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Abstract: Due to the effects of microphase separation and physical dimensions, confinement widely
exists in the multi-component polymer systems (e.g., polymer blends, copolymers) and the polymers
having nanoscale dimensions, such as thin films and nanofibers. Semicrystalline polymers usually
show different crystallization kinetics, crystalline structure and morphology from the bulk when
they are confined in the nanoscale environments; this may dramatically influence the physical
performances of the resulting materials. Therefore, investigations on the crystalline and spherulitic
morphology of semicrystalline polymers in confined systems are essential from both scientific and
technological viewpoints; significant progresses have been achieved in this field in recent years.
In this article, we will review the recent research progresses on the crystalline and spherulitic
morphology of polymers crystallized in the nanoscale confined environments. According to the
types of confined systems, crystalline, spherulitic morphology and morphological evolution of
semicrystalline polymers in the ultrathin films, miscible polymer blends and block copolymers will
be summarized and reviewed.

Keywords: crystalline morphology; confined crystallization; ultrathin film; polymer blend; block
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1. Introduction

Crystalline structure and morphology are key factors determining the physical performances
of semicrystalline polymers. A variety of physical properties of semicrystalline polymers such as
mechanical, thermal and optical properties are drastically influenced by the spherulite size and
overall crystallinity, which are also affected by the types of nucleation, crystal growth rate and
the characteristics of individual folded chains. Confined crystallizations of polymers under specific
environments have recently attracted much attention from the scientific and technological viewpoints.
Confinement of polymer systems can be generally classified into three categories according to
their confined environments, and they are one, two and three dimensions, respectively. Confined
crystallization of polymers has been found in a variety of systems, such as polymer ultrathin films [1–5],
polymer blends [6–10], block copolymers [11–14], polymer droplets [15–17], self-assembled polymer
nanostructures [18–22], polymers segregated inside nanoporous templates [23–29] and polymer
nanocomposites [30–33]. In the past few years, the crystallization of polymers or polymer segments
confined in ultrathin films (thickness <100 nm), miscible polymer blends and block copolymers has
been widely studied for various systems. The unique crystallization kinetics, crystalline morphology,
structure and melting process of polymers confined in such systems have been reviewed in several
papers [34–37].
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Because of the spatial confinement effects, semicrystalline polymers usually show unique and
different spherulitic and crystalline morphology from the bulk state when crystallized in the nanoscale
confined systems. Observation and illustration of the spherulitic and crystalline morphology have been
of fundamental importance in the study of the confined crystallization of semicrystalline polymers.
During the crystallization of polymers in confined systems, spherulitic and crystalline morphology
can be investigated via polarized optical microscopy (POM), atomic force microscopy (AFM) and
transmission electron microscopy (TEM) in the electric diffraction (ED) mode. Among these techniques,
POM has been widely used to observe the spherulitic structure in thick or bulk samples; it is generally
not suitable to observe the morphology in ultrathin films. The measurement of the spherulite growth
rate by POM is simple; yet, its precision and reliability are only for the case with relatively high
crystallization temperature (Tc) where the spherulite growth rate is slow and the nucleation density is
low. AFM is a non-destructive technique and is able to obtain the nanoscale structural information of
film materials both in situ and in real time under different environments. In situ AFM studies give the
opportunity to observe the developing spherulites at a lamellar scale [38]. Real-time AFM has been
shown to be very efficient to image the secondary crystallization in crystalline/amorphous polymer
blends [39]. In particular, tapping-mode (TM-AFM) coupled with a hot stage is suitable for tracing the
crystallization processes of various polymers in a wide range of temperatures [40]. TM-AFM has been
widely employed to observe the crystalline morphology and morphologic evaluation of polymers in
isothermal crystallization, melting and annealing processes. Some quantitative data, such as lamellar
thickness and the lamellar growth rate of semicrystalline polymers, can be obtained by TM-AFM.
However, sometimes, it is hard to assure whether the lamellae are edge-on or flat-on (discussed in
the next section) only from the morphological investigation. Therefore, TEM in ED mode has been
an optional technique to study the lamellar orientation [40]. In summary, researchers have greatly
promoted the understanding of the crystalline morphology, structure and crystallization mechanism
of polymers in the confined systems by these techniques.

In recent years, considerable progresses have been made on the study of the crystalline and
spherulitic morphology of polymers in the nanoscale confined environments. Although several
review papers [34–37,40] have been published recently on the confined crystallization of polymers,
most of these papers are focused on the fractional, confined crystallization kinetics or crystalline
structure. In this review, we mainly focus on the crystalline and spherulitic morphology of polymers
crystallized in the confined environments. On the basis of the types of confinement systems,
crystalline, spherulitic morphology and morphological evolution of semicrystalline polymers or
polymer segments in the ultrathin films, polymer blends and block copolymers are summarized
and discussed in this review, which have been the representative and well-studied systems showing
confined crystallization behavior.

2. Crystalline Morphology of Polymers Confined in Ultrathin Films

Polymer film has been a suitable system to achieve a better understanding of the fundamentals
of confined crystallization. Physical properties of polymers in ultrathin films differ considerably
from those observed in the bulk. For example, the segmental mobility, transporting process, chain
orientation and surface energy at the interface may become more dominant factors in ultrathin films.
This phenomenon requires a better understanding for the industrial applications of polymer films.
When the thickness of film reduces to the lamellar thickness or to a small multiple of it, the anisotropic
surface properties will take effect because the lamellae cannot rotate freely in such a one-dimensional
confinement space. Generally, two preferred orientations are encountered mostly in experiments:
flat-on and edge-on lamellae to the substrate surface [41]. The preferential orientation relative to the
substrate is influenced by polymer-substrate interactions. For most of the systems investigated so far,
lamellae are oriented flat-on to the substrate.

Generally, flat-on lamellae are preferred in the ultrathin films, especially the films with a thickness
of less than 20–30 nm. The edge-on lamellae appear when the film thickness increases. It has been
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demonstrated that the edge-on lamellae are preferred when the film thickness is in the range of
100–200 nm or more [42–44]. The transition of lamellar orientation is usually accompanied by the
morphological change during the crystallization of polymer ultrathin films. Typical morphologies
associated with the edge-on crystals are spherulitic structures, and those with the flat-on crystals
are dendrites or seaweeds [40]. According to Brener et al. [45–47], there are four typical spherulitic
morphologies for polymers crystallized in one-dimensional spatial confinement [48–51], i.e., compact
seaweed (CS), fractal seaweed (FS), compact dendrite (CD) and fractal dendrite (FD), as illustrated
in Figure 1a. To better understand each structure, representative images of these four crystalline
morphologies were selected from the literature and are shown in Figure 1b–e.
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Figure 1. (a) Brener et al.’s morphology diagram for polymer crystallized in one-dimensional spatial
confinement. In this diagram, ∆ in the y axis represents the degree of supercooling, and ε in the x
axis represents the crystalline anisotropy; (b–e) Representative crystalline morphologies observed in
polymer thin films: (b) Compact seaweed (CS); (c) Fractal seaweed (FS); (d) Compact dendrite (CD);
(e) Fractal dendrite (FD) [37]. Copyright 2015. Reproduced with permission from Elsevier Ltd.

The thickness of polymer thin film is a key factor determining its crystalline morphology [37].
On the basis of experimental observations in thin and ultrathin polymer films, the size effects related
to film thickness have been widely investigated in the literature [37,48–58]. When the film thickness
is much larger than 100 nm, regular spherulites similar to those observed in bulk crystallization are
generally formed. Under this condition, crystallization of polymer mainly depends on the surface
nucleation process. Nevertheless, the morphological transition frequently takes place when the film
thickness is decreased to less than 100 nm. Different crystalline morphologies are generally observed
with the reduction of film thickness, as depicted in Figure 1b–e. The formation of such different
crystalline patterns in polymer ultrathin films is attributed to the crystal growth in ultrathin films
being generally a diffusion-controlled process [59,60].

Mareau and Prud’homme [61] have studied the morphologies of poly(ε-caprolactone) (PCL,
1–200 nm) thin films during isothermal crystallization by AFM, as shown in Figure 2. As the film
thickness decreased from 200 down to 120 nm, some branched edge-on lamellae, characteristic of
the spherulites with radial centrosymmetric organization, were observed (Figure 2a,b). In addition,
the size of overgrowths decreased as the film thickness increased. For the PCL film with a thickness
of 30–60 nm (Figure 2c,d), most of the overgrowths were shown in flat-on orientation. Specially,
when the thickness was 30 nm, the overgrowths did not overlap because of the decreased amount of
polymer melt; the radial organization was still present, yet became less obvious (Figure 2d). As the film
thickness further decreased to 15 nm, there was only one layer of PCL lamella with a dendritic pattern,
characteristic of the diffusion-controlled growth of polymer crystals (Figure 2e). As demonstrated
by ED pattern, the flat-on lamellae (without the edge-on lamellae) were exclusively formed under
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these conditions. The width of branches increased with a further decrease of film thickness to 6 nm
(Figure 2f). PCL was not able to crystallize when the film thickness decreased to about 4 nm [58].Crystals 2017, 7, 147  4 of 20 
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Figure 2. Tapping-mode (TM)-AFM height images (20 µm × 20 µm) of poly(ε-caprolactone) (PCL) thin
films crystallized for 24 h at room temperature at a film thickness of: (a) 200; (b) 120; (c) 60; (d) 30; (e) 15;
and (f) 6 nm. Insets show the corresponding electric diffraction (ED) patterns for the selected area [61].
Scale bar: 10 µm. Copyright 2005. Reproduced with permission from the American Chemical Society.

The substrate and polymer/substrate interactions strongly influence the nucleation and resulting
lamellar orientation of polymers in crystallization. Few studies concerning the substrate effects have
been carried out [61,62], because the substrate effects are often coupled with the size effects, and these
two effects are difficult to split. However, it is believed that the interactions between substrate and
polymer should have a profound effect on crystalline morphology. Figure 3 illustrates the different
morphologies of PCL thin films crystallized on the carbon-coated substrates. The AFM images showed
that the carbon-coated substrates gave slightly different, but comparable morphologies as the Si
substrates shown in Figure 2e,f. However, the dendrites grown on carbon-coated substrates had
branches with larger widths, which was perhaps due to the polymer/substrate interactions [61].
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Figure 3. TM-AFM height images of PCL thin films crystallized at room temperature on the
carbon-coated substrates at a film thickness of (a) 15 and (b) 6 nm [61]. Scale bar: 10 µm. Copyright
2005. Reproduced with permission from the American Chemical Society.

Qiao et al. [58] have examined the effects of Tc and molecular weight on the crystalline morphology
of PCL thin film. Because Tc determines the degree of supercooling for polymer in crystallization,
it strongly influences the crystalline morphology of polymer thin films, as illustrated in Figure 1a.
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Figure 4 shows the crystalline morphology of PCL thin film crystallized at different Tc’s. The PCL thin
film formed a compact seaweed morphology at a lower Tc (i.e., a larger supercooling); while exhibiting
fractal-like structure as the Tc increased to 42 ◦C. This coincided with the phase diagram shown in
Figure 1a. The change of crystalline morphologies might be due to the alteration of crystallization
kinetics under different degrees of supercooling [46,63]. Figure 5 shows the AFM images of PCL thin
film having the same thickness, but different molecular weights. The PCL thin film with high molecular
weight showed branches on one side of the stems; yet, that with lower molecular weight exhibited the
branches on both sides of the stems. The reason was still unclear and required further study. A plausible
explanation for this might be due to the high diffusion ability for the low-molecular-weight PCL.
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The presence of residual solvent also affects the crystalline morphology of PCL thin films.
Mareau et al. [51] have investigated the influence of residual tetrahydrofuran (THF) on the
crystallization process of PCL ultrathin films by real-time AFM. The morphology of PCL films
crystallized at 30 ◦C depended strongly on the thermal history, as shown in Figure 6. The films were
previously melted at 64 ◦C, slightly higher than the melting temperature (Tm) of PCL. A continuous
decrease of the width of dendritic branches was observed as the melting period increased (Figure 6),
because the increase of melting period decreased the amount of residual solvent in the spin-coated
films. It was considered that the residual THF could act as a plasticizer, and the decrease of THF
concentration resulted in the lower mobility of PCL chains.
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It is notable that the factors such as the sample preparation condition and external force can
change the lamellar orientation and crystalline morphology of polymer thin films. Interestingly, the
transition of lamellar orientation from edge-on to flat-on could take place when the edge-on lamellae
were created by rubbing or scratching amorphous polymer films using AFM tips [43,64–66], but the
accurate value of transition thickness was still unknown [40]. The readers can refer to [40,66–68] for
more detailed discussion on this aspect.

3. Crystalline Morphology of Polymers Confined in Miscible Blends

Polymer blending has been a simple yet efficient method to prepare high-performance materials.
Depending on the interactions and miscibility of polymer components, polymer blends can be
classified as miscible and immiscible systems. Although the confined crystallization of polymers
has been observed in a few immiscible blends [69–74], it is less common because the phase domains
of polymer components are usually large and range in the scales of several to several tens of
micrometers. However, in the case of miscible polymer blends with one or two crystalline components,
the crystallization kinetics and crystalline morphology of crystalline component will be severally
influenced by the other component; this is more obvious for the crystalline/crystalline polymer
blend systems. Researchers have found that the binary miscible crystalline/crystalline polymers
show the confined and fractional crystallization behavior because of the phase separation and
segregation in different length scales during crystallization process. These crystalline/crystalline
polymer blends included poly(ethylene terephthalate) (PET)/poly(butylene terephthalate) (PBT) [75],
poly(3-hydroxybutyrate) (PHB)/poly(ethylene oxide) (PEO) [76,77], poly(vinylidene fluoride)
(PVDF)/poly(butylene adipate) (PBA) [78–80], PVDF/poly(butylene succinate-co-butylene adipate)
(PBSA) [81], PVDF/PHB [82], PVDF/poly(butylene succinate) (PBS) [83–85], PBS/PEO [86–92],
PBS/PBA [93,94], poly(butylene adipate-co-butylene succinate) (PBAS)/PEO [95], poly(ethylene
succinate) (PES)/PEO [96], PLLA/poly(oxymethylene) [97,98], and so on. Expect for the miscible
blends with one or two crystalline homopolymers, the miscible copolymer/copolymer blends having
crystalline components or blocks could also show the confined crystallization behavior [99,100].

Crystalline/crystalline miscible polymer blends are able to exhibit a wide variety of morphologies
depending on the temperature. When the blend is cooling from the melt, the polymer component
having high Tc and Tm will crystallize first, where the low-Tm component acts as an amorphous
phase. Crystallization of the high-Tm component will lead to the phase separation of these two
components, and the low-Tm component can reside in the interlamellar, interfibrillar or interspherulitic
regions of the crystallized high-Tm component. These interlamellar, interfibrillar or interspherulitic
environments will exert diversified confinement effects on the following crystallization of the low-Tm

component. The low-Tm component will show the different crystallizabilities when segregated in
different environments; this leads to the multistage and fractional crystallizations of the low-Tm

polymer component [78,79,81,84,87,88,90,91,93–95]. Therefore, the crystalline/crystalline miscible
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polymer blends usually exhibit much more complex morphologic features. We will focus on the
crystalline and spherulitic morphology of binary crystalline/crystalline miscible polymer blends in
this section.

PBS/PEO blend is a well-studied miscible blend pair showing the confined and fractional
crystallization behavior. Effects of blend composition, crystallization conditions of the high-Tm PBS
component and the molecular weights of the low-Tm PEO component on the fractional crystallization
kinetics and crystalline morphology of PEO have been symmetrically studied by He et al. and our
group [87,88,90,91]. Figure 7 shows the DSC cooling curves of PBS/PEO 60/40 blends with different
PEO molecular weights after the isothermal crystallization of PBS component at different Tc’s (Tc,PBS’s).
The PEO component in PBS/PEO blend with a medium molecular weight (20 kg/mol) of PEO
exhibited fractional crystallization and crystallized under an extremely large supercooling when the
PBS component was crystallized at a high Tc (e.g., >80 ◦C). However, fractional crystallization of
the PEO component in the PBS/PEO blend gradually disappeared as the Tc of the PBS component
decreased (Figure 7b) [90]. As indicated by the results of small-angle X-ray scattering (SAXS), the
long period of PBS crystals increased after blending with PEO at a high Tc of the PBS component;
yet, it changed little when the Tc of PBS component is low. This indicated that the segregation of
PEO in the PBS phase was strongly influenced by the crystallization conditions of PBS. A high Tc

of the PBS component facilitated the segregation of PEO within the interlamellar regions of PBS
crystals, which exerted a stronger confinement effect on the following crystallization of the PEO
component. Furthermore, the fractional crystallization of the PEO component in the PBS/PEO blend
was dramatically depressed as the molecular weight of PEG was increased to 100 kg/mol or decreased
to 2 kg/mol [91].
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Figure 7. DSC cooling curves of poly(butylene succinate) (PBS)/poly(ethylene oxide) (PEO) 60/40
blends after the isothermal crystallization of the PBS component at different temperatures. Molecular
weights of PEO are 2, 20 and 100 kg/mol in (a–c), respectively. The blends were first melted at 150 ◦C
for 2 min and then cooled to Tc,PBS at 100 ◦C/min and held for sufficient time for the crystallization of
the PBS component. The sample was then cooled to −50 ◦C at 10 ◦C/min to detect the crystallization
of the PEO component [90,91]. Copyright 2013. Reproduced with permission from John Wiley & Sons.

Confined crystallization behavior was also reported for the PVDF/PBA [79,80] and
PVDF/PBS [84,85] crystalline/crystalline miscible blends. Yang et al. systematically investigated the
fractional crystallization kinetics, crystalline morphology and polymorphic structure of PVDF/PBA
blends [79,80]. In the PVDF/PBA blends, a small amount of PVDF could act as the nucleating agent
and accelerate the crystallization of the PBA component; while a large amount of PVDF hindered
the crystallization of PBA due to the confinement effects. PBA is a typical polymorphic polymer,
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and it can form different crystal modifications with varying Tc’s. A higher Tc favors the formation
of thermodynamically-stable α polymorph; yet, a lower Tc facilitates the growth of the metastable
β polymorph. Interestingly, the polymorphic structure of PBA could be regulated upon blending
with PVDF. The presence of PVDF facilitated PBA to form the thermally more stable α crystals
and also accelerated the phase transition from β to α crystals of PBA during the annealing process
(48 ◦C) [79]. For the PVDF/PBA blends with a fixed composition, further investigations of Yang et al.
also demonstrated that the polymorphic crystalline structure of the PBA component was influenced
by the crystallization conditions of PVDF component; this may account for the different segregation
areas of the PBA component during the crystallization of PVDF [80]. For a certain PVDF/PBA blend, a
higher Tc of PVDF was favorable for the fractional crystallization of PBA component, which tended to
segregate in the interlamellar regions of PVDF crystals under these conditions; this was similar to the
case of the PBS/PEO blend [90]. Interestingly, a lower Tc (e.g., 80 ◦C) of the PVDF component facilitated
the formation of PBA α crystals in both the isothermal and non-isothermal melt crystallizations and
also favored the β-to-α phase transition of PBA during annealing at elevated temperatures. However,
PBA showed faster enzymatic degradation in the PVDF/PBA blends with a lower Tc of the PVDF
component, attributable to the preferential formation of α crystals under these conditions. This study
has provided a new method to control the crystal modification and physical properties of polymorphic
PBA in their miscible blend systems [80].

In the PVDF/PBS blend, the preexisting PVDF crystal is not a strong nucleator for the following
of PBS; thus, the PBS nuclei and crystals can grow relatively slow in the scaffold of PVDF spherulites.
Therefore, it is possible to observe the detailed morphological evolution for the confined growth
of PBS crystals in the spherulitic matrix of PVDF. Wang et al. [84] have investigated the crystalline
morphology of PVDF/PBS blends crystallized at different conditions, as shown in Figure 8. During the
crystallization of PVDF at 155 ◦C, the PBS component was in the molten state, and the PVDF component
formed large spherulites (Figure 8a). After the complete crystallization of the PVDF component, the
temperature was decreased to 80 ◦C for the crystallization of the PBS component. As shown in
Figure 8b–d, several crystallized PBS domains were found to nucleate and grew continuously in the
preexisting PVDF spherulites until the domains impinged on each other. Crystallization of PBS did not
change the extinction feature of the preexisting PVDF spherulites, implying that the PBS component
crystallized in the lamellar crystals with the same orientation as PVDF.
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Reproduced with permission from the American Chemical Society.

PBS/PBA blend is another miscible system showing the confined and fractional crystallization
behavior, in which both components have similar chemical structures and are biodegradable [94].
Fractional crystallization of PBA component occurring in the PBS/PBA blends depended strongly on
the content and Tc of the PBS component; this was related to the distribution of PBA in the PBS phase.
Crystallization of PBA was suppressed in the PBA/PBS blend, due to the physical confinement effects
of PBS crystals. According to the morphological observation, Yang et al. have found that the spherulite
growth direction of PBA was influenced by that of PBS in the PBS/PBA blends [94]. Figure 9 shows
the POM micrographs of PBS/PBA 50/50 blends in the two-step crystallization process. After the
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complete crystallization of PBS at 60 ◦C, the spherulites of PBS occupied the whole space (Figure 9a).
After cooling from 60 down to 40 ◦C, PBA began to nucleate inside the PBS spherulites (Figure 9b–d),
leading to the enhanced brightness due to the birefringence of PBA spherulites. Similar phenomena
have also been observed in the PBS/PEO [89] and PBAS/PEO blends [95]. As shown in Figure 9, PBA
cannot form its own spherulites in crystallization, and the crystallization of PBA did not change the
original shape of preexisting PBS spherulites, indicating that the PBA lamellae probably grew along
the PBS ones.
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As discussed in the previous section, semicrystalline polymers generally show different
crystalline and spherulitic morphologies when crystallized in the ultrathin films. Thus, it is
naturally expected that the miscible polymer blends will show a more complicated morphology
during crystallization in the ultrathin films. Reports on the crystallization of polymer blends in
ultrathin films are few; just the crystallization behavior and morphology of several blend systems
such as PEO/poly(methyl methacrylate) (PMMA) [101,102], PCL/poly(vinyl chloride) (PVC) [103],
PLLA/PHB [104], PLLA/PBA [105,106] and PLLA/poly(D-lactic acid) (PDLA) blends [107–109] in
ultrathin films have been reported in the literature. Among these blend systems, PLLA/PDLA blend
is a unique and interesting system because these two isotactic polyenantiomers, PLLA and PDLA,
can form stereocomplexes in their blends [110,111]. As mentioned in the previous section, PLLA and
PDLA are typical chiral polymers, and their crystalline morphologies are dependent on the chirality
during crystallization in the ultrathin films. Therefore, the crystalline morphology of PLLA/PDLA
ultrathin film is also sensitive to the chirality.

Prud’homme and coworkers [107] have studied the crystalline morphology of PLLA/PDLA blend
in ultrathin film. The overall crystal shape strongly depended on the ratio of two polyenantiomers in
the blends, film thickness and Tc. Figure 10 shows the optical micrographs of PLLA/PDLA blended
ultrathin films (thickness ~20 nm) with different blend compositions crystallized at 200 ◦C. The growth
tips in PLLA/PDLA non-equivalent blends were triangular (Figure 10a–d,g); yet those in equivalent
blends were hexagonal (Figure 10f). Interestingly, the crystalline curvature direction of PLLA/PDLA
blends in ultrathin films was influenced by the chirality of the rich component. For the PLLA-rich
PLLA/PDLA blends, the sense of curvature was always anticlockwise (Figure 10b–d). However, the
sense of curvature became clockwise for the PDLA-rich blends (Figure 10g). For the PLLA/PDLA
blend with 60% of PLLA, the dendritic crystals having nearly a triangular shape and no curvature were
observed after crystallization (Figure 10e). As the PLLA content increased to 75%, the morphology of
crystals changed to curved dendrite (Figure 10d). The curved dendrites became less branched, and the
radius of curvature increased with the further increase of PLLA content (Figure 10a–c).
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Prud’homme and coworkers [108] have studied the effects of film thickness on the morphology of
PLLA/PDLA blends (PLLA content = 75%) during crystallization at 200 ◦C. The dendritic crystals
became more compact as the film thickness increased. Crystalline lamellae bent anticlockwise when
the film thickness was between 16 and 30 nm. Interestingly, the triangular dendrites packed more
densely and showed no curvature when the film thickness was 40 nm. The blend formed non-dendritic
single crystals when the film thickness was increased to 50 nm. In addition, they have also investigated
the crystalline morphology of PLLA/PDLA blended ultrathin film (PLLA content = 25%; thickness =
20 nm) crystallized at different Tc’s [108]. The morphology of this blend transformed from dendrite
to seaweed with decreasing Tc. It was proposed that the curvature of stereocomplex lamellae was
ascribed to the unequal amount of PLLA and PDLA segments at the crystal growth front, creating an
unbalanced mechanical stress at the chain folding surfaces that could be released by the curvature of
the growth tip.

4. Crystalline Morphology of Polymer Segments Confined in Block Copolymers

Block copolymers can self-assemble into a diversity of ordered structures with nanoscale
periodicities via microphase separation. Their structures can be controlled by changing the composition
of block copolymer or the segregation strength between different blocks. Crystallization can be
confined within the microdomains of copolymer for strongly segregated systems, or it can drive the
structure formation for weakly segregated melts or homogeneous systems. This makes the crystallizable
block copolymers representative systems having confined crystallization behavior, especially in the
strong segregation regime [52]. Confined crystallization has been widely observed in the diblock
copolymers having double crystalline blocks, such as PEO-b-PCL [112–116], PLLA-b-PEO [117–122],
PLLA-b-PCL [123–125], poly(p-dioxanone) (PPDX)-b-PCL [126–128], polyolefin-based block
copolymers [129–135], and so on. The confined crystallization kinetics and crystalline morphology of
such block copolymers have been extensively studied.

The crystalline morphology of diblock copolymers having double crystalline blocks depended
on the segregation strength between the blocks and their copolymer composition. In addition,
the order-disorder transition temperature, Tc and glass-transition temperature (Tg) of each block
also influenced the final crystalline morphology of the block copolymer. In the crystallization of
block copolymers having double crystalline blocks, the high-Tc block crystallizes first and forms
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spherulites when cooled from the melt; during which the low-Tc block acts as amorphous chains and
segregates into the interlamellar regions of the high-Tc block. Upon the further cooling process, the
low-Tc block crystallizes under spatial confinement provided by the crystalline lamellae of high-Tc

block [37]. This case is somewhat similar to the factional and confined crystallization occurring in the
crystalline/crystalline binary miscible blends discussed in the previous section. However, the confined
effect of high-Tc crystalline lamellae on the crystallization of the low-Tc component is usually more
significant in the block copolymers because the blocks are covalently linked. Müller and coworkers
have done many works on the confined crystallization and morphology of double crystalline block
copolymers; research progresses in this area have been summarized in the reviews of Müller and
coworkers [37,136].

In this section, we use the biodegradable or biocompatible double crystalline block copolymers
such as PCL-b-PEO, PLLA-b-PEO and PLLA-b-PCL as examples to address the crystallization and
crystalline morphology of polymer segments confined in block copolymers. PCL, PEO and PLA
are all biocompatible polymers; their block copolymers exhibit drug permeability and degradability
and have been utilized for a wide range of medical applications. Both the drug permeability and
biodegradability of these block copolymers depend on their crystallinity, crystalline structure and
morphology, which are directly related to their practical applications.

Jiang et al. [112] have studied the crystallization and morphology of PEO-b-PCL diblock
copolymers. In these block copolymers, the two blocks have similar Tc and Tm; therefore, they
can crystallize simultaneous under the same Tc. However, the crystallization rates of two blocks
could be tuned by their weight fractions. PEO-b-PCL diblock copolymers formed the ring-banded
spherulites, which were absent in the crystallization of PEO and PCL homopolymers. He et al. [114]
have found that the PEO-b-PCL diblock copolymers with a PCL mass fraction of 50% formed a
unique crystal morphology. At the beginning, many PCL spherulites were generated and grew slowly.
PEO crystals were then nucleated on the PCL spherulites and grew rapidly to form as the outer
portion of the concentric spherulites. They further studied the morphology of PEO-b-PCL diblock
copolymers with different compositions [115], as shown in Figure 11. When the weight fraction of
PCL block was 16–36% and 56–87%, only the spherulites of PEO and PCL were observed, respectively.
Similarly, the PEO-b-PCL diblock copolymers with a PCL weight fraction of 43% and 50% formed the
concentric spherulites. They proposed that the effect of PCL crystals on the nucleation of the PEO
block might be negligible, because the crystal structures of PCL and PEO were different. PEO crystals
might be nucleated on the same nuclei for PCL spherulites, leading to the formation of the unique
concentric spherulites.

Different from the above-mentioned PEO-b-PCL copolymers, the two blocks of PLLA-b-PEO
copolymers have much different Tc’s and Tm’s. Therefore, the orders of crystallization could be well
tuned in PLLA-b-PEO copolymers by altering the crystallization conditions. Sun et al. [117] have
studied the crystallization behavior, structural development and morphology evolution in a series
of PLLA-b-PEO diblock copolymers. PLLA-b-PEO diblock copolymers could form spherulites with
banded textures and single crystals with an abundance of screw dislocations. Yang et al. [122] have
studied the confined crystallization behavior of PLLA-b-PEO copolymers. They crystallized the block
copolymers by two steps: the PLLA block crystallized fully at 110 ◦C in the first step; then the PEO
block crystallized by cooling to 30 ◦C in the next step. During the crystallization of the PLLA block, the
amorphous PEO chains would segregate in the different regions relative to the crystalline lamellae of
PLLA crystals, leading to the confined crystallization of PEO in the further cooling process. POM and
AFM results indicated that the PEO block crystallized in the multi-length scales of amorphous regions
confined by PLLA crystals. The PEO block could crystallize in both interlamellar and interfibrillar
regions of PLLA crystals; the subsequent crystallization of PEO block did not alter the spherulitic
morphology of PLLA formed in the first step of crystallization.
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Castillo et al. [125] have investigated the crystallization and morphology of PLLA-b-PCL diblock
copolymers. Overall crystallization rates and spherulitic growth rates of the PLLA block decreased
with increasing PCL content, because the PCL block acted as a diluent in the crystallization of the
PLLA block. PLLA blocks can crystallize in a wide composition range with a spherulitic morphology;
PCL blocks crystallized within the previously formed PLLA spherulites. The Maltese cross-extinction
patterns tended to become blurry with increasing the PCL fraction. When the weight fraction of the PCL
block was 90%, the axialites formed during the isothermal crystallization of the PLLA block. However,
after the PCL block was crystallized at 30 ◦C, the magnitude of birefringence increased drastically in
the spherulites; while the morphology and superstructure of previously formed spherulites of PLLA
changed little. Although the two blocks were partially miscible in PLLA-b-PCL copolymer, the PCL
block underwent fractional crystallization for the block copolymers with the PCL fraction between
40% and 19%. Factional crystallization of the PCL block was induced by the hard confinement of PLLA
amorphous and crystalline regions.

In addition, the block copolymers can exhibit a more complicated morphology during
crystallization in thin films. Epitaxial crystallization has been used to control the crystallization
and morphology of block copolymers in thin films to acquire the oriented crystals and microdomains.
De Rosa and coworkers have done many excellent works in this area [137–140]. For example,
they have achieved the highly-orientated crystals and microdomains from the polyethylene
(PE)-b-poly(ethylene-alt-propylene)-b-PE triblock copolymers through epitaxial crystallization, in
which the long-range orientation of the crystal unit cell induced the alignment of microdomains [137].
Similarly, they have successfully prepared the epitaxially-crystallized samples of PE-b-syndiotactic
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polypropylene (sPP) copolymers onto the p-terphenyl crystals to control the crystallizations of both
blocks. The epitaxial crystallization generated oriented overgrowths of sPP and PE crystals, with an
ordered single orientation of sPP lamellae and a double orientation of PE lamellae [139].

5. Summary

In this review, we presented the research progress on the crystalline and spherulitic morphology
of polymers crystallized in the confined environments. The main emphasis was placed on the
introduction of unique crystallization kinetics, crystalline and spherulitic morphology of polymers and
polymer segments in ultrathin films, miscible polymer blends and block copolymers. For the polymer
ultrathin films, the crystalline morphology was strongly influenced by the film thickness, crystallization
condition and molecular weight of the polymers used. In the miscible crystalline/crystalline polymer
blends, the low-Tm polymer component usually showed the fractional and confined crystallization due
to its distribution into the different regions (interspherulitic, interfibrillar and interlamellar regions)
of the high-Tm component. Fractional and confined crystallization of the low-Tm component could
be tuned by the blend composition, molecular weight and crystallization conditions of the high-Tm

component, which became more significant when the degree of interlamellar segregation was increased.
For the block copolymers having double crystalline blocks, the fractional and confined crystallization of
the low-Tm block was prevailing, because the low-Tm block tended to segregate into the interlamellar
regions of the high-Tm block.

Significant progresses have been achieved in the crystallization kinetics, crystalline and spherulitic
morphology of polymers crystallized in the confined systems in the last two decades; this is of
fundamental importance for further understanding the unique crystallization behavior of polymers in
the nanoscale environments. However, we emphasize that the morphology, crystallization kinetics,
crystalline structure and structural changes are still the main aspects in the study of the polymer
confined crystallization; these topics are usually not isolated and always connect with each other.
Furthermore, the confined crystallization and morphology of polymer thin films, polymer blends
and block copolymers in practical processing, as well as the relationships between the crystalline
morphology and physical properties for the confined polymer systems are key aspects that require
further and in-depth investigations, because this is highly essential for controlling and optimizing the
physical performances of the resulting materials. Summarily, with all of these progresses in recent
years, we anticipate that the research progress on the crystallization and morphology of confined
polymer systems can guide the practical processing of polymer materials with multiple compositions
and hierarchical structures.
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