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Abstract: The elastic properties of a zeolitic metal-azolate framework, Zn(mtz)2 (MAF-7, mtz− = 3-
methyl-1,2,4-triazolate), have been examined from the view point of the first principles calculations
and experiments. Our results demonstrate that the three independent elastic constants of MAF-7
are about 5.0–73.3% higher than those of ZIF-8, though they are isomorphic. The electron-donating
effect of the nitrogen atom at the 2-position in mtz- ring dominantly accounts for such a prominent
difference. The detailed analysis of the full elastic tensors reveals that the volume moduli, shear
moduli, and Poisson’s ratios of MAF-7 are about 3.4% to 20.1%, 3.2% to 20.6%, and −30.3% to
12.3% higher than those of ZIF-8. The underlying structural reasons were discussed to explain the
anisotropic difference of those properties. Moreover, the conclusion deduced from first-principle
calculations was also been verified by nanoindentation and high-pressure synchrotron X-ray
diffraction measurements.
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1. Introduction

Zeolitic metal-azolate frameworks (MAFs), a subclass of porous MOFs, have been attracting
particular attention due to their potential application [1] superior to traditional zeolites in many
fields, such as gas storage/separation [2–4], catalysis [5], sensing, and drug delivery [6,7]. In practical
application, the zeolitic MAFs would experience several rounds of mechanical manufacturing processes.
To maintain the intrinsic properties of zeolitic MAFs during the mechanical manufacturing processes,
their fundamental mechanical properties should be fully understood and, therefore, the study about
the mechanical property has become one of the hottest topics in the field of MAF study. Recently, much
study has revealed that significant difference exists between zeolitic MAFs and zeolites in terms of
mechanical robustness [8–10]. In 2009, Moggach et al. performed high pressure single-crystal X-ray
diffraction studies on (ZIF), Zn(mim)2 (ZIF-8 [11], mim = 2-methylimidazolate), a zeolitic imidazolte
framework, and discovered that the exertion of pressure can increase the accessible surface area
and its absorption performance [12]. A follow-up high-pressure powder X-ray diffraction study
reveals similar results and shows that the hydrostatic behavior of ZIF-8 also strongly depends on the
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size of different pressuretransmitting mediums [13]. Recently, Tan et al. reported a comprehensive
nanoindentation study of ZIFs, and accordingly elaborate the structure-property relationship of its
mechanical property [14]. In 2012, their another work reports the anomalously shear modulus of ZIF-8
one order lower than that of zodalite in magnitude [15].

Nevertheless, all these studies focused on zeolitic imidazolate frameworks (ZIFs), and up to now
the mechanical property of zeolitic triazolate frameworks have not been investigated yet. In this work,
we present a systematic study on the elastic properties of a zeolitic triazolate, Zn(mtz)2 (MAF-7 [16],
mtz = 3-methyl-1,2,4-triazolate), which is isomorphous to ZIF-8. To examine the electronic difference
in elastic properties between 2-methylimidazolate and 3-methyl-1,2,4-triazolate, we performed
first-principles calculations to extract the full elastic tensors of the cubic MAF-7. Our density functional
theory (DFT) results elucidated that, compared with ZIF-8, the trivial electron-donating effect strongly
enhance the mechanical strength of MAF-7, especially in the ability to resist uniaxial and shear stresses.
Moreover, the calculated result was also testified by nanoindentation and synchrotron high-pressure
powder X-ray diffraction experiments.

2. Results and Discussion

MAF-7 is isomorphous to ZIF-8 and crystallizes in the same cubic space group I-43m as reported
by Zhang et al. [16]. In the structure, the Zn2+ ion is tetrahedrally coordinated with the triazolate
ligand to form Zn(mtz)2 open framework with zeolitic sodalite (SOD) architecture. The mtz− ligand
coordinates with the zinc ion via its N atoms on the 2- and 4-positions, and the N on the 1-position
unbonded [16,17]. It should be emphasized the lone pair electrons of the unbonded nitrogen can
donate electron to the adjacent N at the 2-position, and this effect pushes the lone pair electrons of the
coordinated N to bonded with the zinc center more tightly (Figure 1). The experimentally-determined
Zn-N bond length of MAF-7 (1.980(2) Å) is slightly shorter than that of ZIF-8(1.983(3) Å) at same
temperature, confirming the stronger covalent interaction in the former than the latter [17].
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Figure 1. Crystal structures of ZIF-8 and MAF-7. Coordination modes of (a) imidazolate and (b) 1,2,4-
triazolate; framework structures of (c) ZIF-8 and (d) MAF-7. The electron-donating effect is indicated 
by arrows. The yellow surfaces indicate the solvent accessible voids of ZIF-8 and MAF-7 which are 
49.8% and 51.7%, respectively [16]. Color codes used: zinc, red; carbon, grey; nitrogen, blue; hydrogen, 
white. 

The elastic properties of MAF-7 are listed in Table 1. Clearly, the calculated Cij’s satisfy the 
fundamental elastic stability criteria for a cubic crystal, i.e., C11 ˃  |C12|, C11 + 2C12 ˃  0 and C44 ˃  0 [18,19]. 
It is observed that the three independent elastic constants C11, C12, and C44, which represent the 
stiffness of a cubic structure, are 5.0%, 15.8%, and 73.3% larger than those of ZIF-8, indicating the 

Figure 1. Crystal structures of ZIF-8 and MAF-7. Coordination modes of (a) imidazolate and
(b) 1,2,4-triazolate; framework structures of (c) ZIF-8 and (d) MAF-7. The electron-donating effect is
indicated by arrows. The yellow surfaces indicate the solvent accessible voids of ZIF-8 and MAF-7
which are 49.8% and 51.7%, respectively [16]. Color codes used: zinc, red; carbon, grey; nitrogen, blue;
hydrogen, white.

The elastic properties of MAF-7 are listed in Table 1. Clearly, the calculated Cij’s satisfy the
fundamental elastic stability criteria for a cubic crystal, i.e., C11 > |C12|, C11 + 2C12 > 0 and
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C44 > 0 [18,19]. It is observed that the three independent elastic constants C11, C12, and C44, which
represent the stiffness of a cubic structure, are 5.0%, 15.8%, and 73.3% larger than those of ZIF-8,
indicating the overall higher rigidity of MAF-7 than ZIF-8. The larger C12 and C44 values [20] of
MAF-7 result in its significantly different elastic properties compared with ZIF-8 as we shall discuss
below. To further understand the comprehensive elastic properties of MAF-7, we performed the full
tensorial analysis of the elastic constants and extracted the key mechanical index (including anisotropic
Young’s moduli (E), shear moduli (G), and Poisson’s ratios (ν), as listed in Table 1 and displayed in
Figures 2–4) [21]. We will discuss them in details in the following sections.

Table 1. The elastic properties of MAF-7 and ZIF-8 extracted from DFT calculations.

Elastic Properties Framework MAF-7 ZIF-8 [15]

Stiffness coefficient,
Cij (GPa)

C11 11.587 11.038
C12 9.643 8.325
C44 1.635 0.943

Young’s modulus,
E (GPa)

Emax E(111) = 4.659 E(100) = 3.879
E(110) = 4.009 E(110) = 2.953

Emin E(100) = 2.828 E(111) = 2.736

Shear modulus,
G (GPa)

Gmax 1.64 1.36
Gmin 0.97 0.94

Poisson’s ratio, υ
υmax ν < 110, 001 > = 0.64 ν < 110, 110 > = 0.57
υmin ν < 110, 110 > = 0.23 ν < 110, 001 > = 0.33

Anisotropy measure Zener, A (=1 if isotropic) 1.68 0.70
Emax/Emin 1.65 1.42

Bulk modulus K(GPa) 10.29 9.23
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Figure 2. Young’s modulus (E) representation surfaces. (a) 3D and (b) 2D surface extracted from the 
calculated elastic constants. (c,d) The schematic of stresses σ applied along [111], [110], [100] directions, 
corresponding to the maximum, intermediate, and minimum modulus. 

We first focus on Young’s modulus, which represents the stiffness with respect to uniaxial stress. 
The extracted E(100), E(110), and E(111) of MAF-7 are 2.828, 4.009, and 4.659 GPa, respectively. The 
representation 3D and 2D surfaces of E are shown in Figure 2a,b, which indicate that the Young’s 
modulus exhibit strong spatial anisotropy. It can be seen that E reaches the maximum along the <111> 
direction, the body diagonal perpendicular to the SOD six-membered ring. The E surfaces exhibit 

Figure 2. Young’s modulus (E) representation surfaces. (a) 3D and (b) 2D surface extracted from the
calculated elastic constants. (c,d) The schematic of stresses σ applied along [111], [110], [100] directions,
corresponding to the maximum, intermediate, and minimum modulus.
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We first focus on Young’s modulus, which represents the stiffness with respect to uniaxial
stress. The extracted E(100), E(110), and E(111) of MAF-7 are 2.828, 4.009, and 4.659 GPa, respectively.
The representation 3D and 2D surfaces of E are shown in Figure 2a,b, which indicate that the Young’s
modulus exhibit strong spatial anisotropy. It can be seen that E reaches the maximum along the <111>
direction, the body diagonal perpendicular to the SOD six-membered ring. The E surfaces exhibit
subsidences along the cubic axes normal to the SOD four-membered ring, implying that the MAF-7 is
mostly mechanical compliant along the <100> direction. It is notable that the directions of Emax and
Emin of MAF-7 are reverse to those of ZIF-8. In an arbitrary direction [hkl], Young’s modulus of a cubic
system is given in terms of Sij, {E[hkl]}−1 = S11 − (2S11 − 2S12 − S44)N4, where N4 = n1

2n2
2 + n1

2n3
2 +

n2
2n3

2, n1, n2, n3 are direction cosines for the direction [hkl] [19]. If 2S11 − 2S12 − S44 > 0, E reaches the
maximum and minimum in the <111> and <100> directions, as the case in MAF-7. On the contrary,
if 2S11 − 2S12 − S44 < 0, the reverse results would be obtained as in ZIF-8.

From Table 1, it is clear that the Emax and Emin of MAF-7 are about 20.1% and 3.4% higher than
those of ZIF-8. Meanwhile, the E values of MAF-7 is more anisotropic than ZIF-8, characterized by the
corresponding index AE = Emax/Emin = 1.65, 16.2% higher than that of ZIF-8 (1.42). The remarkable
difference in Young’s modulus between MAF-7 and ZIF-8 originate from the aforementioned
electron-donating effect. Such an effect leads to the stronger Zn-N bonds in MAF-7, which resultantly
strengthens its resistance to axial deformation dominantly related with the change of Zn-N bonds and
rotation of Zn-triazolate-Zn bond angles compared with ZIF-8 [15].

To testify the conclusion about calculated Young’s modulus, we conducted nanoindentation
experiments using non-desolvated single-crystals to extract the elastic moduli of MAF-7. The experiment
was carried out in the quasi-static mode and the maximum load was set as 5000 µN. Representative
load-indentation depth (P-h) curves obtained normal to the (100) and (110) faces are displayed in
Figure 3. The smooth loading parts of both faces demonstrates that the plastic deformation occurs
underneath the three-side pyramidal Berkovich tip during indentation and is relatively homogeneous
in nature [22]. The average values of E(100) and E(110), extracted from the P-h curves, are 2.92(14)
and 3.87(17) GPa, respectively. The good agreement between the calculated and observed values
(with relative error less than 5%) confirms the high Young’s modulus of MAF-7.
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Figure 3. Representative load-indentation depth (P-h) curves of MAF-7 measured with a Berkovich tip
normal to the (110) and (100) planes.

Now we turn attention to the shear modulus (G). Along an arbitrary direction [hkl], the general
expression for shear modulus in cubic system is {G(hkl)}−1 = S44 + 2(2S11 − 2S12 − S44)N4, in which the
direction-dependent values also depends on N4 [19]. The 3D representation G surface, characterized
via the maximal and minimal G, is shown in Figure 4. Accordingly, the Gmax and Gmin are along the
<100> and <110> directions, respectively, reversely to the situation in ZIF-8. As seen from Table 1,
the Gmin and Gmax of MAF-7 are about 3.2% and 20.6% larger than those from ZIF-8, and the anisotropy
in G of MAF-7 is about 15.9% higher than that of ZIF-8. For a cubic crystal, Gmax (=C44) characterize
the ability to resist to shear strain on the (100) plane under a pair of opposing shear stresses τ exerted
along the <0kl> directions, and Gmin = ((C11 − C12)/2) represents the resistance to shear on the (110)
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plane under a shear along the <1–10> direction [23]. The framework of MAF-7 resists shear mostly
through the cooperative bending of the N-Zn-N and rotation of Zn-mtz-Zn bond angles. Like ZIFs,
MAF-7 features four-membered rings in the structure, which are most susceptible to distortion under
antiparallel shear forces. For a rectangle, shearing the edges is easier than the diagonals. As such,
the same pair of opposing shear stresses τ applied on the (100) or (110) plane can generate larger
deformation along the <110> than <100> direction, hence, leading to Gmin along <110> while Gmax

along <100> direction.Crystals 2017, 7, 99  5 of 11 
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and (d) on the (110) planes along <110> directions, corresponding to the maximum and minimum
shear modulus.

Now, we focus on the Poisson’s ratio (ν) which is defined as the negative ratio of the transverse
strain (εj) to the longitudinal strain (εi), i.e., ν = −εj/εi [24]. Poisson’s ratio ν is expressed as

ν[h′k′l′][hkl] = S12+(S11−S12−S44/2)M4

S11−(2S11−2S12−S44)N4 in a cubic system [19]. Therein, M4 = n1
2m1

2 + n2
2m2

2 + n3
2m3

2,

where m1, m2, and m3 are direction cosines for the direction [h′k′l′], respectively [19]. It can be seen
that the directions of the νmax and νmin of MAF-7 are also closely related with the direction-dependent
value of M4 and N4. The representation surfaces for Poisson’s ratios of MAF-7 are shown in Figure 5a,b,
and the maximum and minimum ν values are 0.23 and 0.64 along <110> and <001> directions.
As illustrated in Figure 5c, when the structure is elongated along the <110> propelled by axial strain,
νmin and νmax are obtained along the <001> and <110>, respectively. The νmax is 12.3% higher while
the νmin is 30.3% lower than ZIF-8. The large νmax of MAF-7 coincide with its high shear modulus,
which arises from the electron-donating effect as well. However, the much lower νmin of MAF-7
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than ZIF-8 implies that such an electron effect also negatively contribute to the framework stability
enhancement under axial tensile or compression stresses along some directions.Crystals 2017, 7, 99  6 of 11 
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We finally focus on the bulk modulus (B), which represents the resistance of a material against
hydrostatic stress. The B value derived from first-principle calculated elastic constants for MAF-7
is 10.29 GPa, indicating its stiffer character than ZIF-8 (theoretical values 9.23 GPa). To further
demonstrate higher volume modulus from experimental view point, the high-pressure synchrotron
X-ray powder diffraction experiments were performed. As shown in Figure 6, the diffraction
peaks move to high angle direction with increasing pressure from 0 to 3.755 GPa, indicating the
pressure-induced contraction of the framework. It is worth mentioning that no phase-transition occurs
in MAF-7 in the whole pressure range, manifesting its higher stability to resist hydrostatic pressure than
ZIF-8 with (phase transition about 0.34 GPa) [13]. The function of unit cell volume and lattice parameter
a with respect to pressures (shown in Figure 7) were fitted using the second-order Birch-Murnaghan
equation, and the obtained bulk modulus is 10.8(15) GPa, in excellent agreement with the calculated
value (10.29 GPa). As expected, the experimental B value of MAF-7 is significantly larger than that of
ZIF-8 (6.52(35) GPa), which further ascertains the high mechanical strength of MAF-7.
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3. Materials and Methods

3.1. Synthesis of MAF-7

All chemicals and solvents were of reagent grade and used as received. Single crystals of
Zn(mtz)2 were prepared by slow evaporation from a clear aqueous ammonia solutions according to
the method of Chen et al. [16] In the procedure, 0.084 g Hmtz (Aladdin) and 0.198 g Zn(NO3)2·6H2O
(Alfa Aesar) were dissolved in 10 mL aqueous ammonia solutions (25%) (Sinopham Chemical Reagent
Co., Ltd., Shanghai, China). The colorless crystal have precipitated from liquid after a few days. Phase
identification of a ground bulk sample was confirmed by X-ray powder diffraction (see ESI).

3.2. First-Principles Calculations

The first-principles elastic constant calculations were performed by CASTEP [26,27], a total energy
package based on plane-wave pseudopotential density functional theory (DFT) [28]. The functionals
developed by Perdew Burke and Ernzerhof (PBE) [29] in generalized gradient approximation (GGA)
form [30] were adopted to describe the exchange–correlation energy. To account for the long-range
dispersion interactions, the dispersion correction in DFT + D2 form developed by Grimme [31] was
included in the calculation. Optimized ultrasoft pseudopotentials were adopted to model the effective
interaction between the valence electrons and atom cores [32], which allow us to adopt a relatively
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small plane-wave basis set without compromising the computational accuracy. The kinetic energy
cutoff of 400 eV and the Monkhorst–Pack [33] k-point mesh spanning less than 0.03 Å−1 were chosen.

Before the elastic constant calculation, the crystal structure with no solvent molecules at 0 GPa
was firstly optimized using the Broyden–Fletcher–Goldfarb–Shanno (BFGS) [34] minimization scheme,
with the convergence criteria for energy, maximum force, maximum stress and maximum displacement
set to 10−5 eV per atom, 0.03 eV, 0.05 GPa and 0.001 Å, respectively. Based on the optimized
crystal structure, the elastic constants were calculated by the finite-strain method [35], in which
the components of the elastic constant tensor were determined by the second-order derivative of
energy with respect to specific strain and the maximum strain amplitude and the number of steps
for each strain were set as 0.003 and three steps, respectively. After obtaining the calculated elastic
constants, the analyses of Young’s modulus, shear modulus and Poisson’s ratio were performed using
the ElAM program [21].

3.3. High-Pressure Synchrotron X-ray Powder Diffraction

The high-pressure experiments were performed on the 4W2 beam line of Beijing Synchrotron
Radiation Facility with wavelength of the X-ray beam is 0.61992 Å. The gasket (300 µm in thickness)
of the pre-indented stainless steel (T301) was placed on the systematic diamond anvil cells (DACs)
(a culet diameter of 400 µm). The ground bulk samples were loaded in a cylindrical hole (about 150 µm
in diameter), together with a few ruby chips for pressure calibration and a few drops of silicon oil
used to act as pressure-transmitting medium for surrounding the samples and ensuring the uniform
application of pressure. The required pressures were obtained by manually turning screws and the
internal pressures were determined from measuring the shift of ruby luminescence [36]. The data were
refined by using the Topas program [37].

3.4. Nanoindentation Methodology of Single Crystals

Nanoindentation experiments were performed under ambient conditions by employing a Hysitron
TI 750 Ubi Triboindenter (Hysitron Corp., Minneapolis, MN, USA) in the continuous stiffness
measurement mode [38]. A non-desolvated single crystal was first selected by well-defined regular
dodecahedron shapes and, after face indexing, was confirmed by single-crystal X-ray diffraction using
an Oxford Diffraction Rigaku XtaLAB miniTM diffractometer (Rigaku Oxford Diffraction Ltd., Oxford,
UK) with Mo-Kα radiation (λ = 0.70173 Å) at 300 K. Since any natural crystal facets were equivalent to
the facet {110}, we had to polish off a certain natural facet to obtain an artificial facet (100). Crystals with
{100} and {110}-oriented facets were then cold-mounted in epoxy resin and were carefully ground with
emery paper up to 4000 grit, and polished with increasingly fine diamond suspensions to minimize
surface roughness [15,22]. Accordingly, the indenter were aligned normal to the (100) and (110) crystal
facets with a maximum surface penetration depth of 1200 nm [39]. The loading/unloading rates and
the hold time at peak load, respectively, were maintained at 5000 µN s−1 and 30 s. A fused silica
standard with an elastic modulus of 72 GPa and hardness of 9 GPa was used for calibration. Young’s
modulus (Es) and indentation hardness (H) of the MAF-7 crystals were obtained from the P-h plots
using the standard Oliver-Pharr method [40,41].

4. Conclusions

In summary, the elastic properties of MAF-7 were studied by first-principles calculation and
experiment. Our results revealed that the elastic constant components of MAF-7 are about 5.0–73.3%
higher than those of its isomorphous ZIF-8. Further analysis demonstrates that the elastic modulus,
shear modulus and Poisson’s ratio values of MAF-7 are about 3.4% to 20.1%, 3.2% to 20.6% and−30.3%
to 12.3% larger than those of ZIF-8, respectively. The remarkable enhancement of mechanical stiffness
from MAF-7 to ZIF-8 mainly originates from the electron-donating effect of the additional nitrogen
atom in the triazolate ligand. Moreover, the underlying reasons of the anisotropic difference in each
property were discussed from a viewpoint of framework structure. Furthermore, the calculated high
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mechanical strength of MAF-7 is verified by nanoindentation and high-pressure X-ray diffraction
experiment, indicating the reliability of our first principle calculations. We believe this study further
deepens the understanding of mechanical properties of zeolitic azolate frameworks, and is informative
for the exploration of MOF mechanics in general.

Supplementary Materials: The following are available online at www.mdpi.com/2073-4352/7/4/99/s1,
Figure S1: The powder X-ray diffraction (PXRD) spectra of MAF-7 refined by Le Bail method. The black and
red symbols, and the purple continuous lines are experimental, calculated, and difference profiles, respectively,
and the vertical markers indicate the allowed Bragg reflections. Rp = 5.0%, Rwp = 7.4% and GOF = 4.598; Table S1:
Lattice parameters and unit cell volume of MAF-7 at various pressure (GPa).
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