
coordinated to HL2, the conjugate system of complex 2 not change greatly compared with complex 1,
which leads to the absorption spectra were almost unchanged before and after the complexation.
Upon coordination of the ligand HL2, the absorption intensities are weakened compared with the free
ligand HL2, which indicate that the oxime nitrogen atoms are involved in coordination with the Zn(II)
atoms [37,66].

3.5. Fluorescence Properties

The fluorescence titration experiments of H2L1 and HL2 were determined in DMF solution
(2.0 × 10−5 mol·L−1) with Zn(OAc)2·2H2O in methanol solution (1 × 10−3 mol·L−1) are shown in
Figures 8 and 9.
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Figure 9. Absorption spectra of HL2 in DMF solutions upon the addition of Zn2+. Inset: The absorbance
at 380 nm varied as an interaction of [Zn2+]/[HL2].

The free ligand H2L1 appears as an intense emission peak at 432 nm. With the fluorescence
titration experiment, upon the addition of Zn2+, gradual changes in the fluorescence spectra. And the
fluorescence intensity increased significantly. When the added amount of Zn2+ reached 1.0 equiv., the
fluorescence emission intensity became stable, which indicates a 1:1 stoichiometry between Zn2+ and
H2L1. The enhancement of fluorescence is due to the coordination of metal ions with ligands [67].
Likewise, Complex 2 displays enhanced emission intensities compared to the corresponding ligand
(HL2) when excited at 380 nm. When the added amount of Zn2+ reached 1.5 equiv., the fluorescence
emission intensity became steady. The result is corresponding to the crystal structure of complex 2 [68].

For research the solvent effect in fluorescence spectra of complexes 1 and 2, the fluorescence
spectra of complex 1 and 2 in a series of solvents were examined and are shown in Table 7 and
Figures 10 and 11.



Crystals 2017, 7, 267 12 of 18

Table 7. The maximum fluorescence emission in difference solvents for complexes 1 and 2.

Compound DMF DMSO DCM EA TCM CAN THF MeOH EtOH

Complex 1 429 431 440 433 439 439 428
Complex 2 399 414 372 377 384 402 373 407
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The normalized fluorescent spectra of complexes 1 and 2 are shown in Figures 12 and 13.
Additionally, the fluorescence image of complexes 1 and 2 upon irradiation with a 365 nm UV lamp
also indicated that the metal complexes 1 and 2 have promising applications as fluorescent materials.
The solvent effect brings pivotal effect to the photoluminescence of complexes 1 and 2.
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As we know, many fluorescent complexes, especially those containing polar substituents on
aromatic rings, are susceptible to solvents [27]. Due to the difference in polarity of solvents, complex 1
exhibits the relatively strong maximum fluorescence emission with relatively low solvent polarity in
TCM and DCM at 439 and 440 nm, respectively. Additionally, in solvents THF, DMF, and DMSO with
higher solvent polarity, the maximum fluorescence emission is relatively weak at 428, 429, and 431 nm,
respectively. In solvents of medium polarity, EA and CAN, the maximum fluorescence emission
was at 433 and 439 nm, respectively. Meanwhile, complex 2 exhibits the relatively strong maximum
fluorescence emission with relatively high solvent polarity in DMF, CAN, EtOH, and DMSO at 399,
402, 407, and 414 nm, respectively. In solvents DCM, TCM, and EA with lower solvent polarity, the
maximum fluorescence emission is relatively weak at 372, 384 and 377 nm, respectively. Furthermore,
the maximum fluorescence emission unusually appears at 373 nm in MeOH solvent. The influence
of the solvent effect changes the luminescent properties of complexes 1 and 2, making its application
areas broad [27,69].

4. Conclusions

In summary, we have reported the successful syntheses and characterizations of two newly-designed
complexes, [Zn(L1)(EtOH)] (1) and [{Zn(L2)(OAc)2}2Zn]·CHCl3 (2), derived from salamo and
half-salamo chelating ligands (H2L1 and HL2). Complex 1 includes one Zn(II) ion, one completely
deprotonated (L1)2− unit and one coordinated ethanol molecule, which shows a slightly distorted
trigonal bipyramidal geometry and forms an infinite 3D supramolecular structure. Complex 2 includes
three Zn(II) ions, two completely deprotonated (L2)1− moieties, four coordinated acetate ions, and
possesses an infinite 2D space structure. The normalized fluorescent spectra exhibit that complexes 1
and 2 have favourable fluorescent emissions in different solvents.
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