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Abstract: The crystal structures of salts 6–9 prepared from (R)-2-methoxy-2-(1-naphthyl)propanoic
acid [(R)-MαNP acid, (R)-1] and (R)-1-arylethylamines [salt 6, (R)-1-(4-methoxyphenyl)
ethylamine·(R)-1; salt 7, (R)-1-(4-fluorophenyl)ethylamine·(R)-1; salt 8, (R)-1-(4-chlorophenyl)
ethylamine·(R)-1; and salt 9, (R)-1-(3-chlorophenyl)ethylamine·(R)-1] were elucidated by X-ray
crystallography. The solid-state associations and conformations of the MαNP salts were defined
using the concepts of supramolecular- and planar chirality, respectively, and the crystal structures
of salts 6–9 were interpreted as a three-step hierarchical assembly. The para-substituents of
the (R)-1-arylethylammonium cations were found on sheet structures consisting of 21 columns.
Thus, salts possessing smaller para-substituents, that is, salt 7 (p-F) and salt 9 (p-H), and larger
para-substituents, that is, salt 6 (p-OMe) and salt 8 (p-Cl), crystallized in the space groups P21 and
C2, respectively. Additionally, weak intermolecular interactions, that is, aromatic C–H···π, C–H···F,
and C–H···O interactions, were examined in crystalline salts 6–9.

Keywords: chiral recognition; crystal engineering; planar chirality; supramolecular chirality

1. Introduction

Stereochemistry is important in biofunctional molecules [1]. Therefore, methods that
facilitate the elucidation of absolute configurations and the preparation of single enantiomers are
highly desired [2]. Based on stereochemical studies of biofunctional molecules, we synthesized
a chiral resolving agent, MαNP acid (acid 1, Figure 1) [3,4]. Acid 1 is superior to Mosher’s
3,3,3-trifluoro-2-methoxy-2-phenylpropanoic acid (MTPA, 2) [5] for the enantioresolution of secondary
alcohols [2].

Goto et al. reported the enantioresolution of rac-1 via diastereomeric salt formation with (R)-3 [3].
In 2011, we examined the crystal structures of the less-soluble salt 4 [(R)-3·(R)-1] and the more-soluble
diastereomeric salt (R)-3·(S)-1 by X-ray crystallography [6]. Those crystal structures revealed a
chiral recognition mechanism during the enantioresolution process. With the less-soluble salt 4,
the (R)-MαNP anion and the (R)-PEA cation form a close ion-pair via a methoxy-group-assisted salt
bridge and aromatic C–H···π interactions (Figure 2A). The close ion-pairs then join with the salt
bridges to form 21 columns. Additionally, results have shown that intercolumnar aromatic C–H···π
interactions [7–9] are more effective with the less-soluble salt 4.
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Recently, we introduced the concept of supramolecular chirality as a means of defining the
association of close ion-pairs in the solid state [10]. Considering the virtual chiral center of the
carboxylate and methoxy groups of the (R)-MαNP anion and the phenyl and ammonium groups of
the (R)-PEA cation, the supramolecular chirality of salt 4 was assigned as supS (Figure 2B) [10].

Salts 4 and 5 [(R)-1-(p-tolyl)ethylamine·(R)-1] yielded space groups P21 and C2, respectively [6,11].
This implied an effect of para-substitution of the PEA cation on the latter stage of hierarchical
assembly [12,13].
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This report describes substituent effects on the crystal structures of salts 6–9. The 4-
methoxyphenyl- and 3-chlrorophenyl groups were fixed in the crystal lattice. Thus, the planar 
chirality [14] of the (R)-1-arylethylammonium cations was assigned in salts 6 and 9. The molecular 
packing of salts 6–9 was interpreted as the three-step hierarchical assembly [12,13]. 

A large number of agrochemicals and pharmaceuticals are halogenated compounds. In 2007, 
Müller et al. reported that ca. 20% of all pharmaceuticals, and even more agrochemicals (up to 30%), 
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(CCDC 801461) and salt 5 (CCDC 871216), respectively. (R)-MαNP– represents the (R)-2-methoxy-2-
(1-naphthyl)propanoate anion.
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This report describes substituent effects on the crystal structures of salts 6–9. The 4-methoxyphenyl-
and 3-chlrorophenyl groups were fixed in the crystal lattice. Thus, the planar chirality [14] of the
(R)-1-arylethylammonium cations was assigned in salts 6 and 9. The molecular packing of salts 6–9
was interpreted as the three-step hierarchical assembly [12,13].

A large number of agrochemicals and pharmaceuticals are halogenated compounds. In 2007,
Müller et al. reported that ca. 20% of all pharmaceuticals, and even more agrochemicals (up to
30%), contained fluorine atoms [15]. The ratio of chlorinated drugs was next to the fluorinated
drugs in all halogenated drugs [16]. However, the effects of halogen atoms, especially fluorine,
are ambivalent. Organic crystals are now considered a type of supermolecule [7]. Therefore,
the elucidation of substitution effects in organic crystals will contribute to an overall understanding of
weak intermolecular interactions. The current study explores aromatic C–H···π, C–H···F, and C–H···O
interactions in crystalline salts 6–9.

Crystal engineering of organic salts is important as a means of enantioresolution [17–19].
Investigations of crystal structures provide information on weak intermolecular interactions that
are useful in the design of biofunctional molecules.

2. Results and Discussion

2.1. Preparation of Crystalline MαNP Salts

Single crystals of salts 6–9 were prepared from (R)-1 and (R)-1-arylethylamines with
MeOH/CHCl3 and were analyzed using X-ray crystallography (Figure 1). Table 1 and Figure 3
show their crystallographic data and ORTEP diagrams, respectively. Salts 6 and 8 crystallized in the
monoclinic space group C2 with four ion-pairs per unit cell, while salts 7 and 9 belonged to the space
group P21 with two ion-pairs per unit cell. For salts possessing larger substituents, that is, salt 6
(p-OMe), salt 8 (p-Cl), and salt 9 (m-Cl), methanol molecules functioned as space-fillers [19], stabilizing
the crystal lattice.

Table 1. X-ray crystallographic data for salts 6–9.

Compound 6 1 7 8 1 9 1

Molecular formula C23.5H29NO4.5 C22H24FNO3 C22.5H26ClNO3.5 C23H28ClNO4
Formula weight 397.49 369.43 401.91 417.93
Crystal system monoclinic monoclinic monoclinic monoclinic

Space group C2 P21 C2 P21
Z 4 2 4 2

a/Å 24.026(8) 11.8064(12) 28.612(5) 11.5676(10)
b/Å 6.790(2) 6.7248(6) 6.8078(9) 6.8976(6)
c/Å 14.800(5) 12.7444(11) 14.856(3) 14.2838(14)
β/◦ 117.208(4) 102.717(4) 132.9310(16) 109.467(3)

V/Å3 2147.3(12) 987.03(16) 2118.7(6) 1074.54(17)
Dcalculated/g·cm–3 1.229 1.243 1.260 1.292

µ/mm−1 0.084 0.088 0.205 0.206
2θmax/◦ 54.9 54.9 54.9 54.9

Temperature/K 123 123 123 153
No. of reflections collected 8451 7757 8312 10,547
No. of reflections unique 4857 4409 4671 4876

Rint 0.0292 0.0190 0.0134 0.0115
No. of parameters 272 248 262 268

Final R1 (I > 2(σ)I)) 2 0.0611 0.0402 0.0521 0.0336
wR2 (all data) 3 0.1620 0.0984 0.1370 0.0963

GOF 1.127 1.077 1.036 1.061
Flack parameter 4 1.7(15) 1.1(7) −0.03(9) −0.02(4)

CCDC 1,442,523 1,442,524 1,442,525 1,442,526
1 Crystals of salts 6, 8, and 9 were methanol solvates. 2 R1 = (Σ||Fo| − |Fc||)/(Σ|Fo|). 3 wR2 = {[Σw(Fo

2 −
Fc

2)2]/[Σw(Fo
2)2]}1/2. 4 The Flack parameters for salts 6 and 7 have no physical meaning because the salts do not

contain heavy atoms.
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MαNP esters (Table 2) [2,6]: (1) The carboxylate oxygen atom O1 was synperiplanar to the methoxy 
oxygen atom O3; (2) The methoxy carbon atom C4 was antiperiplanar to the carboxylate carbon atom 
C1; (3) The methyl carbon atom C3 was in the naphthyl plane. The 1-arylethylammonium cations of 

Figure 3. ORTEP diagrams of salts 6–9 with ellipsoids set at 50% probability. Crystals of salts 6, 8, and 9
were methanol solvates. The methanol molecules in salts 6 and 8 showed positional disorder. The atom
labels for salt 6 were also used for the other salts except for the substituents and methanol molecules.

2.2. Crystal Conformations of MαNP Salts

The conformations of the MαNP anions in salts 6–9 were similar to the major conformations of
MαNP esters (Table 2) [2,6]: (1) The carboxylate oxygen atom O1 was synperiplanar to the methoxy
oxygen atom O3; (2) The methoxy carbon atom C4 was antiperiplanar to the carboxylate carbon atom
C1; (3) The methyl carbon atom C3 was in the naphthyl plane. The 1-arylethylammonium cations of
salts 6–9 also exhibited the conformations similar to those of PEA cations [20]; that is, the benzylic
hydrogen atom H15 was almost in the phenyl plane.



Crystals 2017, 7, 263 5 of 14

Table 2. Conformational parameters of salts 6–9.

Salt Substituent O1–C1–C2–O3 (◦) C4–O3–C2–C1 (◦) C3–C2–C5–C6 (◦) N1–C15–C17–C22 (◦)

6 p-MeO –26.4(3) –178.0(3) –5.3(4) 49.0(4)
7 p-F –28.9(2) 179.9(1) 2.7(2) 53.0(2)
8 p-Cl –26.9(3) –179.3(2) –5.9(4) 48.8(4)
9 m-Cl –26.5(2) 178.4(1) 0.2(2) 47.1(2)

The 3-chlorophenyl group of salt 9 was fixed in the solid state; thus, the conformation of the
(R)-1-(3-chlorophenyl)ethylammonium cation was elucidated using the concept of planar chirality [14]
(Figure 4A): (1) The nitrogen atom N1, selected as the pilot atom, was not in the phenyl plane
itself but was attached to the benzylic carbon atom at the end of the phenyl plane; (2) Considering
the Cahn–Ingold–Prelog rules on the priority of ortho-carbon atoms, the three adjacent, in-plane
carbon atoms 1–3 were selected; (3) Viewed from the pilot atom N1, the carbon atoms 1–3 were
positioned in an anticlockwise direction in crystalline salt 9. Therefore, the planar chirality of the
(R)-1-(3-chlorophenyl)ethylammonium cation was assigned to plS.
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higher priority was given to the ortho-carbon atom that is syn to the methoxy group.

In salt 6, the methoxy group of the (R)-1-(4-methoxyphenyl)ethylammonium cation is in the
phenyl plane [15] (Figure 3). Considering the orientation of the methoxy group, the ortho-carbon
atom 3 was selected so as to be syn to the methoxy group (Figure 4B). The three adjacent carbon
atoms 1–3 were positioned in a clockwise direction in crystalline salt 6; thus, the planar chirality of
the (R)-1-(4-methoxyphenyl)ethylammonium cation was assigned as plR. It should be noted that the
planar chirality of the (R)-1-arylethylammonium cations in salts 6 and 9 is not genuine due to the
unrestricted rotation of the C15–C17 bonds.

2.3. Three-Step Hierarchical Assembly

The molecular packing of salts 6–9 was interpreted as a three-step hierarchical assembly [12,13]
(Figure 5):
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1. Close ion-pairs joined with salt bridges to form 21 columns.
2. The 21 columns formed a sheet structure via homo-aromatic C–H···π interactions between

1-naphthyl groups.
3. These sheet structures stacked to form the whole crystal.

The para-substituents of 1-arylethylammonium cations were positioned on the surface of sheet
structures. Therefore, they were important in the latter stage of the hierarchical assembly. With salts
possessing smaller para-substituents, such as salt 7 (p-F) and salt 9 (p-H), the sheet structures stacked
in the same manner, yielding a space group P21. With larger para-substituents, such as those of salt
6 (p-OMe) and salt 8 (p-Cl), the sheet structures stacked in an offset manner, yielding a space group
C2. In addition, the space between columns formed in salts possessing the larger substituents, that is,
salts 6, 8, and 9, were filled with methanol molecules [19].
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2.4. Associations of Close Ion-Pairs

The methoxy-group-assisted salt bridge and the aromatic C–H···π interactions joined the close
ion-pairs of salts 6–9 as supramolecular synthons (Figures 2A and 3) [6]. Table 3 and Figure 6 show the
geometrical parameters of salt bridges in close ion-pairs of salts 6–9.

Table 3. Geometrical parameters of methoxy-group-assisted salt bridges and other salt bridges in
salts 6–9.

Salt Substituent d1 (Å) 1 θ1 (◦) 2 d2 (Å) 1 θ2 (◦) 2 d3 (Å) 1 θ3 (◦) 2 d4 (Å) 1 θ4 (◦) 2

6 p-MeO 2.23 127 2.05 158 1.90 162 1.96 163
7 p-F 2.33 125 2.02 161 1.89 166 1.90 163
8 p-Cl 2.30 120 1.98 166 1.86 169 1.98 162
9 m-Cl 2.25 128 2.06 158 1.89 161 1.98 161
1 Interatomic distances: d1, H1A···O3; d2, H1A···O1; d3, H1B···O1’; d4, H1C···O2’. 2 Interatomic angles: θ1, N1–H1A
···O3; θ2, N1–H1A ···O1; θ3, N1– H1B ···O1’; θ4, N1–H1C ···O2’. Van der Waals radii: H, 1.20 Å; O, 1.52 Å.
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Figure 6. Geometrical parameters of methoxy-group-assisted salt bridges and other salt bridges in
salts 6–9.

Table 4 and Figure 7 show the interatomic distances H11···C19 and H12···C18 (dL and dM,
respectively) and the interatomic angles C11–H11···C19 and C12–H12···C18 in the close ion-pairs of
salts 6–9. These data suggest the presence of aromatic C–H···π interactions [8]. It has been reported
that the strength of these C–H···π interactions depends on the substituent in the phenyl group [9].

Table 4. Geometrical parameters of hetero-aromatic C–H···π interactions in the close ion-pairs of
salts 6–9.

Salt Substituent dL (Å) 1 dM (Å) 1 C11–H11···C19 (◦) C12–H12···C18 (◦)

6 p-MeO 2.88 3.17 138 121
7 p-F 2.98 3.15 141 126
8 p-Cl 2.83 3.12 136 121
9 m-Cl 3.01 3.29 136 123

1 Interatomic distances: dL, H11···C19; dM, H12···C18. H11 and H12 are offset slightly from the phenyl rings.
Van der Waals radii: aromatic H, 1.00 Å; half-thickness of the benzene ring, 1.77 Å.
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Figure 7. Geometrical parameters of hetero-aromatic C–H···π interactions in the close ion-pairs of
salts 6–9.

Considering the virtual chiral center of the carboxylate and methoxy groups of the (R)-MαNP
anion and the phenyl and ammonium groups of the (R)-1-arylethylammonium cation, each of the
supramolecular chirality in the close ion-pairs of salts 6–9 was assigned as supS (Figures 2B and 3).
This class of organic salts prefers the supS association over the supR association [10].
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2.5. Molecular Packing of MαNP Salts (1): Arrays of Columns

The close ion-pairs of salts 6–9 form 21 columns via salt bridges (Figures 8–11) [6,11]. Salts 6–9
revealed a similar herringbone motif [7] to form sheet structures. Table 5 and Figure 12 show the
geometrical parameters of the homo-aromatic C–H···π interactions between the naphthyl groups
of (R)-MαNP anions in salts 6–9. Space-filling models revealed that para-substituents of the
1-arylethylammonium cations are positioned on the sheet structures (Figure S1).

For smaller para-substituents, that is, salts 4 [6], 9 (p-H) and 7 (p-F), the sheet structures stacked
in the same manner to yield a space group P21 (Figure 5). For larger para-substituents, that is, salt 5
(p-Me) [11]; salt 6 (p-MeO), and salt 8 (p-Cl), the sheets stacked in an offset manner to yield a space group
C2. These results indicate that the para-substituents defined the space groups of salts 4–9. The following
factors are deemed important for the stability of the diastereomeric salts [17]: (1) hydrogen bonding to
form 21 columns; (2) van der Waals interactions between the columns; and (3) intra- and intercolumnar
C–H···π interactions. As noted above, methanol molecules filled the space [19] between the columns
in salts 6, 8, and 9.
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Table 5. Geometrical parameters of the homo-aromatic C–H···π interactions between the naphthyl
groups in salts 6–9 1.

Salt Substituent H9···CgX (Å) H10···CgY (Å) C9–H9···CgX (◦) C10–H10···CgY (◦)

6 p-MeO 2.50 3.05 145 137
7 p-F 2.62 3.41 155 127
8 p-Cl 2.53 3.02 145 135
9 m-Cl 2.66 3.36 155 126

1 Centroids of benzene rings: CgX, C9–C14; CgY, C5–C6–C7–C8–C14–C–13. Van der Waals radii: aromatic H, 1.00 Å;
half-thickness of the benzene ring, 1.77 Å.
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2.6. Molecular Packing of MαNP Salts (2): Stacking of Sheet Structures

The interactions between sheet structures were examined in crystalline salts 7 and 9 (Figure 13
and Table 6). The sheet structures of salts 7 and 9 (Figures 9 and 11, respectively) stacked in a space
group P21. The interactions between p-fluorophenyl groups in crystalline salt 7 were similar to those
of phenyl groups in crystalline salt 4 [6]. There were no intermolecular contacts shorter than the sum
of the van der Waals radii between the sheet structures of salt 7. The aromatic hydrogen atom H18 of
the p-fluorophenyl group was relatively close to the neighboring fluorine atom F1’. The interatomic
distance between H18···F1’ was 2.61 Å (the van der Waals radii: aromatic H, 1.00 Å; F, 1.47 Å) while
the interatomic angle C18–H18···F1’ was 118◦. However, the C–H···F interaction is reportedly very
weak [21]. Despite large differences in physical and chemical properties, the substitution of a fluorine
atom for a hydrogen atom only marginally affected the molecular packing.

A clear homo-aromatic C–H···π interaction was observed between the m-chlorophenyl groups of
salt 9 (Figure 13). The interatomic distance between the aromatic hydrogen atom H20’ and the centroid
of the neighboring phenyl ring (Cg) was 2.72 Å while the interatomic angle C20’–H20’–Cg was 170◦.
Kinbara et al. reported that the para-chlorine substituent of the 1-(4-chlorophenyl)ethylammonium
cation increases the positive charge of the meta-hydrogen atoms, effectively stabilizing the C–H···π
interaction [18]. In contrast, the chlorine atom of salt 9 did not show any short contacts (e.g., Cl···Cl,
Cl···O, or Cl···π interactions [22]). The same is true for the chlorine atom of salt 8 (see below).
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Table 6. Interatomic distances and angles between the sheet structures of salts 6–9.

Salt Substituent Interatomic Distance (Å) Interatomic Angle (◦)

6 p-MeO H7···π’ 1 2.65

H7···Cg’ 2 3.30 C7–H7···Cg’ 1 174

H23A’···C7 2.97

O2···O5 2.84

H21’···O5 2.48 C21’–H21’···O5 138

7 p-F H18···F1’ 2.61 C18–H18···F1’ 118

8 p-Cl H7···π’ 1 2.69

H7···Cg’ 2 3.09 C7–H7···Cg’ 1 165

O2···O4 2.83

H21’···O4 2.42 C21’–H21’···O4 133

9 m-Cl H20’···Cg 2 2.72 C20’–H20’···Cg 170

H20’···π 1 2.67
1 The phenyl plane is defined by carbon atoms C17–C18–C19. 2 Cg: centroid of the phenyl ring (C17–C22). Van der
Waals radii: aromatic H, 1.00 Å; H, 1.20 Å; O, 1.52 Å; F, 1.47 Å; half-thickness of the benzene ring, 1.77 Å.

Finally, interactions between sheet structures were examined in crystalline salts 6 and 8. Figure 14
shows the molecular packing of salts 6 and 8 viewed along the c-axis. The sheet structures, shown in
Figures 8 and 10, respectively, yielded a space group C2 with hetero-aromatic C–H···π interactions
between sheets. The aromatic hydrogen atom H7 of the naphthyl group was positioned nearly on the
edge of phenyl group in salts 6 and 8; the distances between H7 and the neighboring phenyl plane
were 2.65 Å and 2.69 Å, respectively.
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In salt 6, the p-methoxy group was located in the phenyl plane [15], giving an extended
herringbone motif; the interatomic distance between hydrogen atom H23A’ and aromatic carbon
atom C7 was 2.97 Å. The chlorine atom of salt 8 had no short contacts with neighboring molecules.
Methanol molecules filled the space between sheet structures in salts 6 and 8 (Figure 14). The oxygen
atom of methanol molecule formed an O–H···O hydrogen bond and a C–H···O interaction. In salt 6,
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the interatomic distances O2···O5 and H21’···O5 were 2.84 Å and 2.48 Å, respectively. In salt 8,
the interatomic distances O2···O4 and H21’···O4 were 2.83 Å and 2.42 Å, respectively. In terms of
crystal engineering, the p-methoxy group of salt 6 was isosteric with the p-chloro group of salt 8.

3. Conclusions

This study clarified the crystal structures of MαNP salts 6–9 prepared from (R)-1
and (R)-1-arylethylamines. Using the concepts of supramolecular chirality, the solid-state
associations of close ion-pairs were elucidated as supS in all salts. In addition, the solid-state
planar chirality of the (R)-1-(4-methoxyphenyl)ethylammonium cation of salt 6 and the
(R)-1-(3-chlorophenyl)ethylammonium cation of salt 9 were assigned as plR and plS, respectively.
It should be noted that these are not genuine planar chirality due to unrestricted rotations. The crystal
structures of MαNP salts 6–9 were interpreted as three-step hierarchical assemblies. Para-substituents
of phenyl groups were positioned on sheet structures consisting of 21 columns and thereby affected
the sheet stacking. Smaller para-substituents, that is, salt 7 (p-F) and salt 9 (p-H), and larger
para-substituents, that is, salt 6 (p-OMe) and salt 8 (p-Cl), yielded space groups P21 and C2,
respectively. For MαNP salts, p-H and p-OMe groups were isosteric with p-F and p-Cl groups,
respectively. The 3-chlorophenyl groups of salt 9 exhibited homo-aromatic C–H···π interactions.
For (R)-1-arylethylamines with larger substituents, methanol molecules filled the space in the crystal
lattice. These results provide information on supramolecular chemistry for the design and preparation
of single-enantiomer biofunctional molecules.

4. Materials and Methods

4.1. X-ray Crystallography

The single crystals (salt 6, 0.300 × 0.100 × 0.060 mm; salt 7, 0.200 × 0.200 × 0.200 mm; salt 8,
0.550 × 0.150 × 0.100 mm; salt 9, 0.600 × 0.600 × 0.500 mm) were covered with paraffin oil and
mounted on a glass fiber, respectively. All measurements were made on a Rigaku Mercury70
diffractometer using graphite monochromated Mo-Kα radiation, operating at 50 kV/40 mA. Data were
processed on a PC using CrystalClear Software (Rigaku, Tokyo, Japan). Structures were solved using
direct methods and refined by full-matrix least-squares methods on F2 (SHELXL-97). CCDC 1442523
(salt 6), CCDC 1442524 (salt 7), CCDC 1442525 (salt 8), and CCDC 1442526 (salt 9) contain the
supplementary crystallographic data for this study, which can be obtained from The Cambridge
Crystallographic Data Centre via www.ccdc.cam.ac.uk. Each crystal was dried in vacuo overnight at
80 ◦C prior to elemental analysis.

4.2. Preparation of Salt 6

A mixture of (R)-1 (29.2 mg, 127 µmol) and (R)-1-(4-methoxyphenyl)ethylamine (21.7 mg, 144
µmol) was dissolved in CHCl3 and MeOH (0.5 mL and 1.5 mL, respectively). The solution was warmed
in a water bath at 45 ◦C and concentrated to ca. 1 mL in vacuo. Then, the solution was allowed to
stand at RT for 5 days to give colorless crystals of salt 6 (MeOH solvate; 13.7 mg, 34 µmol) in 27% yield.

(R)-1-(4-Methoxyphenyl)ethylammonium (R)-2-methoxy-2-(1-naphthyl)propanoate (6). Elemental
analysis calculated (%) for C23.5H29NO4.5 (6·0.5MeOH): C 71.01, H 7.35, N 3.52; found: C 71.21, H 7.37,
N 3.51.

4.3. Preparation of Salt 7

A mixture of (R)-1 (31.0 mg, 135 µmol) and (R)-1-(4-fluorophenyl)ethylamine (18.7 mg, 134 µmol)
was dissolved in CHCl3 and MeOH (2 mL and 1 mL, respectively). Then, the solution was allowed to
stand at RT for three days to give colorless crystals of salt 7 (32.6 mg, 88 µmol) in 66% yield.

(R)-1-(4-Fluorophenyl)ethylammonium (R)-2-methoxy-2-(1-naphthyl)propanoate (7). Elemental
analysis calculated (%) for C22H24FNO3: C 71.53, H 6.55, N 3.79; found: C 71.52, H 6.22, N 3.72.

www.ccdc.cam.ac.uk
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4.4. Preparation of Salt 8

A mixture of (R)-1 (31.5 mg, 137 µmol) and (R)-1-(4-chlorophenyl)ethylamine (32.7 mg, 210 µmol)
was dissolved in CHCl3 and MeOH (0.5 mL and 1.5 mL, respectively). The solution was warmed
in a water bath at 45 ◦C and allowed to stand at RT for two days to give crude crystals of salt 8.
Recrystallization from CHCl3/MeOH (1mL and 0.5 mL, respectively) gave colorless crystals of salt 8
(MeOH solvate; 18.3 mg, 46 µmol) with a total yield of 33%.

(R)-1-(4-Chlorophenyl)ethylammonium (R)-2-methoxy-2-(1-naphthyl)propanoate (8). Elemental
analysis calculated (%) for C22.5H26ClNO3.5 (8·0.5MeOH): C 67.24, H 6.52, N 3.49; found: C 67.55, H 6.28,
N 3.53.

4.5. Preparation of Salt 9

A mixture of (R)-1 (29.9 mg, 130 µmol) and (R)-1-(3-chlorophenyl)ethylamine (25.9 mg, 166 µmol)
was dissolved in CHCl3 and MeOH (1 mL and 2 mL, respectively). The solution was warmed in a
water bath at 47 ◦C and allowed to stand at RT for 10 days to give colorless crystals of salt 9 (MeOH
solvate; 33.1 mg, 79 µmol) in 61% yield.

(R)-1-(3-Chlorophenyl)ethylammonium (R)-2-methoxy-2-(1-naphthyl)propanoate (9). Elemental
analysis calculated (%) for C22H24ClNO3: C 68.48, H 6.27, N 3.63; found: C 68.50, H 6.24, N 3.56.

Supplementary Materials: The following is available online at www.mdpi.com/2073-4352/7/9/263/s1,
Figure S1: Top and side views of sheet structures in salts 6–9 shown in space-filling models.
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