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Abstract: Physical and biochemical aspects of protein crystal nucleation can be distinguished in an
appropriately designed experimental setting. From a physical perspective, the diminishing number
of nucleation-active particles (and/or centers), and the appearance of nucleation exclusion zones,
are two factors that act simultaneously and retard the initially fast heterogeneous nucleation, thus
leading to a logistic time dependence of nuclei number density. Experimental data for protein crystal
(and small-molecule droplet) nucleation are interpreted on this basis. Homogeneous nucleation
considered from the same physical perspective reveals a difference—the nucleation exclusion zones
lose significance as a nucleation decelerating factor when their overlapping starts. From that point
on, a drop of overall system supersaturation becomes the sole decelerating factor. Despite the
different scenarios of both heterogeneous and homogeneous nucleation, S-shaped time dependences
of nuclei number densities are practically indistinguishable due to the exponential functions involved.
The biochemically conditioned constraints imposed on the protein crystal nucleation are elucidated
as well. They arise because of the highly inhomogeneous (patchy) protein molecule surface, which
makes bond selection a requisite for protein crystal nucleation (and growth). Relatively simple
experiments confirm this assumption.

Keywords: protein crystallization; classical and two-step nucleation mechanisms; physical and
biochemical aspects of protein crystal nucleation; S-shaped nucleation kinetics

1. Introduction

Biomolecule structures are essential when it comes to understanding the mechanisms of life and
human genomes, and developing novel protein-based pharmaceuticals. The most powerful method
for structure-function studies of biomolecules is X-ray diffraction (with complementary neutron
diffraction) and Nuclear Magnetic Resonance, considered as an ancillary tool only. Both X-ray and
neutron diffraction require well-diffracting crystals [1]. Growing such crystals of newly-expressed
proteins is, however, the major obstacle in protein structure determination. There is no recipe for their
growth. It is usually the trial-and-error approach that is applied. Despite the numerous state-of-the-art
crystallization tools employed (such as robots, automation and miniaturization of crystallization trials,
Dynamic Light Scattering, crystallization screening kits, etc.), researchers’ creativeness and acumen
remain indispensable.

Protein crystal nucleation is a prerequisite for the crystal growth of newly-expressed proteins.
However, there is no theory that could help predict adequately crystallization conditions. Quite often,
the classical nucleation theory (CNT) is employed to give a (physical) rendition of protein crystal
nucleation process. While providing a logical explanation of the fluctuation-based mechanism and the
origin of nucleation barrier, CNT fails to predict correctly nucleation rates. In some cases, the deviations
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are of many orders of magnitude, e.g., [2]. In this work, applying microfluidics technologies, localized
DC electric field, and gel crystallization, the authors studied the spatial and temporal location of the
nucleation event. They used a confinement effect coupled to an external localized DC electric field to
evoke a desired nucleation and growth of lysozyme crystals, in 20 mg/mL lysozyme, 0.7 M NaCl in
agarose gel 1%.

A reason for the inadequacy between some experiments and the CNT could be the uncertainty in
determining the energy of the interface arising between the new phase and the mother phase—interface
energy variation of only 10% can alter the nucleation rate substantially because it depends exponentially
on the nucleation energy barrier, which in turn is determined by the interface free energy in power
three. The issue with CNT lies in the assumption that an emerging nucleus already has the order and
density of the bulk crystal. The interface is described as a sharp surface with a specific (per unit area)
free energy, usually not available from direct measurements. However, Wölk et al. [3] have shown that
in cases for which CNT was devised originally, such as homogeneous nucleation of water droplets,
a simple empirical modification to the CNT-nucleation rate (expressed by Becker–Doering formula)
yields a robust function for predicting water nucleation rates over broad ranges of temperature
and supersaturation.

The so-called two-step nucleation mechanism (TSNM) denies the simultaneous densification
and ordering during a single nucleation event. While preserving the CNT basic concept for a
fluctuation-based nucleation mechanism, TSNM assumes nucleation initiation via an intermediate
condensed liquid appearing in the bulk solution. Being only densified, the intermediate phase
preserves some similarity to the mother phase. Therefore, the phase-transition energy barrier is lowered
bellow the one needed for direct transition mother-phase-to-crystal occurring via the CNT mechanism.
The second step in TSNM is the formation of crystal nuclei inside the highly-concentrated regions.
Thus, TSNM resembles the Ostwald’s rule of stages, which stipulates that a thermodynamically
less-stable phase appears first, then a polymorphic transition toward a stable phase occurs. Ten Wolde
and Frenkel [4] have predicted theoretically the existence of amorphous precursors that have been
further confirmed experimentally by Vivares et al. [5], Sauter et al. [6], and Schubert et al. [7]. Sleutel
and Van Driessche [8] have observed a non-classical nucleation for the 3D liquid-to-crystal transition of
glucose isomerase—local increase in density and crystallinity do not occur simultaneously, but rather
sequentially. They have demonstrated that at high concentrations (~100 mg/mL), glucose isomerase
can form mesoscopic liquid-like aggregates (the molecules in them retain enough mobility), which
are potential precursors of crystalline clusters. These aggregates are stable with respect to the
parent liquid, and metastable compared with the crystalline phase. In contrast, glucose isomerase
2D crystal nucleation proceeds classically [9] and they proved the existence of a critical crystal
size. They also observed that the interior of all clusters is in the crystalline state and the cluster
dynamics are determined by single molecular attachment and detachment events. Whitelam presents
a molecular model designed to study crystallization in the presence and absence of amorphous
intermediates [10]. Based on computer simulation, he suggests tuning the relative strengths of
the specific and nonspecific interactions. Thus, the relative efficiencies of the various pathways
leading towards the final crystalline state have been studied. Most recently, direct transition electron
microscopic observations of Yamazaki et al. [11] have suggested a significant departure from the initial
TSNM assumption. The authors have never observed formation of crystalline phases inside amorphous
solid particles consisting of lysozyme molecules, which are like those previously assumed to consist of
a dense liquid.

Although governed by physical laws established previously for small molecule crystallization,
protein crystal nucleation is an extremely complex process. The complexity arises from the subtle
interplay between process physics and biochemistry. It is the large size of the protein molecules and
their highly inhomogeneous and patchy surface [12] that make the molecular-kinetic mechanism
of protein crystal nucleation so specific. Protein crystal nucleation rate is reduced by a biochemical
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constraint associated with the strict selection of crystalline bonds. Based on experiments, this paper
differentiates physical from biochemical protein crystal nucleation aspects.

2. Results and Discussion

2.1. Experimental Results

Any attempt to formulate accurate predictions by amending and overcoming CNT limitations
should rest upon interpretation of some basic experimental observations. For instance, experimental
data show that nuclei number density (n) of a new phase (crystals, droplets) depends simultaneously
on both time (t) and supersaturation (∆µ), i.e., n = n(t, ∆µ). S-shaped dependences of n vs. t at constant
supersaturation have been known to cause electrochemical new-phase nucleation for a long time
e.g., [13,14]. But they remained unelucidated [15] until recently, when it was shown that they obey
logistic functional dependence [16]. The same function also governs insulin crystal nucleation—large
amounts of data for which can be found in [17]. Using custom-made quasi-two-dimensional all-glass
cells with intentionally introduced air bubbles, n vs. t dependences were measured in this study
simultaneously at four typical places: in solution bulk, at the glass support, at the air/solution interface,
and at the three-phase boundary solution/glass/air. Stationary nucleation rates were determined from
the linear parts of the corresponding plots, and energy barriers for nucleus formation and nucleus sizes
were estimated. By simply focusing the microscope on the upper glass plate of the cell, heterogeneous
on-glass crystal nucleation is differentiated from the one in the bulk solution. It is also argued that
the latter proceeds heterogeneously, on some (unknown) foreign particles of biological origin. Seven
different supersaturations have been studied with BioChemika-insulin, showing that crystal nucleation
in bulk solution prevails greatly [17].

Using digitalized original experimental data from [14,18], logistic dependences (with very high
goodness of fit, R2) are presented in Figures 1 and 2. Such time dependence has also been established
for bovine β-lactoglobulin crystal nucleation which proceeds by a TSNM [6]. Good logistic fits of
insulin crystal nucleation data for seven different supersaturations are shown in Figure 3, where
appropriate (supersaturation dependent) parameters are used. The relations, showing the degrees to
which saturated crystal-nuclei number densities (ns) are neared, (n/ns), are plotted vs. t/tp (using
Equation (2); here tp is the time for reaching ns; tp = 2tc, and tc is the time when the half of ns is reached
(namely the mid-point of the corresponding sinusoid). Plots in Figure 4a are for bulk insulin crystal
nucleation, and in Figure 4b—for on-glass crystal nucleation. This issue will be considered below.
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In conclusion, being common for both small inorganic molecules and large bio-molecules,
the S-shaped dependences of nuclei number densities on time underline a common physical aspect of
the nucleation processes.

2.2. Logistic Time Dependence of Protein and Small Molecule Crystal Nucleation

The fluctuation-based concept of CNT supposes that a new distribution of larger clusters starts
replacing the equilibrium one immediately after establishing supersaturation in the system. Since
the larger the cluster is, the longer it takes for it to emerge, the critically sized cluster should appear
the latest. Importantly, the nucleus is the cluster of maximum energy and minimum concentration.
Therefore, many subcritical clusters, smaller than the critical nucleus by a single molecule only,
are formed in the meantime. However, the rearrangement of cluster size distribution does not end
with the emergence of the very first critical cluster. Accommodation of the supersaturated system
state continues gradually, leading to an enhanced supply of nuclei. Thus, the nucleation rate increases
throughout the initial non-steady-state nucleation period.

As per definition, the momentary nucleation rate (dn/dt) during the initial non-steady-state
nucleation period, i.e., the rate at any point of the n vs. t graph, is given by the number (n) of nuclei
formed in a unit volume (1 cm3) divided by the (infinitesimally short) nucleation time (t). Denoting the
frequency of molecule attachments leading to formation of nuclei by k (s−1), gives dn/dt = kn. Here,
the attachment frequency k is defined as the frequency of molecule attachments to clusters which are
smaller than the critical nucleus by a single molecule, minus the frequency of molecule detachments.

The attachment frequency k depends on supersaturation, which, however, remains constant
during the whole nucleation process. The reason is that the extremely small nucleus volume (typically
about 10−19 cm3) and nucleation per se does not change the overall supersaturation—even during
the most intensive nucleation (e.g., n approaching 106 cm−3). Thus, beginning with a single nucleus,
the nucleation process advances in an exponential manner with time. Nonetheless, no unlimited
nuclei augmentation is physically feasible. Experimental results show that after a rapid initial increase,
the nucleation process gradually decelerates to an almost constant nucleation rate up to reaching
saturated nuclei number densities (ns) in the plateau regions of the n vs. t dependences (Figure 3).
Nucleation rate changes have been attributed [16] to two retardation factors acting simultaneously for
heterogeneous nucleation (different for homogeneous nucleation).

A basic assumption of CNT is the supposition of continuous cluster size changes, which is a good
approximation to reality only for large critical clusters. The consideration presented here does not
suffer from such a limitation—irrespective of the mechanism involved, either CNT or TSNM, it is
capable of accounting for discrete cluster size changes as well.

2.2.1. Heterogeneous Nucleation

During solution crystallization, heterogeneous nucleation is the pervasive process. It is the energy
barrier that makes it the preferred nucleation process—heterogeneous nucleation energy barrier is
only a fraction of the energy barrier of homogenous nucleation. Two nucleation retardation factors
acting simultaneously during heterogeneous nucleation have been anticipated in [16]: (1) occupation
of nucleation-active particles and/or centers (generally known as nucleants), associated with the
nucleation process itself; and (2) appearance of nucleation exclusion zones (NEZ) formed around
growing nuclei. NEZ gradually engulf some of the active nucleants, such that are situated close
enough to the formed nuclei, lie in the arising NEZ and are deactivated. This process starts soon after
nucleation onset. However, as seen, NEZ do not change the overall system supersaturation.
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Accounting for the two retardation factors acting in parallel, and under constant supersaturation,
the rate of new-phase heterogeneous nucleation (dn/dt) is expressed by the following single first-order
non-linear ordinary differential equation [16]:

dn
dt

= kn
(

1− n
ns

)
(1)

Depending on the k-values, nucleation processes can be categorized into the following groups:
(1) fast kinetics, e.g., electrochemical nucleation, characterized by very large k-values (of orders 103 to
104 (s−1)); (2) slow kinetics, e.g., protein crystal nucleation (insulin, bovine β-lactoglobulin), k-values
of order 10−3 to 10−4 (s−1); and (3) extremely slow kinetics, e.g., crystallization of cordierite glass,
k ≈ 10−5 (s−1); see in [16].

Integration of Equation (1) gives [16]:

n/ns = 1/[1 + exp[(−k(t − tc)] (2)

In fact, Equation (1) is a special case of Bernoulli differential equation. Substituting the
dimensionless functions y(x) = n/ns and x = k(t − tc) in it, and with tc = const. we have:

dy/dx = (n/ns)[(ns − n)/ns] = y(x)[1 − y(x)] (3)

The solution of Equation (3) is the standard logistic function:

y(x) = exp (x)/[exp (x) + C]
f (x) = e x e x + C {\displaystyle f(x) = {\frac {eˆ{x}}{eˆ{x} + C}}}

(4)

With constant of integration C = 1 {\displaystyle C = 1} C = 1 , this gives the logistic curve
definition: y(x) = exp (x)/[exp (x) + 1] = 1/[1 + exp (−x)], which is Equation (2).

Equation (1) shows that the maximum nucleation rate is reached when nucleation acceleration
and deceleration tendencies equilibrate, at time tc, when n = ns/2:

(dn/dt)max = kns/4 (5)

which is the (quasi-)stationary nucleation rate, mentioned above.

Unambiguity of the Logistic Nucleation Time-Dependence

Figures 1 and 2 exemplify the high goodness (R2 > 0.99) of logistic plots. Considered from a
physical perspective (as presented above), the good fit of experimental n/ns vs. t/tc data for insulin
crystal nucleation (Figure 4a,b) shows more stringently the logistic nucleation time-dependence.
Firstly, recalling that n = ns when t = 2tc, x = k (t − tc) results in xns = ktc = const., this explains the
self-adjustment between k and tc occurring for all supersaturations. Secondly, the (orange) logistic
curves in Figure 4a,b result from the logistic equation with 2ktc = 10 (see the inserts in the figures).
Hence, these are standard logistic functional plots with ±ktc = 5. Due to the function exponential
nature, the standard logistic function obtains its real values in the range of x = ± 5 on both sides of its
midpoint (Figure 5); in the case under consideration, the latter being at ns/2. It is logical to conclude
that an x-value from −6 to −5 can be attributed to the so-called nucleation induction time.
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Further, an almost linear increase of ns on ∆µ is observed for insulin (BioChemika, ≥85% (GE),
~24 IU/mg) crystal nucleation in bulk solution, Figure 6. However, it is highly improbable that sets of
nucleants possessing nucleation-promoting abilities which correspond exactly to each supersaturation
used are present. It is rather a situation where lesser nucleants are engulfed by NEZ (and thus,
deactivated) at higher supersaturations.
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2.2.2. Rate of Homogeneous Nucleation

Notwithstanding the substantially higher supersaturation required, homogeneous nucleation
is indispensable in systems without nucleants. Removal of all nucleants from a protein solution
is not an easy task, albeit achievable in the vapor phase. For instance, liquid droplets nucleate
homogeneously by rapidly expanding and cooling exceptionally pure water vapors. An exponential
increase in water droplet nucleation rate has been measured by means of different techniques [19].
However, homogeneous nucleation could also pose an issue because no unlimited nuclei augmentation
is physically feasible. An evident obstacle for observing nucleation rate limits may be the uncountable
number of the nucleated droplets. Additional experimental work is needed to compare nucleation
rate measurement data to theoretical considerations. Until then, a theoretical approach to the issue is
worth attempting.

Like the heterogeneous case, homogeneous nucleation should be a self-limiting process. Again,
there are two factors decelerating it. The first one is like the one in heterogeneous nucleation,
namely, increase in the number of NEZ appearing around some nuclei and diminishing the volume
where nucleation can still occur. The second decelerating factor, namely, a drop in system’s overall
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supersaturation, is different. It is enacted only during prolonged nuclei growth and consumption
of a noticeable molecule amount. Furthermore, while the two retardation factors act in parallel in a
heterogeneous nucleation, in a homogeneous process they act consecutively, being interrupted by an
intermediate period. This constitutes the substantial difference between both processes.

Effect of NEZ

As already mentioned (see Section 2.2), the overall supersaturation remains constant initially.
Thus, the probability (n/α) for NEZ appearance, where α (s) is the time needed for the formation of
the very first NEZ, also remains constant. The initial nucleation rate (dn/dt)init can be expressed as:

(dn/dt)init = K’n (6)

where K (s−1) 6= k and K’ = K − 1/α are new coefficients.
Preserving the exponential character during the initial nucleation stage, the graphical n vs. t track

of the homogeneous nucleation is indistinguishable from the corresponding part of the heterogeneous
nucleation curve. However, knowing that merely one decelerating factor is acting, the homogeneous
n vs. t dependence should be steeper and relatively longer.

Effect of Decreasing Supersaturation

Increasing in number, soon or latter, the NEZ start overlapping. This indicates that the first
nucleation decelerating factor is of no importance on the account of the second one—decrease in
system’s overall supersaturation. Intermediately, new nuclei appear in the remaining interstitials
between NEZ, but there is a substantial deceleration in the exponential increase of n. When ∆µ

decreases bellow the nucleation-limiting threshold, n vs. t dependence should reach a plateau,
corresponding to a zero nucleation rate. Supersaturation dependence of nucleation rate is given
by the well-known equation of Volmer. For the second homogeneous nucleation stage, it should be
written as:

(dn/dt)second = Aexp(−∆G*/kBT) = Aexp(−B/∆µ2) (7)

where A is a pre-exponential coefficient which denotes the number of nuclei that appear in a unit
volume (1 cm3) per unit time (1 s); ∆G* is the thermodynamic energy barrier for nucleus formation;
the constant B for homogeneously formed spherical nucleus is B = 16πΩ2γ3/3 (because ∆G* =
16πΩ2γ3/3∆µ2); and Ω is the volume of a crystal building block. Qualitatively, this behavior of
the system gives a S-shaped dependence of n on time elapsed, t. However, despite the different
scenarios involved in heterogeneous and homogeneous nucleation, the exponential functions make
their S-shaped time dependent nuclei number densities indistinguishable.

Equation (7) shows that a symmetric S-shape (logistic) curve may describe the homogeneous
nucleation, only provided ∆µ depends linearly on t, i.e., ∆µ = −st, where −s is the line slope.
Under constant temperature, however, supersaturation decrease results from nuclei growth itself,
making the linear dependence physically infeasible. Since the new-phase particles nucleate at
different time-points, they grow in different sizes and the size difference is amplified due to the
Gibbs-Thomson effect [20]—smaller crystals grow slower than larger crystals; the reason being that
the larger the crystal, the lower the saturation with which it stands in equilibrium. That is why, along
with an increase in number, nucleated crystals accelerate their growth with the time and increase
the rate of supersaturation depletion. In view of the extremely high sensitivity of (dn/dt)second
on ∆µ-value expressed by Equation (7), only the precise function of ∆µ on t (but not its linear
substitute) is meaningful. Thus, in contrast to the symmetric S-shaped (logistic) curve describing
heterogeneous nucleation, a non-symmetric S-shaped curve should describe the n vs. t dependence for
homogeneous nucleation.
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2.3. Biochemical Specificity of the Protein Crystal Nucleation

In proteins, it is only the molecule surface structure that dictates protein ability to bind to partners.
This is attributed to the molecular interactions in protein bulk concealed under amino acid residues
situated on the molecular surface. Because of millions of years of natural selection, physiological
protein-protein bonds are highly specific. Proteins operate within the cellular context with typical
concentrations of up to 300 mg/mL. Therefore, any non-specific inter-protein interaction may be fatal.
It is known that physiological protein-protein bonds result from strong hydrophobic interactions via
which contacting areas occupy relatively large portions on the protein molecule surface.

In contrast, the protein crystal lattice contacts are hydrophilic, polar and smaller in size [21].
Yet again, it is only the molecular surface structure that dictates proteins’ ability to bind to partners in a
crystallization setting. In such a setting, a limited number of discrete patches, that are the only attractive
molecule portions, appear on the protein surface. If supersaturation is extremely high, amorphous
precipitation will occur even under crystallization conditions; such a disordered aggregation is a
result of very strong hydrophobic protein-protein interactions. Therefore, it is logical to assume
that attraction strength between crystallizing protein molecules should be fine-tuned. Attraction
should be large enough to promote crystallization, while not being too large to provoke amorphous
precipitation. This means that also protein crystal lattice contacts are formed by a selection of the most
appropriate patches on the protein molecule surface. Selection preferences have been revealed using
X-ray diffraction data for protein crystal lattice contacts available in Protein Data Bank [21,22].

Strict selection of crystal lattice contacting patches is also evidenced by relatively simple
experiments [23]. Periodically alternated layer-by-layer crystal overgrowth has been observed with
the unique protein couple apo- and holoferritin. Despite the dramatically different core, their surface
structure is identical. Uniform in thickness overlaying crystal layers have been deposited using
equimolar protein concentrations under the same solution conditions, pH-value, CdSO4, and buffer
concentrations. Since no reentrant corners have been observed (Figure 7), those crystals should be
single-crystals composed of alternating apo- and holoferritin layers, rather than poly-crystals. Crystals
of each protein are used as substrates for a sequential in contiguity crystallization of the counterpart
protein in a completely repeatable process. A monocrystalline overgrowth of three to four alternating
layers apo- on holoferritin, and vice versa, was achieved [23]. A clear distinction is allowed as the
layers are of different color (apoferritin crystals are yellowish; holoferritin crystals—reddish-brown).
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In contrast, no homoepitaxial monocrystalline overgrowth is possible with proteins possessing
differing molecule surfaces. Apoferritin crystals have been purposefully introduced in solutions
designed for lysozyme crystallization. No single-crystalline overgrowth, but merely formation of
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poly-crystalline lysozyme-apoferritin aggregates, has been observed [23]. This shows that a molecule
attachment to the protein crystal lattice does not occur at random. It requires selection of the binding
partner. It is worth noting that no binding selection is needed for small-molecule crystallization, e.g.,
by electrodeposition of metal alloys.

Selection of protein-protein patchy interactions has been accounted for by the so-called bond
selection mechanism (BSM) [24]. It assumes that a successful collision between protein molecules,
leading to formation of a crystalline connection, requires not only sufficiently close proximity of the
protein molecules (respectively molecules to clusters), but also their proper spatial orientation. Because
relatively small fractions of molecule surface are occupied by contacting patches, the arising steric
restriction to protein-protein association postpones the nucleation process significantly. Thus, based on
the biochemical specificity of proteins, BSM explains the slow protein crystal nucleation kinetics [25].
Although requiring unusually high supersaturation, it is orders of magnitude slower in comparison to
the process with small molecule substances, e.g., during electrochemical nucleation [13,14]. Recalling
that crystal nucleation rate changes with process stages, one can only compare the (quasi)-stationary
nucleation rates expressed by Equation (5). As seen in Section 2.2.1, k-values determining nucleation
frequency are 6 to 8 orders of magnitude lower for protein crystallization than k-values for small
molecule new-phase nucleation, e.g., electrochemical nucleation (also proceeding in solutions). So,
due to BSM, a much lower attachment frequency (νR*) of molecules to the critical cluster must be in
place in the pre-exponential coefficient of Volmer’s equation:

(dn/dt)st = c1νR*Z exp(−∆G*/kBT) (8)

where c1 is solute concentration, and Z is known as Zeldovich factor.

3. Materials and Methods

Insulin crystal nucleation kinetics was studied via the so-called nucleation and growth separation
principle. Two different insulin sorts, from BioChemika (BioChemika, ≥85% (GE), ~24 IU/mg)
and from SIGMA, Denmark, Lot # 080M1589V, were used under identical crystallization conditions.
BioChemika-insulin was shown to be more prone to crystal nucleation than SIGMA-insulin. Because
more crystals ensure better statistics, BioChemika-insulin was preferred in our studies. Sufficient
details allowing replication of the experimental studies are provided in the original paper [17].

4. Conclusions

The early stages of crystal nucleation dictate crystal polymorph selection, which is of great
interest to the pharmaceutical industry. Unfortunately, our understanding of these stages remains
insufficient [26]. Because of the molecular-scale involved, numerous specifics of nucleation remain
largely unknown. Even with state-of-the-art measurements, it is exceptionally challenging to probe
the processes in real time. Moreover, new-phase embryos are not labeled, making it impossible to
distinguish them in the vast ensemble of constantly growing and decaying clusters of different sizes.
The aim of this paper is to shed some additional light on the problem.

A physical aspect of crystal nucleation is considered from the fluctuation-based perspective
to cover both CNT and TSNM. Logistic functional dependences according to Equations (1) and (2),
symmetric S-shaped curves, characterize the heterogeneous nucleation, while homogeneous nucleation
obeys non-symmetric S-shaped functional dependences. Due to the highly inhomogeneous (patchy)
surface, proteins are characterized by highly directional interactions which postpone substantially
protein crystal nucleation. This is a biochemical constraint imposed on the process. Provided molecule
surface patches enabling crystal lattice formation are known, the so-called BSM hypothesis may
help in offering clues to proper polymorph selection. Suitable crystal polymorphs can be grown by
changing adequately solution conditions (and/or protein molecule surface residues), thus, activating
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or deactivating different surface patches. However, it is worth also noticing that the precipitants used
as crystallizing agents play a specific role [27].
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