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Abstract: A new family of quaternary diamond-like semiconductors (DLSs), Li2HgMS4

(M = Si, Ge, Sn), were successfully discovered for the first time. All of them are isostructural
and crystallize in the polar space group (Pmn21). Seen from their structures, they exhibit a
three-dimensional (3D) framework structure that is composed of countless 2D honeycomb layers
stacked along the c axis. An interesting feature, specifically, that the LiS4 tetrahedra connect with each
other to build a 2D layer in the ac plane, is also observed. Experimental investigations show that their
nonlinear optical responses are about 0.8 for Li2HgSiS4, 3.0 for Li2HgGeS4, and 4.0 for Li2HgSnS4

times that of benchmark AgGaS2 at the 55–88 µm particle size, respectively. In addition, Li2HgSiS4

and Li2HgGeS4 also have great laser-damage thresholds that are about 3.0 and 2.3 times that of
powdered AgGaS2, respectively. The above results indicate that title compounds can be expected as
promising IR NLO candidates.

Keywords: nonlinear optical materials; crystal structure; good NLO responses

1. Introduction

Solid-state lasers have shown a wide range of applications in the fields of military, industry,
medical treatment and information communications [1,2]. However, traditional laser sources, such
as Ti:Al2O3 and Nd:YAG lasers, mainly cover the wavelengths range from visible to near infrared,
not including the important ultraviolet (UV < 400 nm) and middle-far infrared (MFIR, 3–20 µm)
region [3,4]. To extend the laser wavelength ranges, frequency-conversion technology on nonlinear
optical (NLO) materials was invented and has been further developed for decades [5]. Recently,
many promising NLO materials have been discovered and have basically solved the demand
of UV region [6–34]. However, for the IR region, outstanding IR NLO materials were rarely
discovered and only several ternary diamond-like semiconductors (DLSs), such as AgGaS2, AgGaSe2

and ZnGeP2, have been commercially used [35–37]. Although they have high second harmonic
generation (SHG) coefficients and wide IR transmission regions, some of the self-defects including
the low laser-damage thresholds (LDTs) or strong two-photon absorption (TPA) still seriously hinder
their practical application. Researchers have done a lot of work to explore new NLO materials
for the IR application, and the combination of two or more different building units into crystal
structures can be viewed as a feasible way to obtain new NLO compounds. Up to now, many
reports indicate that cations with second order Jahn–Teller distortions, lone electron pairs or d10

configuration can contribute to good SHG response with the cooperative effects of typical tetrahedral
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units MQ4 (M = Ga, In, Si, Ge, Sn; Q = S, Se) [38–73]. Note that diamond-like semiconductors (DLSs)
with inherently noncentrosymmetrical (NCS) structures, with all the tetrahedral units in crystal
structures oriented in the same direction, have been further investigated on the ternary and quaternary
systems [74–80]. Among them, the d10 cations (Zn2+, Cd2+) containing quaternary DLSs with
outstanding performances, such as Li2CdGeS4, Li2ZnGeSe4, and Li2ZnSnSe4 [74,78], were proven
as promising IR NLO candidates and belong to the general formula I2–II–IV–VI4, where I are the
monovalent elements, II are the divalent elements, IV are the group 14 elements, and VI are the
chalcogen elements. Previous reports indicate that other types of Hg-containing metal chalcogenides
have shown good NLO performances in the IR field, such as HgGaS4 [81]. BaHgQ2 (Q = S, Se), [82,83]
A2Hg3M2S8 (A = Na, K; M = Si, Ge, Sn) [61,68], and Li4HgGe2S7 [84]. However, up to now, the
Hg-containing DLSs have been rarely investigated in the IR frequency conversion region. Thus, it is
meaningful to explore new Hg-containing DLSs and study their important NLO properties. From this
background, we have chosen the Li–Hg–M–S (M = Si, Ge, Sn) as the research system and successfully
prepared three new IR NLO materials, Li2HgMS4 (M = Si, Ge, Sn). They are isostructural and crystallize
in the Pmn21 polar space group. Overall properties investigation shows that they can be expected to be
promising IR NLO candidates owing to their large NLO coefficients, high LDTs, wide IR transparent
regions, and good chemical stability.

2. Results and Discussion

2.1. Crystal Structure

The title compounds are isostructural and crystallize in the NCS polar space group Pmn21. In order
to ensure the reasonability of crystal structures of title compounds, the bond valence [85,86] and the
global instability index (GII) [87–89] were also systemically studied (Table 1). Calculated results
(Li, 1.085–1.125; Hg, 2.090–2.133; Si/Ge/Sn, 4.030–4.152; S, 2.055–2.229) indicate that all atoms are in
reasonable oxidation states. In addition, GII can be derived from the bond valence concepts, which
represent the tension of lattice parameters and are always used to evaluate the rationality of structure.
When the value of GII is less than 0.05 vu (valence unit), the tension of structure is not proper, whereas
when the value of GII is larger than 0.2 vu, its structure is not stable. Thus, the value of GII in a
reliable structure should be limited at 0.05–0.2 in general. As for the title compounds, calculated GII
values are in the range of 0.10–0.14 vu, which illustrates that the crystal structures of all compounds
are reasonable.

Table 1. Bond Valence Sum (vu) and Global Instability Index (GII) of title compounds.

Compounds Li+ Hg2+ Si/Ge/Sn4+ S2− GII

Li2HgSiS4 1.125 2.092 4.030 2.069–2.149 0.10
Li2HgGeS4 1.118 2.090 4.152 2.055–2.229 0.14
Li2HgSnS4 1.085 2.133 4.138 2.061–2.163 0.13

Herein, Li2HgGeS4 is chosen as the representative for the structural discussion. In its structure,
each cation is linked to four S atoms, forming the typical LiS4, HgS4, and GeS4 tetrahedra. These units
connect with each other to make up a two-dimensional (2D) honeycomb layer structure, which is
located at the ab plane (Figure 1b). Then, the layers are further stacked along the c axis to form a
three-dimensional (3D) framework structure (Figure 1a). In addition, an interesting feature is that
the LiS4 tetrahedra connect with each other to build a 2D layer in the ac plane (Figure 1c). The whole
structure is composed of tetrahedral ligands that align along the c axis. Note that the discovered
quaternary DLSs in the I2–II–IV–VI4 systems normally crystallize in the one of following space groups:
I-42m (Cu2CdSnS4) [76], I-4 (Cu2ZnSnS4) [90], Pmn21 (Li2CdGeS4) [74], Pna21 (Li2MnGeS4) [75], and
Pn (Li2CoSnS4) [75], to our best knowledge, which represent the stannite, kesterite, wurtz-stannite,
and wurtz-kesterite structural features.
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been normally accepted that strong optical absorption of the materials will cause thermal and 
electronic effects and finally lead to laser damage. Note that the optical breakdown can be attributed 
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and 2.32 eV for Li2HgSnS4, respectively. All of them are much larger than those of commercial 
AgGaSe2 (1.80 eV) [86] and ZnGeP2 (1.75 eV) [37], which may be conducive to improve the laser 
damage resistance of the title compounds compared with the commercially available IR NLO 
materials. Recently, the assessment of the LDTs on powder samples has been developed as a feasible 
and semi-quantitative method [52,55]. Thus, in this work, based on a pulse laser (1.06 μm, 10 Hz and 
10 ns), the LDTs of the title compounds were measured with AgGaS2 as the reference and 
corresponding results are shown in Table 2. From this table, it can be found that the title compounds 
have great LDTs, such as 91.6 for Li2HgSiS4, 70.6 for Li2HgGeS4, and 30.5 MW/cm2 for Li2HgSnS4, and 
are about 3.0, 2.3, and ~1 times that of powdered AgGaS2 (29.6 MW/cm2), respectively. Moreover, 
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2.2. Optical Properties

As for an IR NLO crystal, its optical parameters, such as optical bandgap, IR absorption edge,
NLO response, and LDT, are necessary to be determined for the assessment of application prospect.
The detailed mechanism for laser damage in a given material is not fully clear yet, however it has been
normally accepted that strong optical absorption of the materials will cause thermal and electronic
effects and finally lead to laser damage. Note that the optical breakdown can be attributed to the
effect of electron avalanche that has a close relationship with optical bandgap in a given material [75].
Figure 2 shows that the optical bandgaps are 2.68 for Li2HgSiS4, 2.46 for Li2HgGeS4, and 2.32 eV for
Li2HgSnS4, respectively. All of them are much larger than those of commercial AgGaSe2 (1.80 eV) [86]
and ZnGeP2 (1.75 eV) [37], which may be conducive to improve the laser damage resistance of the title
compounds compared with the commercially available IR NLO materials. Recently, the assessment of
the LDTs on powder samples has been developed as a feasible and semi-quantitative method [52,55].
Thus, in this work, based on a pulse laser (1.06 µm, 10 Hz and 10 ns), the LDTs of the title compounds
were measured with AgGaS2 as the reference and corresponding results are shown in Table 2. From this
table, it can be found that the title compounds have great LDTs, such as 91.6 for Li2HgSiS4, 70.6 for
Li2HgGeS4, and 30.5 MW/cm2 for Li2HgSnS4, and are about 3.0, 2.3, and ~1 times that of powdered
AgGaS2 (29.6 MW/cm2), respectively. Moreover, Li2HgSiS4 and Li2HgGeS4 are comparable to those of
PbGa2GeSe6 (3.7 × AgGaS2) [51], Na2In2GeS6 (4.0 × AgGaS2) [56], Na2Hg3Ge2S8 (3 × AgGaS2) [61],
and SnGa4Se7 (4.6 × AgGaS2) [52]. Therefore, Li2HgSiS4 and Li2HgGeS4 can be expected to have
application with high-power lasers, compared with the commercial IR NLO materials.
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Table 2. LDTs of the title compounds and AgGaS2 (as the reference).

Compounds Damage Energy (mJ) Spot Diameter (mm) LDT (MW/cm2)

AgGaS2 0.33 0.375 29.6
Li2HgSiS4 1.02 0.375 91.6
Li2HgGeS4 0.78 0.375 70.2
Li2HgSnS4 0.34 0.375 30.5

In addition, Raman spectra (Figure 3) are also measured to determine the IR absorption edges
for the title compounds. The results show that all of them exhibit the wide IR transmission regions,
such as 2.5–19 µm (530 cm−1) for Li2HgSiS4, 2.5–22 µm (450 cm−1) for Li2HgGeS4, and 2.5–23.5 µm
(425 cm−1) for Li2HgSnS4, which cover the two important atmospheric windows (3–5 and 8–12 µm)
that can be used in telecommunications, laser guidance, and explosives detection. Note that the
IR absorption edges gradually get longer from the Si to Sn compounds, which are consistent with
the IR data for other related mental chalcogenides [61]. Although the measured IR absorption data
on powder samples have some deviations with the results on single-crystals, they can give the
preliminary assessment for the transmission region of IR materials. Overall view on Raman spectra
shows similar patterns for the title compounds, and a shift to lower absorption energies from the Si to
Sn compounds that are severely affected by the tetravalent (MIV) metals. The absorption peaks above
approximately 300 cm−1, including Li2HgSiS4 (520, 396 cm−1), Li2HgGeS4 (430, 387, 360, 327 cm−1),
and Li2HgSnS4 (402, 346 cm−1), can be assigned to the characteristic absorptions of the Si–S, Ge–S,
and Sn–S modes, respectively. Moreover, several peaks located between 200 and 300 cm−1, such as
Li2HgSiS4 (285, 258 cm−1), Li2HgGeS4 (257 cm−1), and Li2HgSnS4 (258 cm−1), are attributed to the
Hg–S bonding interactions. In addition, the absorptions below 200 cm−1 are primarily corresponding
to the Li–S vibrations for the title compounds.
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Second harmonic generation (SHG) responses for the title compounds were investigated on
powder samples and the results are shown in Figure 4. From this figure, it can be found that the SHG
intensities of the title compounds are not enhanced gradually with the increase of particle sizes, which
indicates the nonphase matching behaviour for these compounds. In addition, their SHG responses
are about 0.8 for Li2HgSiS4, 3.0 for Li2HgGeS4, and 4.0 for Li2HgSnS4 times that of benchmark AgGaS2

at the 55–88 µm particle size, respectively, which shows that the title compounds may have great NLO
potential in the IR region as promising frequency-conversion candidates.
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3. Materials and Methods

3.1. Synthesis

All the starting materials were used as purchased without further refinement. In the preparation
process, a graphite crucible was added into the vacuum sealed silica tube to avoid the reaction between
metal Li and the silica tube at a high temperature.

3.1.1. Li2HgSiS4 and Li2HgSnS4

Target compounds were prepared with a mixture with the ratio of Li:HgS:(Si or Sn):S = 2:1:1:3,
respectively. The temperature process was set as follows: first, it was heated to 700 ◦C in two days, and
kept at this temperature about four days, then slowly down to 300 ◦C within four days, and finally
quickly cooled to room temperature by turning off the furnace. Obtained products were washed by the
N,N-dimethylformamide (DMF) solvent to remove the other byproducts. Yellow crystals for Li2HgSiS4

and orange-red crystals for Li2HgSnS4 appeared, and both of them remained stable in air over half a
year. In addition, the yield of Li2HgSiS4 was about 80%.

3.1.2. Li2HgGeS4

Initially, we attempted to prepare Li2HgGeS4 with the ratio of Li:HgS:Ge:S = 2:1:1:3 at the
reaction temperature of 700 ◦C. After the single crystal X-ray diffraction measurement, Li4HgGe2S7

(main product, yellow) [79] and Li2HgGeS4 (a small amount, reddish) were interestingly obtained.
In addition, we had further adjusted the ratio of reactants and interestingly found that the pure-phase
of Li2HgGeS4 could be obtained while the ratio of Li:HgS is greater than 2:1. Moreover, the Li2HgGeS4

crystals were repeatedly washed with DMF solvent and they also remained stable in air.

3.2. Structure Determination

Selected single-crystals were used for data collections with a Bruker SMART APEX II 4K CCD
diffractometer (Bruker Corporation, Madison, WI, USA) using Mo Kα radiation (λ = 0.71073 Å) at room
temperature. Multi-scan method was used for absorption correction [91]. All the crystal structures
were solved by the direct method and refined using the SHELXTL program package [92]. As for the
structural refinement of Li2HgSiS4, the initial refinement result gave the formula Li2HgSiS4, but the
site of the Li atom showed abnormal anisotropy parameter (almost zero). Thus, we attempted to
set the Li1 and Hg2 atoms to occupy the same site with the ratio of 0.97:0.03 (Li1:Hg2) by random
refinement. In view of the low occupancy (0.025) of Hg2 atom, we consider using the “ISOR” order to
treat the Li1 atom as isotropic instead of a positional disorder (Li1:Hg2). Moreover, the subsequent
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analysis of the element contents in the title compounds with energy dispersive X-ray (EDX) equipped
Hitachi S-4800 SEM (Tokyo, Japan) showed the approximate molar ratio of 1:1:4 for Hg, Si/Ge/Sn,
and S (Li is undetectable in EDX). The final structures were carefully checked with PLATON software
(Glasgow, UK) and no other symmetries were found [93]. Table 3 shows the crystal data and structure
refinement of the title compounds.

Table 3. Crystal data and structure refinement for the title compounds.

Empirical Formula Li2HgSiS4 Li2HgGeS4 Li2HgSnS4

fw 370.80 415.30 461.40
crystal system orthorhombic orthorhombic orthorhombic
space group Pmn21 Pmn21 Pmn21

a (Å) 7.592 (2) 7.709 (9) 7.9400 (17)
b (Å) 6.7625 (19) 6.812 (8) 6.9310 (15)
c (Å) 6.3295 (18) 6.384 (7) 6.5122 (14)

Z, V (Å3) 2, 324.96 (16) 2, 335.3 (7) 2, 358.38 (13)
Dc (g/cm3) 3.790 4.114 4.276
µ (mm−1) 25.014 28.463 25.918
GOF on F2 1.022 1.161 0.985

R1, wR2 (I > 2σ(I)) a 0.0217, 0.0443 0.0422, 0.0994 0.0318, 0.0633
R1, wR2 (all data) 0.0229, 0.0445 0.0438, 0.0999 0.0423, 0.0682

absolute structure parameter 0.003 (11) 0.04 (3) −0.019 (19)
largest diff. peak and hole (e Å−3) 1.318, −1.170 5.723, −1.070 0.959, −1.797

a R1 = Fo − Fc/Fo and wR2 = [w (Fo
2 − Fc

2)2/wFo
4]1/2 for Fo

2 > 2σ (Fo
2).

3.3. Powder XRD Measurement

A Bruker D2 X-ray diffractometer (Madison, USA) with Cu Kα radiation (λ = 1.5418 Å) was used
to measure the powder X-ray diffraction (XRD) patterns of title compounds at room temperature.
The measured range is 10–70◦ with a step size of 0.02◦. Compared with the calculated and experiment
results, it can be concluded that they are basically consistent with each other, except for Li2HgSiS4

with a small number of the Hg4SiS4 impurities (Figure 5).
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crystal system orthorhombic orthorhombic orthorhombic 
space group Pmn21 Pmn21 Pmn21 

a (Å) 7.592 (2) 7.709 (9) 7.9400 (17) 
b (Å) 6.7625 (19) 6.812 (8) 6.9310 (15) 
c (Å) 6.3295 (18) 6.384 (7) 6.5122 (14) 

Z, V (Å3) 2, 324.96 (16) 2, 335.3 (7) 2, 358.38 (13) 
Dc (g/cm3) 3.790 4.114 4.276 
μ (mm−1) 25.014 28.463 25.918 

GOF on F2 1.022 1.161 0.985 
R1, wR2 (I > 2σ(I)) a 0.0217, 0.0443 0.0422, 0.0994 0.0318, 0.0633 
R1, wR2 (all data) 0.0229, 0.0445 0.0438, 0.0999 0.0423, 0.0682 

absolute structure parameter 0.003 (11) 0.04 (3) −0.019 (19) 
largest diff. peak and hole (e Å−3) 1.318, −1.170 5.723, −1.070 0.959, −1.797 

a R1 = Fo − Fc/Fo and wR2 = [w (Fo2 − Fc2)2/wFo4]1/2 for Fo2 > 2σ (Fo2). 

3.3. Powder XRD Measurement 

A Bruker D2 X-ray diffractometer (Madison, USA) with Cu Kα radiation (λ = 1.5418 Å) was 
used to measure the powder X-ray diffraction (XRD) patterns of title compounds at room 
temperature. The measured range is 10–70° with a step size of 0.02°. Compared with the calculated 
and experiment results, it can be concluded that they are basically consistent with each other, except 
for Li2HgSiS4 with a small number of the Hg4SiS4 impurities (Figure 5). 

 
Figure 5. Powder XRD patterns of Li2HgSiS4 (a), Li2HgGeS4 (b), Li2HgSnS4 (c). Figure 5. Powder XRD patterns of Li2HgSiS4 (a), Li2HgGeS4 (b), Li2HgSnS4 (c).
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3.4. UV–Vis–NIR Diffuse-Reflectance Spectroscopy

Diffuse-reflectance spectra were measured by a Shimadzu SolidSpec-3700DUV spectrophotometer
(Shimadzu Corporation, Beijing, China) in the wavelength range of 190–2600 nm at room temperature.
The absorption spectra were converted from the reflection spectra via the Kubelka–Munk function.

3.5. Raman Spectroscopy

Hand-picked crystals were first put on an object slide, and then a LABRAM HR Evolution
spectrometer equipped with a CCD detector (HORIBA Scientific, Beijing, China) by a 532-nm laser
was used to record the Raman spectra. The integration time was set to be 10 s.

3.6. Second-Harmonic Generation Measurement

By the Kurtz and Perry method, powder SHG responses of the title compounds were investigated
by a Q-switch laser (2.09 µm, 3 Hz, 50 ns) with ground micro-crystals on different particle sizes.
AgGaS2 single-crystal was also ground and sieved into the same size range as the reference.
SHG signals were detected by a digital oscilloscope.

3.7. LDT Measurement

Ground micro-crystals samples (55–88 µm) were used to evaluate the LDTs of the title compounds
under a pulsed YAG laser (1.06 µm, 10 ns, 10 Hz). Similar sizes of the AgGaS2 crystal were chosen
as the reference. By adjusting the laser output energy, colour change of the test sample was carefully
observed by an optical microscope to determine the LDTs.

4. Conclusions

A new family of new DLSs, Li2HgMS4 (M = Si, Ge, Sn), were successfully synthesized by
the solid-state method in vacuum-sealed silica tubes. They are isostructural and crystallize in the
orthorhombic Pmn21 space group. Seen from their structures, they have the similar 3D framework
and 2D honeycomb-like layer structures with the interconnection of three types of tetrahedral units
(LiS4, HgS4, and MS4). Corresponding optical properties for the title compounds are systemically
studied and the results show that they have great potential as promising IR NLO candidates.

Supplementary Materials: The following are available online at www.mdpi.com/2073-4352/7/4/107/s1. Cifs for
title compounds.
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