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Abstract: In this work, Aurivillius-phase Bi8Fe4-xCoxTi3O24 (7-BFCT, 0 ≤ x ≤ 0.4) powders and
ceramics were successfully prepared by the combination of citrate combustion and hot-press methods.
X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) indicate a
successful synthesis of the pure phase of the 7-BFCT ceramics, and all the samples showed a good
seven-layer structure of the Aurivillius phase. Partial Fe substituted by Co was found to be effective
to enhance both ferromagnetic and ferroelectric properties at room temperature, and the largest
remnant magnetization (2Mr) of ~0.69 emu/g was revealed at the composition of x = 0.4. Zero field
cooling and field cooling (ZFC-FC) magnetization measurement confirmed its magnetic transition
occurring at a high temperature of ~750 K. Correspondingly, the enhanced ferroelectric properties of
such Co-substituted ceramics were also investigated.
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1. Introduction

The family of Bi-containing Aurivillius oxides are known potentially as single-phase multiferroics
and have attracted much attention due to their excellent abundance with fundamental physics
(unusual dielectric, magnetoelectric (ME) and high ferroelectric (FE) phase transition temperatures)
and great application potential as sensors, and in multi-state memory, energy harvesting, etc. [1–5].
Such compounds have the general formula of Bi4Bin−3Fen−3Ti3O3n+3 (BFTO), which can be formed
by inserting one or more perovskite layers of multiferroic BiFeO3 (BFO) into the three-layered
(Bi2Ti3O10)2− perovskite slabs of the parental Bi4Ti3O12 (BTO) ferroelectrics, and here n denotes the
number of intermediate perovskite-like layers within a full unit cell [6]. The FE and ferromagnetism
(FM) of the resulting BFTO can be driven from Ti ions with unoccupied d orbitals and Fe ions with
partially filled d orbitals, respectively. Furthermore, (Bi2O2)2+ layers in Bi4Ti3O12 can play the key role
as both space-charge compensation and insulation, with an expectation to be able to further reduce the
leakage and improve fatigue properties as well [7].
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Researchers have already revealed the coupled FE and the unwanted antiferromagnetic (AFM)
behaviors in such compounds with n = 4 (4-BFTO) [8–10], 5 (5-BFTO) [11–13], and 6 (6-BFTO) [14,15]. In
2009, with Co partially substituted for Fe, a new Bi5Fe0.5Co0.5Ti3O15 (4-BFCT) ceramic was investigated
for the first time, which was found able to present a significant coexistence of FE and FM well above
room temperature. Its remanent magnetization (2Mr) was improved to 7.8 memu/g, due to a possible
existence of superexchange among oxygen-connected Fe and Co ions and the realigned spin structures
caused by the substitution [16]. Following this work of using the Co substitution strategy, most
recent investigations on Bi6FeCrTi3O18 [13], Bi6Fe2−xCoxTi3O18 [17] (n = 5) and Bi7Fe3−xNixTi3O21 [18]
(n = 6) also revealed an enhanced FM performance at or above room temperature. Remarkably,
Wang et al. reported a plausible intrinsic magnetoelectric (ME) coupling in a five-layered Aurivillius
ceramic, SrBi5Fe0.5Co0.5Ti4O18, even at a high temperature of 373 K, surpassing almost all single-phase
multiferroic materials currently under investigation [19]. Furthermore, by a nanoscale structural
modulation, such ME coupling may be further enhanced due to the appearance of a new analogous
morphotropic transformation effect [20]. In addition, Chen et al. revealed the formation mechanism
of Bi5Fe0.9Co0.1Ti3O15 nanosheets [21]. Apparently in the layered structure, FM properties can also
be affected by the structure of the fundamental building blocks (here mainly referring to the layer
number) [22]. Thus, it is worth considering what will happen if similarly using this substitution
strategy in such layer-structured oxides with even higher n numbers. In fact, B-site substitution in a
seven-layer Bi8Fe4Ti3O24 (7-BFTO) has never been done before, and no room-temperature FM was
found in this material. Only a few previous works can be found with focuses on synthesis, crystalline
structure and magnetic property studies of pure 7-BFTO, and most of them suggested the material’s
AFM behavior at room temperature [23–25].

2. Results and Discussion

2.1. X-ray Diffraction

Figure 1 shows the X-ray diffraction spectra of such as-prepared 7-BFCT ceramics. Due to
the lack of standard Joint Committee on Powder Diffraction standards (JCPDS) cards of 7-BFCT,
the XRD patterns in Figure 1 are compared with standard PDF cards of four-layer, five-layer and
six-layer Aurivillius compounds, i.e., Bi5FeTi3O18—PDF#38-1257, Bi6Fe2Ti3O18—PDF#21-0101, and
Bi7Fe3Ti3O21—PDF#54-1044, all of which show similar XRD patterns. All the XRD patterns in Figure 1
can be indexed by an orthorhombic lattice with the space group of F2mm, and it was found that all the
samples are pure Aurivillius phase with no apparent impurity phase appearances. The peak located at
about 30.75◦ slightly shifts to a larger angle (Figure 1b) as the Co concentration increases, indicating
the small structural distortion arising from the Co substitution.
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2.2. High-Resolution Transmission Electron Microscopy

To verify the successful synthesis of 7-BFCT ceramics, Figure 2 shows the high-resolution
transmission electron microscopy images of the 7-BFCT ceramics with various amounts of substituted
Co. As shown in Figure 2, all samples had lattices consistent with several perovskite layers sandwiched
by two (Bi2O2)2+ layers. All samples showed a regular Aurivillius structure with c/2 around 3.2 nm,
indicating the seven-layer structure [22] (Figure 2a–d). In addition, the lattice parameter c showed
a slight decrease with the increase of x, suggesting the successful substitution of Co for Fe inside
the lattices. When x = 0.4, although the sample was still a seven-layered structure, some stacking
faults started to appear (Figure 2d), suggesting the maximum Co doping concentration in such
materials before the secondary phase’s appearance or the structural collapse caused by the too-large
Co substitution.
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2.3. Ferromagnetic Properties

Magnetic hysteresis loops of the 7-BFCT ceramics at room temperature and the corresponding zero
field cooling and field cooling (ZFC-FC) magnetization measurements (the temperature dependence
of M under a magnetic field of 500 Oe was recorded) were performed to visualize the ferromagnetic
properties of the 7-BFCT, as presented in Figure 3. In Figure 3a, for the sample with x = 0 (the inset at the
upper left of Figure 3a), the linear field dependence of the magnetization (M) indicates its AFM nature,
similar to the results reported by Srinivas et al. [23]. The ZFC-FC magnetization measurements show
that the undoped sample’s Neel temperature (TN), i.e., the antiferromagnetism-to-paramagnetism
transition temperature, was ~247 K (Figure 3b), which further verifies the AFM nature of the pure
7-BFTO at room temperature. Noticeably, with the partial substitution of Co ions, magnetic hysteresis
loops of the doped 7-BFCT ceramics (x > 0) all revealed the presence of the ferromagnetic moment
(Figure 3a). Obviously, the FM properties of such seven-layered BFCT ceramics were significantly
enhanced by the Co partial substitution, and 2Mr reached 0.04 emu/g, 0.30 emu/g, 0.35 emu/g and
0.69 emu/g for x = 0.1, 0.2, 0.3 and 0.4 samples, respectively. This enhancement could be explained by
the possible superexchange among oxygen-connected Fe and Co ions, and the structure-modulated
spin canting (the canting angle and the length between coupled ions) from the titling of adjacent
Fe–O and Co–O octahedrals [16–18]. Furthermore, Figure 3c reveals the ZFC-FC measurements of
samples with x = 0.1, 0.2 0.3 and 0.4, and the curves indicate the magnetic Curie temperatures (here
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also simplified as TN) of such ceramics, the ferromagnetism-to-paramagnetism transition temperatures
(marked as the peak of dM/dT curves), were about 776 K, 764 K, 762 K and 750 K, respectively, which
are much higher than RT. It also shows a decreasing trend with the increase of the Co substitution
concentration, and this can be attributed to the decreased orderliness of B-site ions and the relative
stability of the magnetic structure by the increased Co substitution concentration [26]. Also, the ZFC
and FC curves show that the spin glass transition temperatures of the 7-BFCT samples with x = 0 to 0.4
were about 247 K, 641 K, 633 K, 625 K and 623 K, respectively. This suggests that the substitution of
Co for Fe may introduce some new magnetic exchange interactions which are worth investigating in
the future. The detail values of 2Mr and TN with different Co substitution concentrations are listed
in Table 1. In order to recognize the ferromagnetic contribution from the magnetic impurities (e.g.,
CoFe2O4) or the BFCT host in Aurivillius ceramics [19,20], a derivative thermos-magneto-gravimetry
(DTMG) measurement was performed in the nitrogen atmosphere at a heating rate of 20 K/min with a
200 Oe applied magnetic field on the sample Bi8Fe3.6Co0.4Ti3O24 (7-BFCT-0.4). As shown in Figure 3d,
there was a peak at 753.4 K in the derivative weight curve, corresponding to the TN (750 K) measured
using the ZFC-FC method, far higher than the 720 K of magnetic impurity CoFe2O4 [20]. Therefore,
our 7-BFCT ceramics are ferromagnetic.
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2.4. Ferroelectric Properties

The room-temperature P-E hysteresis loops of the 7-BFCT samples under a driving field of
150 kV/cm are presented in Figure 4. As shown in Figure 4, the 2Pr of such 7-BFCT showed a
great dependency on the Co substitution concentration. The 2Pr first increased with x and reached a
maximum value of 4.15 µC/cm2 at x = 0.3, and then decreased as the concentration further increased.
The increased polarization can be explained by the distortion of the crystalline structure by the Co
substitution, as mentioned in the XRD analysis. The decreased of 2Pr at x = 0.4 could be attributed
to the existing stacking faults, which may induce the destruction of the insulation of the (Bi2O2)2+

layer. To rule out the possibility of artificial polarization from the leakage, a pulsed polarization
positive-up-negative-down (PUND) measurement was performed and the results are shown in the
inset of Figure 4. The measured switched polarization value (∆P) was similar to the 2Pr obtained from
the above hysteresis measurement, indicating the intrinsic ferroelectricity of the 7-BFCT samples.

In addition, to further realize the ferroelectricity of such 7-BFCT ceramics, the temperature
dependence of the dielectric constant (ε) and the dielectric loss (Tanδ) at 1 MHz were taken. Figure 5a
shows the temperature dependence of the dielectric constant (ε) of the samples with x = 0, 0.2 and 0.4.
Their ε increases with the increase of the temperature and shows a dielectric peak at 1052 K, 1060 K
and 1065 K for samples with x = 0, 0.2 and 0.4, respectively. These temperatures are very close to
the reported Tc, the ferro-paraelectric phase transition temperature, at ~1049 K [23]. The increased
Tc can be explained by the substitution of smaller-radius ions (Co) for larger-radius ions (Fe), which
would bring out a smaller tolerant factor and lead to the higher Tc. Figure 5b shows that the dielectric
loss (Tanδ) increases rapidly with increasing the temperature. Compared to the sample with x = 0,
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the Tanδ values of the rest of the samples show a decrease and this may suggest a decreased defect
concentration with the Co substitution [27]. The x = 0.4 sample shows a larger Tanδ than that of the
sample with x = 0.2, and this could be explained by the increased defect concentration caused by the
existing stacking faults, as suggested in both the HRTEM and ferroelectricity analyses before. Table 1
also lists the details of 2Pr and Tc of the samples with different x values.
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3. Materials and Methods

3.1. Sample Synthesis

Synthesis of the seven-layer Bi8Fe4−xCoxTi3O24 (0 ≤ x ≤ 0.4, 7-BFCT) powders and ceramics
follows below procedures: stoichiometric amounts of Bi(NO3)3·5H2O (99%), Fe(NO3)3·9H2O (98.5%),
Co(NO3)3·6H2O (99%) and Ti(C10H36O) (tetrabutyl titanate, 98%) were firstly dissolved in the dilute
nitric acid, then EDTA (ethylenediamine tetraacetic acid) and citric acid were added to form a stable
colloidal solution. After dried, burned and heat-treated at 750 ◦C for 2 h, Bi8Fe4–xCoxTi3O24 powders
were obtained. The corresponding ceramics were prepared by the hot-press method: firstly, the
pre-sintered powders were pressed into pellets under a pressure of 80 MPa, then the pellet was placed
in an alumina abrasive, and zirconium oxide powders were filled around the pellet as the isolation
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layer. Finally, the pellets were sintered at 930 ◦C (x = 0, 0.1), 910 ◦C(x = 0.2, 0.3) and 900 ◦C (x = 0.4) for
3 h under a pressure of 10 MPa in the Ar/O2 mixed atmosphere.

3.2. Characterization

Crystalline structures of the as-fabricated samples were investigated by X-ray diffraction (XRD,
D/Max-gA, Toyko, Japan) with a Cu-Ka radiation at λ = 1.5405 Å. Lattice images were taken by a high
resolution transmission electron microscopy (HRTEM, JEM-2010, Japanese electronics co., LTD, Tokyo,
Japan). Ferromagnetic properties were characterized using a vibrating samples magnetometer (VSM,
EV-7, ADE Co., New York, NY, USA), and then the ferroelectric hysteresis loop was conducted using
a Precision LC ferroelectric analyzer (Radiant Technology product, New York, NY, USA). Materials’
dielectric properties were measured by an Agilent 4294A precision impedance analyzer. Derivative
thermo-magneto-gravimetric (DTMG) measurements were realized by thermos-gravimetric analysis
and application of a magnetic field of 200 Oe (TGA Q5000IR, New Castle, DE, USA).

4. Conclusions

In summary, Aurivillius Bi8Fe4–xCoxTi3O24 (7-BFCT, 0 ≤ x ≤ 0.4) powders and ceramics were
successfully prepared by the combination of citrate combustion and hot-press methods. The effect of
Co substitution on their ferromagnetic and ferroelectric properties was also investigated. All samples
showed a good seven-layered structure with the largest remnant magnetization (2Mr~0.69 emu/g)
obtained at x = 0.4, and the ferroelectric and magnetic transitions occurred at ~1065 K and ~750 K,
respectively. The sample with x = 0.3 revealed the largest 2Pr~4.15 µC/cm2 and TC~1062 K. The
superexchange between Fe-O-Co and the distorted crystal structure is responsible for the enhanced
ferromagnetism. Changing of the ferroelectricity can be mainly attributed to the distorted crystalline
structure and the existing stacking faults.
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