
crystals

Article

Dislocation Creep: Climb and Glide in the
Lattice Continuum

Sinisa Dj. Mesarovic ID

School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA;
mesarovic@mme.wsu.edu

Received: 9 June 2017; Accepted: 31 July 2017; Published: 4 August 2017

Abstract: A continuum theory for high temperature creep of polycrystalline solids is developed.
It includes the relevant deformation mechanisms for diffusional and dislocation creep: elasticity with
eigenstrains resulting from vacancy diffusion, dislocation climb and glide, and the lattice growth/loss
at the boundaries enabled by diffusion. All the deformation mechanisms are described with respect to
the crystalline lattice, so that the continuum formulation with lattice motion as the basis is necessary.
However, dislocation climb serves as the source sink of lattice sites, so that the resulting continuum
has a sink/source of its fundamental component, which is reflected in the continuity equation. Climb
as a sink/source also affects the diffusion part of the problem, but the most interesting discovery is
the climb-glide interaction. The loss/creation of lattice planes through climb affects the geometric
definition of crystallographic slip and necessitates the definition of two slip fields: the true slip and
the effective slip. The former is the variable on which the dissipative power is expanded during
dislocation glide and is thus, the one that must enter the glide constitutive equations. The latter
describes the geometry of the slip affected by climb, and is necessary for kinematic analysis.

Keywords: dislocation climb; lattice sink; vacancy sink; continuum with a material sink;
climb-glide interaction

1. Introduction

At high temperatures, polycrystalline solids exhibit creep—a slow, phenomenologically viscous
flow. The basic deformation mechanisms are either directly or indirectly associated with vacancy
diffusion [1,2]. In purely diffusional creep, the prominent feature is the lattice growth/loss at the
boundaries [3–5]. A common view of dislocation creep is that deformation is accomplished by
climb-assisted glide [6], whereby climb only assists in bypassing the obstacles and contributes little
to the overall deformation. The climb-only deformation mechanism has been proposed early [7],
but the experimental evidence has been accumulating slowly. The climb appears to be a standalone
deformation mechanism producing (under some conditions) significant creep strains in: hcp metals [8],
intermetallics and superalloys [9], quasicrystals [10], and the Earth’s lower mantle rocks under high
pressure and high temperature conditions [11]. Moreover, the interactions of dislocations and vacancies
are of particular importance in irradiated metals [12]. In view of the uncertainties in the proposed
mechanisms for high temperature creep, it seems reasonable to aim at a mathematical model that can
describe the concurrent operation of glide, climb, and diffusion, with each mechanism contributing
significant strains. This is the purpose of the present communication.

1.1. Mass Continuum

The standard mathematical definition of the continuum begins with the statement: At instant t,
material point (element) currently at the position x is moving with the velocity v(x, t). This brings up
the question—what is the physical meaning of the material? In fluid mechanics treatises, the answer is
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typically mathematical rather than physical; material is identified with mass. Such continuum will be
called mass continuum (Quantities and operators specific to the mass continuum are marked with an
overbar to distinguish them from their analogues in the lattice continuum.).

Specifically, the mass density field ρ(x, t) is convected with the velocity v(x, t). Owing to the
continuous mixing of fluid atoms, the material (point) is not associated with a specific (group of)
atom(s). In single- or multi-component fluids, the barycentric velocity preserves the linear momentum
of the assembly of atoms (e.g., [13]), thus yielding (with application of the transport theorem) the
simple and elegant continuum version of Newton’s 2nd law—the Cauchy equations of motion:

∇ ·σ+ ρg = ρ
Dv
Dt

. (1)

The operator ∇ is the gradient operator, σ is the Cauchy stress (in the mass continuum), g is the
gravitational acceleration and D/Dt is the material derivative (in the mass continuum). The equations
of motion (1) also indicate why the mass density (among all other continuum fields) plays a special
role. Further, in the absence of nuclear reaction, the mass is conserved, so that the continuity equation
is identified with the local mass conservation condition:

Dρ

Dt
= −ρ∇ · v. (2)

Finally, we note that all of the above refers to the Eulerian (spatial) description of the continuum.
The failure to identify the material with a physical entity renders any Lagrangean (material)
description meaningless.

1.2. Lattice Continuum

In solid mechanics problems, where Lagrangean kinematics is essential, such formulation does
not stand up to scrutiny, unless one assumes the complete absence of mixing/diffusion, in which
case the material point is identified with a particular set of atoms. In crystalline solids, the relevant
deformation mechanisms are referred to the crystalline lattice. For example, the plastic slip is produced
by the motion of dislocations with respect to the lattice, while the elastic deformation is associated
with lattice stretching. Thus, the fundamental developments in crystal elasto-plasticity [14–17] are,
in fact, based on the lattice continuum without diffusion, which is equivalent to the mass continuum,
so that the nature of the continuum is not emphasized.

In the solid mechanics problems with diffusion, the importance of crystalline lattice was noted
early by Larché and Cahn [18–20] but in the form of lattice constraint imposed on the otherwise
mass-based continuum. Berdichevsky et al. [21] noted the absence of Lagrangean description in the
mass continuum, specifically for the newly grown lattice at the grain boundary.

When diffusion and diffusion-mediated processes control the deformation of solids, the overall
deformation process is expected to be quasi-static. The rate of change of linear momentum in (1) is
considered negligible, so that the governing mechanical equations are the equilibrium conditions.
The need for equivalence of atomic and continuum linear momenta being thus eliminated, the lattice
continuum formulation becomes natural. Elements of the lattice continuum were introduced by
Garikipati et al. [22], but the full formulation of the lattice continuum for Nabarro–Herring creep
was developed only recently [23]. It includes the lattice versions of the material derivative and the
transport theorem, as well as the definition of Lagrangean coordinates for the newly created lattice.
The limitation of this formulation is that lattice growth/loss is confined to the grain boundary; in the
bulk of the crystal, the lattice version of the continuity equation is equivalent to the local conservation
of lattice density. In this paper, we extend the formulation to the problem of dislocation climb, whereby
climbing edge dislocations serve as the sink/source of the lattice throughout the bulk of the crystal.
Thus, the resulting continuum embodies a sink/source of the material. This appears to be an entirely
new concept (The analogous mass continuum would be the one where deformation is accompanied by
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nuclear reaction (mass sink). One can envision such problems arising in case of load bearing nuclear
fuel, but this author is not aware of any such developments.).

The problem considered here is the concurrent operation of dislocation glide, climb and vacancy
diffusion, the latter two being intrinsically linked. The vacancy diffusion is also inseparable from the
lattice growth at grain boundaries (barring awkward assumptions), so that the problem considered
is the concurrent operation of dislocation creep and Nabarro–Herring creep. The paper is organized
as follows.

In Section 2, the kinematics of lattice continuum with lattice sink/source, diffusion, dislocation
glide and climb is developed. In addition to the lattice sink, the kinematic interaction between glide
and climb is a novel element. Power balance (for an isothermal process) is formulated in Section 3.
In Section 4, the weak form of the problem is formulated directly from the power balance using
the principle of virtual power, followed by the strong form. While many components of the strong
form turn out to be familiar from the literature, the glide-climb interaction is a novel concepts and is
discussed in some detail. The conclusions are given in Section 5.

2. Kinematics

At high temperatures, vacancy diffusion takes place by the vacancy-atom exchange mechanism,
thus producing the complementary fluxes of atoms and vacancies. Crystal boundaries serve
as sources and sinks of vacancies resulting in lattice growth/loss on the boundary faces under
tension/compression. The diffusion and lattice growth in the Nabarro–Herring creep is illustrated in
Figure 1. The lattice continuum corresponding to the Nabarro–Herring creep has been formulated [23]
and includes the Eulerian and Lagrangean descriptions of the newly formed lattice.
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Figure 1. (a) Schematic representation of vacancy diffusion (dashed lines) and atom diffusion  
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(in exchange for atoms). The new configuration (right) has an extra lattice plane and extra vacancies 
which then diffuse through the bulk towards the disappearing boundaries. Diffusion of atoms and 
vacancies takes place by the vacancy-atom exchange mechanism. 
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Figure 1. (a) Schematic representation of vacancy diffusion (dashed lines) and atom diffusion (solid
lines) within a crystalline grain leading to the creation of new lattice planes at the boundary under
tension and disappearance of lattice planes at other boundaries. (b) Schematic illustration of the creation
of a new lattice plane. Thick solid line represents crystal boundary, solid and hollow circles are atoms
and vacancies. Initial vacancy-free crystal (left) absorbs vacancies from the boundary (in exchange for
atoms). The new configuration (right) has an extra lattice plane and extra vacancies which then diffuse
through the bulk towards the disappearing boundaries. Diffusion of atoms and vacancies takes place
by the vacancy-atom exchange mechanism.

We consider two species occupying lattice sites: atoms and vacancies; without interstitials. At any
instant t, the lattice velocity field v(x, t) is defined on an open domain Ω, its closure ∂Ω having the
outer normal n. The lattice velocity gradient L(x, t) is defined as:

L =
∂v
∂x

= v∇; Lij =
∂vi
∂xj

= vi,j . (3)



Crystals 2017, 7, 243 4 of 16

2.1. Dislocation Climb and the Continuity Equation

The mechanism of dislocation climb consists of vacancy absorption by the dislocation core. As the
vacancy is absorbed, the core of edge dislocation moves one atomic space and one lattice position
is lost. Thus, the dislocation climb mechanism, illustrated in Figure 2a, represents the lattice sink,
as well as the vacancy sink. Therefore, the continuity equation, i.e., the lattice balance law, must now
include—not only the convection of lattice sites, but also the local sink strength. Let the lattice site
density be NL(x, t) and let

.
s(x, t) be the fraction of lattice sites lost per unit time. Then:

∂NL
∂t

= −∇ · (vNL)− NL
.
s. (4)

with reference to Figure 2a, it is clear that there is no kinematic constraint restricting the climb motion
to one direction: dislocation can climb or descend, operating as sink or source of lattice sites and
vacancies. The convention adopted here with positive

.
s representing climb/sink conforms to the usual

representation of climb in the literature.
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Figure 2. (a) Edge dislocation and vacancy (hollow circle). The vacancy-atom exchange takes place.
Dislocation climbs and a lattice point disappears. (b) Illustration of climb starting from a planar
dislocation loop with the Burgers vector bα (thick lines). The screw components (�) don’t climb.
The climb of initial edges (⊥) produces parallel edges as well as out-of-plane edge segments (∠) which
cannot glide. As both parallel and out-of-plane edges continue to climb, the loop expands and operates
as climb analogue of the Frank–Read source.

The material (lattice) derivative of any material field Y(x, t) is

DY
Dt

=
∂Y
∂t

+ v · ∇Y, (5)

so that:
DNL
Dt

=
∂NL
∂t

+ v · ∇NL = −NL∇ · v− NL
.
s. (6)

The glide of dislocations has been studied in detail, including the interactions between dislocations
on different slip systems, as well as dislocation multiplication and strain hardening mechanisms [24–26].
Here we focus on dislocation climb and its interactions with dislocation glide.

The slip system α is described by a triad of unit orthogonal vectors: the slip direction sα = bα/|bα|,
the slip plane normal mα, and tα = sα ×mα. The evolution of climbing edge dislocations, starting
from a rectangular dislocation loop on the slip system α is illustrated in Figure 2b. Evidently, the climb
of original edges produces, not only the parallel edge segments (⊥), but also the out-of-plane edge
segments (∠) which cannot glide. Further climb by all edges results in a multiplication mechanism
analogous to the Frank–Read source for glide. Let θα be the density (length per volume) of all edge
dislocations (⊥ and ∠) associated with the slip system α, and let vα

climb be the average climb velocity
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for edges belonging to the slip system. Then, in analogy with the Orowan equation for the slip rate,
the strength of the lattice sink associated with the slip system α is

.
sα

= θαvα
climbbα; bα = |bα|, (7)

and the total lattice sink strength is obtained by summation over all slip systems:

.
s = ∑

α

.
sα. (8)

2.2. Elastic–Plastic Decomposition

In addition the lattice density NL(x, t), the material (lattice) point currently located at x, carries
the vacancy concentration c(x, t), i.e., the fraction of lattice sites occupied by vacancies, and the
deformation gradient F(x, t):

D
Dt

F = L · F. (9)

To extend the definition of lattice-advected variables to the lattice being currently created, it is
sufficient to assert the continuity of deformation gradient, vacancy concentration and lattice density,
within the crystal [23]. The key elements of the Lagrangean (spatial) description are thus defined.
The reference configuration X can, in principle, be obtained from the current configuration, but it
will be fictitious for the lattice grown during the process. The mapping x→ X is multiple-valued,
with gaps and overlaps at grain boundaries and inside the grain.

The deformation gradient tensor can be decomposed into the elastic-compositional deformation
gradient F∗, and the plastic deformation gradient Fp. The former represents the motion which produces
a deformed lattice topologically equivalent to the reference lattice, the latter changes the topology,
i.e., it accounts for both–glide and climb of dislocations. The decomposition is multiplicative and
formally identical to the standard (glide-only) elastic–plastic decomposition [14]:

F = F∗ · Fp. (10)

However, the plastic gradient now includes the climb deformation, so that

Fp = det Fp 6= 1. (11)

Following the decomposition (10), the velocity gradient (3) is decomposed in elastic-compositional
and plastic portions:

L = L∗ + Lp =
.
F
∗
· F∗−1 + F∗ ·

.
F

p
· Fp−1︸ ︷︷ ︸
L̃p

· F∗−1. (12)

The decompositions (10) and (12) reflect the imaginary sequential deformation. First, the reference
lattice is deformed to intermediate (isoclinic) configuration without changing the symmetry of
the lattice, Fp : X→ x̃ . In contrast to standard crystal plasticity based on dislocation glide, here
the lattice planes are lost/created, resulting in the translational motion of the parts of the lattice,
but preserving the lattice symmetries and orientation (hence the attribute isoclinic still applies).
Then, the intermediate configuration is transformed into the current configuration, F∗ : x̃→ x . In the
glide-only elasto-plasticity, while the two steps are not represented by 1–1 mappings (i.e., the tensors
Fp and F∗ are not compatible), the total deformation gradient F represents 1–1 mapping x↔ X.
This is clearly not the case here: the mapping F−1 : x→ X is multiple-valued and discontinuous.
(Note that in the glide-only plasticity, the incompatibility of F∗ can be considered as the consequence of
incompatibility of Fp, arising from the requirement that the total deformation gradient be compatible.
In the absence of dislocation glide (Fp = I), F∗ is compatible.)
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Let the lattice density and elementary volume in intermediate configuration be ÑL and dΩ̃. Then,
elastic-compositional changes between intermediate and current configurations can be expressed as

F∗NL = ÑL; dΩ = F∗dΩ̃; F∗ = det F∗. (13)

Note that we first define all fields (including deformation gradient) in the current configuration,
e.g., Y(x), which is the only configuration where the position vector x represents one and only one
material (lattice) point. To minimize the notational clutter, we write Y(x) = Y(x̃) (F∗ : x̃→ x) and
freely switch the domains of integration between the current and intermediate configurations:∫

Ω

Y(x)dΩ =
∫
Ω̃

F∗Y(x̃)dΩ̃. (14)

(Although the equality (14) is widely used in the literature on elasto-plasticity, in view of the
multiple-valuedness of the mapping F∗−1 : x→ x̃ , the meaning of the integral on the right is not
obvious. The clarifying point is that F∗ includes only lattice stretching and rotation so that the
mapping of lattice points is 1–1; only the mapping of coordinates is multiple-valued. The function
Y(x̃) is understood to be defined on lattice points (as opposed to coordinates), with the corresponding
interpretation of the integral. In contrast to glide-only plasticity, the analogous transformation to the
reference configuration is meaningless here.)

The plastic velocity gradient on intermediate configuration L̃p in (12) accounts for changes in
lattice topology and is defined from the elementary slip system state variables: slip rate

.
γ

α and climb
rate (lattice sink strength)

.
sα:

L̃p = ∑
α

.
γ

αs̃αm̃α −∑
α

.
sαs̃αs̃α, (15)

where the vectors s̃α and m̃α are unit and orthogonal in the intermediate configuration. The choice
between intermediate and current configurations as the basis for definition of slip has been extensively
discussed in literature [15–17].

2.3. Climb–Glide Interaction

When dislocation climb is present, the scalar fields γα(x, t) have a different physical (geometric)
meaning then in the glide-only case, which has implications on the constitutive relations. Define the
true slip field γ̂α(x, t) as the slip occurring without any climb. This is the variable that corresponds to
the standard crystal plasticity slip field. As illustrated in Figure 3, the loss of lattice planes parallel
to the slip plane affects the effective slip γα(x, t) directly. (An analogous continuum illustration of
the same phenomenon is shown in Figure 4 in Section 4.) The loss of lattice planes orthogonal to the
slip plane only affects the gradient of slip ∇γα, which is accounted for implicitly through the loss of
lattice (6).

The relation between true slip rate
.
γ̂

α
and effective slip rate

.
γ

α is derived in Appendix A:

.
γ

α −
.
γ̂

α

γα
= ∑

β

φ2
αβ

.
sβ; φαβ = m̃α · s̃β. (16)

It is the true slip rate
.
γ̂

α
that is related to dislocation glide through the Orowan equation:

.
γ̂

α
= ρα

mobilevα
glidebα, (17)

and it is on
.
γ̂

α
that power associated with dislocation glide:

Wglide = τα
.
γ̂

α
, (18)
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is expanded on, by the Peierls–Nabarro stress τα [27,28]. On the other hand, the effective slip γα

describes the current kinematic state of the material, taking into account the true slip and the changes
in the slip geometry caused by climb.
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Figure 3. (Left) Initial lattice volume 5b× 5b is traversed by an edge dislocation resulting in the true
slip γ̂ = 1/5. Two edge dislocations on an orthogonal plane are poised to climb (arrows) and destroy
the lattice planes indicated by hollow circles. (Right) After the climb, the effective slip is γ = 1/3.

The plastic velocity gradient in intermediate configuration (15) can now be written as

L̃p = ∑
α

.
γ̂

α
s̃αm̃α + ∑

α

.
sα

[
∑
β

γβφ2
βαs̃βm̃β − s̃αs̃α

]
. (19)

2.4. Diffusion and Diffusional Creep Rate

The boundaries of the crystal serve as lattice/vacancy sources and sinks. As discussed in [23],
the normal boundary velocity Vn is a scalar field defined on the closure set ∂Ω, and independent of the
lattice velocity field. The difference in normal components is the lattice growth rate:

g = Vn − n · v. (20)

The diffusional creep deformation rate tensor is the symmetric rank-2 tensor, constant within each
domain Ω, and defined on the basis of the difference between the normal boundary velocity and the
normal lattice velocity at the boundary:

C =
1
Ω

∫
∂Ω

gnnd∂Ω. (21)

In contrast to the locally-defined (fields defined at each point) deformation rates (elastic-
compositional and plastic), the diffusional creep deformation rate is defined for each grain. In a
polycrystal it is a piecewise constant field with discontinuities across the grain boundaries. On the
level of a single grain (mesoscale lattice continuum), the tensor C describes the lattice growth at the
boundary, not the deformation of the lattice. Only on the polycrystal level (macroscale continuum) the
name creep deformation rate becomes semantically correct. This can be contrasted with the definition of
plastic deformation in [21].

The locally-defined (intrinsic) deformation rates are simply the symmetric parts of local lattice
velocity gradients. The grain average of the local lattice velocity gradient can be expressed as

〈D〉intrinsic
Ω =

1
2Ω

∫
∂Ω

(vn + nv)d∂Ω (22)

The total deformation rate for the grain is then

〈D〉total
Ω = 〈D〉intrinsic

Ω + C. (23)
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In the lattice continuum, the local mass balance results in the vacancy diffusion equation [23]. The
derivation for the case with lattice sink is given in Appendix B. The diffusion equation reads:

Dc
Dt

= −F∗∇ · J− (1− c)
.
s, (24)

where J is the vacancy flux.
The transport theorem with lattice sink is also derived in Appendix B. Let the quantity Y(x, t) be

given per lattice site. Consider the lattice volume V(t), i.e., the volume that follows the prescribed set
of lattice sites. The transport theorem has the following form:

D
Dt

∫
V(t)

NLYdV =
∫

V(t)

NL

[
DY
Dt
− .

sY
]

dV. (25)

For a variable crystal domain Ω(t), with lattice growing/vanishing at the boundary ∂Ω(t) with
the rate g (20), the transport theorem will have the form:

D
Dt

∫
Ω(t)

NLYdΩ =
∫

Ω(t)

NL

[
DY
Dt
− .

sY
]

dΩ +
∫

∂Ω(t)

NLYgd∂Ω. (26)

Applying (26) to the mass density (Appendix B), the mass of a crystal grain will change as

D
Dt

∫
Ω(t)

ρdΩ = mÑL

∫
∂Ω(t)

[
1− c

F∗
g + Jn

]
d∂Ω, (27)

where m is the atomic mass and Jn = n · J is the normal vacancy flux at the boundary. Thus, if a single
grain is to satisfy mass conservation, then:

∫
∂Ω

[
1− c

F∗
g + Jn

]
d∂Ω = 0. (28)

The weak constraint (28) requires a model for boundary diffusion [23], which is beyond the scope
of this paper. The local condition:

1− c
F∗

g + Jn = 0, (29)

implies absence of boundary diffusion by requiring that lattice growth/disappearance at the boundary
be directly related to the normal atomic flux (negative of the vacancy flux). The creep deformation rate
can then be written as

C = − 1
Ω

∫
∂Ω

F∗ Jn

1− c
nnd∂Ω. (30)

3. Power Balance

3.1. Free Energy

At a constant temperature, the free energy, given per unit volume in intermediate configuration
Ω̃, depends on concentration and elastic strains: Φ(F∗, c). With (13) and (14), the total free energy of a
grain with current volume Ω can be written as

P =
∫
Ω̃

Φ(F∗, c)dΩ̃ =
∫
Ω

1
F∗

Φ(F∗, c)dΩ =
∫
Ω

1
ÑL

Φ(F∗, c)dΩ. (31)
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(Note that interface energy of grain boundaries is not considered here. A discussion of the role of
interface energies, including the question of when they can be neglected, can be found in [23].)

The rate of change of the free energy of a grain is derived in the Appendix C:

DP
Dt

=
∫
Ω

[σ : (v∇)−Φ′∇·J]dΩ +
∫

∂Ω

Φ
F∗

gd∂Ω−
∫
Ω̃

[
∑
α

τ̂α
.
γ̂

α
+ ∑

α

Λ̂α .
sα

]
dΩ̃. (32)

In (32), σ is the symmetric lattice Cauchy stress:

σ =
1

F∗
F∗ ·

(
∂Φ
∂F∗

)T
=

1
F∗

(
∂Φ
∂F∗

)
· F∗T , (33)

and the following shorthand notation is introduced:

Λ̂α
= ∑

β
γβτ̂βφ2

βα + σ̂α + Φ′(1− c) + Φ; Φ′ = ∂Φ/∂c;

τ̂α = m̃α · S̃ · s̃α; σ̂α = −s̃α · S̃ · s̃α; S̃ = F∗(F∗−1 ·σ · F∗) .
(34)

The non-symmetric stress tensor S̃ [17] resolved to appropriate planes and directions gives the
resolved shear stress τ̂α and the normal stress σ̂α.

3.2. Dissipation and the 2nd Law

Local diffusional dissipation rate in the lattice is modeled simply as proportional to the divergence
of flux, while the dissipation rates associated with glide and climb of dislocations are proportional to
.
γ̂

α
and

.
sα:

Ddi f f =
∫
Ω

M∇ · JdΩ =
∫

∂Ω
MJnd∂Ω−

∫
Ω
∇M · JdΩ ;

Dclimb =
∫̃
Ω

∑
α

Λα .
sαdΩ̃ ;

Dglide =
∫̃
Ω

∑
α

τα
.
γ̂

α
dΩ̃ .

(35)

In addition to the bulk dissipation, the vacancy creation and absorption at the boundaries must
be a dissipative process. Following (29), the dissipation rate at a boundary point can be equivalently
assumed to be proportional either to the lattice growth rate g, or to the normal vacancy flux Jn:

Dbdr =
∫

∂Ω

χJnd∂Ω . (36)

The total dissipation rate is then

D =
∫

∂Ω

(M+ χ)Jnd∂Ω−
∫
Ω

∇M · JdΩ +
∫
Ω̃

∑
α

Λα .
sαdΩ̃ +

∫
Ω̃

∑
α

τα
.
γ̂

α
dΩ̃. (37)

For isothermal processes, the 2nd law of thermodynamics requires

D ≥ 0. (38)

The linear constitutive law with positive mobilities B, β and H:

J = −B∇M ,
.
sα

= βΛα, β, B > 0, in Ω ;
Jn = H(χ +M) , H > 0, on ∂Ω ,

(39)
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and the slip constitutive law which guaranties τα
.
γ̂

α
≥ 0, will satisfy the requirement (38).

An acceptable slip constitutive law may be the viscous regularization of a yield condition:

.
γ̂

α
= γ0

∣∣∣∣τα

τα
Y

∣∣∣∣msign(τα); γ0, τα
Y > 0; m� 1, (40)

accompanied by the appropriate hardening law for dτα
Y/dγ̂α (see, e.g., [16]).

3.3. Power Balance

The boundary tractions t expand power on the boundary velocity V. The power balance for an
isothermal process can be written as ∫

∂Ω

t ·Vd∂Ω =
DP
Dt

+ D. (41)

We define the tangential component of boundary velocity to be equal to the tangential components
of lattice velocity, so that, with (29) the power expanded by tractions can be written as

t ·V = tng + t · v = −tn
F∗

1− c
Jn + t · v; tn = t · n. (42)

Upon substitution of (32), (35), (36) and (42) into (41), the power balance takes the form∫
∂Ω

t · vd∂Ω =
∫
Ω
[σ : (v∇) + (M−Φ′)∇ · J]dΩ +

∫
∂Ω

[
χ + F∗tn−Φ

1−c

]
Jnd∂Ω

+
∫̃
Ω

∑
α
(Λα − Λ̂α

)
.
sαdΩ̃ +

∫̃
Ω

∑
α
(τα − τ̂α)

.
γ̂

α
dΩ̃ .

(43)

4. Principle of Virtual Power and Governing Equations

Following (43), at any instant t, the fields v(x, t), J(x, t),
.
sα
(x, t) and

.
γ̂

α
(x, t) are subject to

independent variations δv(x, t), δJ(x, t), δ
.
sα
(x, t) and δ

.
γ̂

α
(x, t), arbitrary except at points where the

essential boundary conditions are prescribed (allowable variations). The principle of virtual power
provides the weak form of the initial-boundary value problem. The integral equation representing
power expanded by actual power conjugates on virtual rates:∫

∂Ω
t · δvd∂Ω =

∫
Ω
[σ : δ(v∇) + (M−Φ′)δ∇ · J]dΩ +

∫
∂Ω

[
χ + F∗tn−Φ

1−c

]
δJnd∂Ω

+
∫̃
Ω

∑
α
(Λα − Λ̂α

)δ
.
sαdΩ̃ +

∫̃
Ω

∑
α
(τα − τ̂α)δ

.
γ̂

α
dΩ̃ ,

(44)

must be satisfied for arbitrary allowable variations.
Compared to the problem discussed previously [23], only the last two terms are new. Nevertheless,

we summarize all the components of the strong form implied by (44). The usual manipulation and the
argument based on independence of variations yields:

• Stress (quasi-) equilibrium with standard boundary conditions:

∇ ·σ = 0 in Ω; n ·σ = t0 or v = v0 on ∂Ω, (45)
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• The diffusion potential M = Φ′ and χ = −(F∗tn −Φ)/(1− c), resulting in the coupled,
moving-boundary diffusion problem with an unusual boundary condition:

Dc
Dt = BF∗∇2Φ′ − (1− c)

.
s in Ω ;

1−c
F∗ g = Bn · ∇Φ′ = H

(
F∗tn−Φ

1−c −Φ′
)

on ∂Ω ,
(46)

• The power conjugate of the true slip rate as the resolved shear stress component of the stress
tensor S̃:

τα = τ̂α = m̃α · S̃ · s̃α, (47)

• The power conjugate of the climb/sink rate:

Λα = Λ̂α
= ∑

β

γβτ̂βφ2
βα + σ̂α + Φ′(1− c) + Φ. (48)

With constitutive equations for elasticity, slip rate (41) and climb rate (40), this completes the
initial-boundary value problem. The diffusion portion of the problem (46) differs from the previously
discussed case [23] only by the sink term. The resolved shear stress (47) is the standard concept in
crystal plasticity. The climb power conjugate (48) requires a more detailed discussion.

The 2nd term in (48), σ̂α, is the normal (compressive) stress on the plane with normal s̃α. Since
slip and climb are defined consistently in the intermediate configuration, the relevant stress tensor is S̃.
Compression on a lattice plane favors the loss of lattice planes, while the tension favors creation of
new planes.

The 3rd term in (48), Φ′(1− c), is recognized as the osmotic stress [29,30]. It is instructive to
consider its linearized version (small elastic-compositional deformation gradient and small vacancy
concentration), in conjunction with the regular solution model [31]. In that case [23]:

Φ′(1− c) ≈ Φ′ ≈ kTÑL ln
c
c0
− 3ηp ≈ kTÑL ln

c
cp

eq
− p, (49)

where k is the Boltzman constant, T is the temperature, c0 and cp
eq are the equilibrium vacancy

concentrations at the temperature T—the first at zero pressure, the second at the current pressure p.
The Vegard’s law coefficient η describes the volumetric compositional strain as −η(c− c0).

The last term in (48) simply accounts for the fact that each lattice site carries internal energy. When
a lattice site is lost, its internal energy is dissipated. This term is probably negligible in most cases.
Compared to the terms σ̂α and Φ′, its relative magnitude is of the order of elastic-compositional strains,
which is not expected to exceed 10−4.

Finally, to understand the first term in (48), consider the case where the only non-zero climb rate

is
.
sα and the only non-zero slip rate is

.
γ̂

β
. With (17), the power expenditure from the first term in (48)

can then be written as
γβτ̂βφ2

βα

.
sα

= τ̂β(
.
γ

β −
.
γ̂

β
). (50)

Thus, this term provides the additional power expanded by the resolved shear stress τ̂β on the
difference between the effective and true slip rates, this difference being the result of the climb

.
sα

(see Figure 3). Imagine a (cubic) element loaded by tractions τ̂β. The expanded power is τ̂β .
γ

β. But the
power expanded on glide, i.e., the power expanded by the Peirels–Nabarro stress to move dislocations

along the slip plane, is τ̂β
.
γ̂

β
. The difference is made up for by (50).

Compared to the terms σ̂α and Φ′, the relative magnitude of this term is of the order of plastic
strains and cannot in general be neglected, except in the initial stages of deformation when plastic
strains are small. Its relative importance increases with increasing plastic deformation. This may
be puzzling until one recalls that (50) represents power density (i.e., power per unit volume), and
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that the changes in volume resulting from lattice loss compensate for increasing power density (50).
To illustrate this point, consider the example shown in Figure 4, specifically, the work done and the
power expanded by the constant shear stress τ.

The total work (per unit area of the constant horizontal base) is τγh. The power is

(τγh
.
) = τ

.
γh + τγ

.
h = τ

.
γh− τγh

.
s = τh(

.
γ− γ

.
s) = τh

.
γ̂, (51)

where we have used
.
h = − .

sh.
Assume ideal plasticity without hardening and constant rates of true slip

.
γ̂ = const., and climb

.
s = const. (Constant climb rate in this example is not realistic. To sustain the climb rate, vacancies
would have to be injected into the crystal at a prohibitive energetic cost. This is ignored in the
idealized example, intended only to illustrate the thermodynamics aspect of climb–glide interaction.)
Upon solving

.
γ =

.
γ̂ + γ

.
s, we obtain unbounded exponential increase in effective slip and the slip

work density:

τγ = τ

.
γ̂
.
s
(e

.
st − 1). (52)

However, with h = h0e−
.
st, the total work (per unit base area) is bounded:

τγh = τh0

.
γ̂
.
s
(1− e−

.
st) ≤ τh0

.
γ̂
.
s

. (53)
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a

Figure 4. A layer of hypothetical crystal with one active glide system (horizontal slip planes) and
one active climb system (vertical slip planes, climb direction to the left), loaded with corresponding
constant tractions. Thin solid lines represent the initial shape, thick solid lines represent the current
shape. Elastic-compositional deformation is neglected. True and effective slip are shown. To sustain
the climb, a continuous stream of vacancies must be injected into the crystal.

5. Conclusions

To describe the coupled dislocation creep and diffusional creep, a lattice continuum theory with
a lattice sink/source is developed. The kinematics includes a number of deformation mechanisms:
elasticity with diffusion controlled eigenstrains, glide and climb plasticity, and the lattice growth/loss
at the boundaries. Building on the previous results for diffusional creep and glide plasticity, we focus
on the climb and its interaction with other mechanisms, which can be summarized as follows.

(1) Climb is the sink/source for the lattice itself and is thus embedded in the basic kinematic fields.
Given that the vary basis of the continuum is created and vanishes during the deformation
process, definition of the Lagrangean variables, specifically the reference and the intermediate
configurations, is non-trivial. Moreover, the reference configuration is fictitious and necessarily
discontinuous and multiple-valued. The problem is resolved by first defining all fields on the



Crystals 2017, 7, 243 13 of 16

current configuration, which is real and well-defined. Definition of the deformation gradient as a
material field in the current configuration, carried by the lattice and created with the new lattice
with continuity, enables the formal definition of other Lagrangean fields.

(2) Climb as the sink/source of vacancies provides the bulk sink/source term in the diffusion
equation (which would otherwise only have sinks/sources at grain boundaries).

(3) The coupled climb–glide kinematics requires a distinction between the true slip (glide-only) and
the effective slip (the true slip modified by climb). Neither the effective nor the true slips are
easily eliminated from the formulation. Thus, when solving the coupled glide–climb problem
(presumably numerically), both true and effective slip rates must be updated in each time step.

(4) The glide–climb interaction provides an additional driving force for climb: the glide coupling force.
Owing to the kinematic coupling, the resolved shear stresses on slip systems not parallel to α

expand power on the climb rate
.
sα.

Finally, note that the present formulation is a simple continuum where slip and climb are not
the primary unknown fields, but rather, the state variables evaluated from local constitutive laws.
Consequently, the energetics and dissipation associated with dislocation-interface relaxations are not
included. These require a size-dependent theory in which slip and climb are independent fields subject
to field equations. Such formulations exist for slip [32,33], but not for climb.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A. True Slip and Effective Slip

With reference to Figures 3 and 4, let the current true slip on the only slip system be γ, measured
as the number k of Burgers vector lengths b crossed by dislocation passing through the cubic volume
(nb)3: γ = kb/(nb). Let the small amount of climb ∆s on other slip systems destroy some lattice planes
parallel to the slip planes, so that the same material now has (1−∆s)nb parallel lattice planes. The new
value of slip is

γ + ∆γ =
kb

(1− ∆s)nb
=

γ

(1− ∆s)
.

when ∆s� 1:
∆γ

γ
=

1
1− ∆s

− 1 ≈ ∆s.

Now, interpret ∆γ/∆t as the rate of change arising from the specific component of climb on other
systems, i.e., the difference between the effective and true slip rates:

.
γ

α −
.
γ̂

α
. Then, observe that the

component ∆s which affects the slip system α, is the projection of all climbs to m̃α :

∆s
∆t

= m̃α ·
[
∑
β

.
sβs̃βs̃β

]
· m̃α.

Thus, we obtain (16):
.
γ

α −
.
γ̂

α

γα
= ∑

β

φ2
αβ

.
sβ; φαβ = m̃α · s̃β.

Appendix B. Diffusion, Transport and Mass Balance

The number of atoms per unit volume in the current configuration is (1− c)NL. In the mix of
vacancies and atoms with mass m, mass density is given as ρ = m(1− c)NL, so that

Dρ

Dt
= −mNL

Dc
Dt

+ m(1− c)
DNL
Dt

= −mNL
Dc
Dt
− ρ∇ · v− ρ

.
s. (A1)
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Let the average velocity of atoms be va. The local mass conservation requires:

∂ρ

∂t
= −∇ · (ρva) = −ρ∇ · va − va · ∇ρ + v · ∇ρ− v · ∇ρ.

The material derivative is then

Dρ

Dt
= −ρ∇ · va − (va − v) · ∇ρ. (A2)

Upon equating (A1) and (A2), we obtain

mNL
Dc
Dt = ρ∇ · (va − v) + (va − v) · ∇ρ− ρ

.
s

⇒ Dc
Dt = F∗∇ ·

[
1−c
F∗ (v

a − v)
]
− (1− c)

.
s .

(A3)

The vacancy flux J, relative to the lattice, is the negative of the atomic flux Ja:

J = −Ja = −1− c
F∗

(va − v) =
1− c

F∗
(vv − v). (A4)

Substitution of (A4) into (A3) yields the diffusion Equation (24).
Let the quantity Y(x, t) be a specific quantity given per lattice site. Consider the lattice volume

V(t), i.e., the volume that follows the prescribed set of lattice sites. The rate of change of the total
quantity is:

D
Dt

∫
V(t)

NLYdV =
∫

V(t)

∂NL
∂t

YdV +
∫

V(t)

NL
∂Y
∂t

dV +
∫

∂V(t)

n · vNLYd∂V.

Using (5) and (6), we obtain the transport theorem for the material volume with a sink:

D
Dt
∫

V(t)
NLYdV = −

∫
V(t)

.
sNLYdV +

∫
V(t)

NL
∂Y
∂t dV +

∫
V(t)

NLv · ∇YdV

=
∫

V(t)
NL

[
DY
Dt −

.
sY
]
dV .

(A5)

For a variable crystal domain Ω(t), with the lattice growing/vanishing with the rate g at the
boundary ∂Ω(t), the transport theorem will have the form:

D
Dt

∫
Ω(t)

NLYdΩ =
∫

Ω(t)

NL

[
DY
Dt
− .

sY
]

dΩ +
∫

∂Ω(t)

NLYgd∂Ω. (A6)

We apply (A6) to the mass density to obtain the mass balance for a grain (27):

D
Dt
∫
Ω

ρdΩ = D
Dt
∫
Ω

mNL(1− c)dΩ =

= m
∫
Ω

NL

[
−Dc

Dt −
.
s(1− c)

]
dΩ + m

∫
∂Ω

NL(1− c)gd∂Ω

= mÑL
∫
Ω
∇ · JdΩ + mÑL

∫
∂Ω

1−c
F∗ gd∂Ω = mÑL

∫
∂Ω

[
1−c
F∗ g + Jn

]
d∂Ω .
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Appendix C. Rate of Change of the Free Energy

We seek the time derivative of the total free energy in the variable crystal domain Ω(t), with the
lattice growing/vanishing with the rate g at the boundary ∂Ω(t). Starting from (31) and applying the
transport theorem (A6), and transformations (13) and (14):

DP
Dt = D

Dt
∫
Ω

NL
ÑL

Φ(F∗, c)dΩ

=
∫
Ω

NL

[
− Φ

Ñ2
L

DÑL
Dt + 1

ÑL

((
∂Φ
∂F∗

)T
: DF∗

Dt + ∂Φ
∂c

Dc
Dt −

.
sΦ
)]

dΩ +
∫

∂Ω

Φ
F∗ gd∂Ω .

(A7)

Since the change of lattice density can only result from lattice stretching:

DNL
Dt

= −NLtrL∗, (A8)

the material rate of change of the lattice density in intermediate configuration vanishes: DÑL/Dt = 0.
The second term in the integrand of (A7) can be written as

∫
Ω

1
F∗

((
∂Φ
∂F∗

)T
: DF∗

Dt

)
dΩ =

∫
Ω
[σ : L−σ : Lp]dΩ

=
∫
Ω
σ : (v∇)dΩ−

∫̃
Ω

F∗(F∗−1 ·σ · F∗) : L̃pdΩ̃ =
∫
Ω
σ : (v∇)dΩ−

∫̃
Ω

S̃ : L̃pdΩ̃ ,
(A9)

with the symmetric lattice Cauchy stress

σ =
1

F∗
F∗ ·

(
∂Φ
∂F∗

)T
=

1
F∗

(
∂Φ
∂F∗

)
· F∗T ,

and the non-symmetric stress tensor S̃ = F∗(F∗−1 · σ · F∗). We substitute (A9) and the diffusion
Equation (24) into (A7). With the shorthand Φ′ = ∂Φ/∂c:

DP
Dt

=
∫
Ω

[σ : (v∇)−Φ′∇ · J]dΩ−
∫
Ω̃

[
S̃ : L̃p + Φ′(1− c) + Φ

.
s
]
dΩ̃ +

∫
∂Ω

Φ
F∗

gd∂Ω. (A10)

Finally, we substitute (19) for L̃p into (A10):

DP
Dt =

∫
Ω
[σ : (v∇)−Φ′∇ · J]dΩ +

∫
∂Ω

Φ
F∗ gd∂Ω

−
∫̃
Ω

[
∑
α

.
γ̂

α
S̃ : (s̃αm̃α) + ∑

α

(
∑
β

γβφ2
βαS̃ : (s̃βm̃β)− S̃ : (s̃αs̃α) + Φ′(1− c) + Φ

)
.
sα

]
dΩ̃ ,

and, with the notation (34), we obtain (32).
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