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Abstract: Majorana Kramers pairs emerged on surfaces of time-reversal-invariant topological
crystalline superconductors show the Ising anisotropy to an applied magnetic field. We clarify
that crystalline symmetry uniquely determines the direction of the Majorana Ising spin for given
irreducible representations of pair potential, deriving constraints to topological invariants. In addition,
necessary conditions for nontrivial topological invariants protected by the n-fold rotational symmetry
are shown.
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1. Introduction

Topological superconductors are fully or partially gapped systems hosting gapless states on
their surfaces [1–4] as Andreev bound states [5–8]. The gapless surface states behave as Majorana
fermions, which are self-conjugate particles and protected by the topological invariant associated to
(broken) symmetries. Due to the stability and the so-called non-Abelian statistics derived from the
self-conjugate property, one would expect that topological superconductors can be a platform of the
fault-tolerant topological quantum computation [9].

For further achievement, it is necessary to detect and manipulate the Majorana fermions.
Applying an external magnetic field is a one way to destruct Majorana fermions in
time-reversal-invariant (DIII [10–12]) topological superconductors since a magnetic field breaks
time-reversal symmetry. However, Majorana fermions still remain gapless when an applied magnetic
field is normal to a certain direction. Namely, Majorana fermions exhibit the Ising anisotropy [13–22].
In this sense, Majorana fermions are referred to as Majorana Ising spin.

Shiozaki and Sato [23] have unveiled that the underlying mechanism of Majorana Ising
spin is the protection by crystalline symmetry, i.e., an extension from topological crystalline
superconductivity [24–27]. In this paper, we develop the theory and find that the direction of Majorana
Ising spin is uniquely determined for a given irreducible representation [28,29] of the pair potential.
The obtained result can be applied to all the space groups hence we believe that it is useful for studies
on topological-superconductor materials and experiments.

The paper is organized as follows. We start with a brief review on Majorana Ising spin in
Section 2 and clearly summarize issues to be addressed. We derive conditions for nontrivial topological
invariant in Section 3 in systems with time-reversal and crystalline symmetries. From the obtained
conditions, one finds the direction of Majorana Ising spin and summarizes it in tables (Appendix C).
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Besides Majorana Ising spin, in Section 4, we also derive the winding number corresponding to the
surface Majorana fermions protected by n-fold rotational symmetry, in a manner similar to that in
Section 3. An example of the application of our general theory is shown in Section 5. We finally
summarize the paper in Section 6.

2. Preliminary

Before going into the main discussion, we first review zero-energy states and the associated
topological invariants in superconductors. A BdG Hamiltonian H(k) has the form

H(k) =

(
h(k)− µ ∆(k)

∆(k) −h(k) + µ

)
= [h(k)− µ] τz + ∆(k)τx, (1)

in the basis of (c↑(k), c↓(k), c†
↓(−k),−c†

↑(−k)), where ↑ and ↓ denote the spin up and down,
respectively, and the spin indices in h(k) and ∆(k) are implicit. Note that one can choose ∆(k) = ∆(k)†

for time-reversal-invariant superconductors. The Hamiltonian preserves time-reversal T symmetry

h(k) = T−1h(−k)T, ∆(k) = T−1∆(−k)T, H(k) = T −1H(−k)T , T = τ0T, (2)

and particle-hole C symmetry

H(k) = −C−1H(−k)C, C = τyT . (3)

Combining these symmetries, chiral symmetry holds;

{Γ, H(k)} = 0, Γ = CT = τy. (4)

Next, we introduce the topological invariant corresponding to the number of zero-energy states
on the surface, which are located on x⊥ = 0 (Figure 1a).

(a) (b)

TSC

x⊥

x‖1

x‖2 E

k‖1

k‖2
k‖ = Γ

Figure 1. (a) Topological superconductor (TSC) with the surface on x⊥ = 0; (b) Energy dispersion of
the surface Majorana zero modes located at the time-reversal-invariant momentum k‖ = Γ.

The time-reversal-invariant momentum at which the zero-energy states appear is set to k‖ = Γ

(Figure 1b). The one-dimensional topological invariant W [30] is given by

W =
i

4π

∫ π/a⊥

−π/a⊥
dk⊥tr

[
ΓH(k⊥)−1 ∂H(k⊥)

∂k⊥

]
k‖=Γ

∈ Z, H(k⊥) = H(k)|k‖=Γ, (5)
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where H(k⊥) = H(k⊥ + 2π/a⊥). This invariant is equal to the number of the zero-energy surface
states (see Appendix A). In time-reversal-invariant spinful systems, however, the above topological
invariant always vanishes owing to time-reversal symmetry [10–12,31], which requires {T , Γ} = 0 and

W∗ =
−i
4π

∫ π/a⊥

−π/a⊥
dk⊥tr

[
Γ∗H(k⊥)∗−1 ∂H(k⊥)∗

∂k⊥

]
=
−i
4π

∫ π/a⊥

−π/a⊥
dk⊥tr

[
(−Γ)H(−k⊥)−1 ∂H(−k⊥)

∂k⊥

]
= −W,

(6)

using T H(k)T −1 = H(−k), hence W = 0.
The topological invariant can take a finite value with the help of an order-2 symmetry operation

U that involves the spin and respects the surface: [U, H(k⊥)] = 0. Now we introduce a modified chiral
operator ΓU as

ΓU = eiφU UΓ, Γ2
U = 1, (7)

where the phase φU is chosen to satisfy Γ2
U = 1. The modified topological invariant W[U] is given by

replacing Γ with ΓU ;

W[U] =
i

4π

∫ π/a⊥

−π/a⊥
dk⊥tr

[
ΓU H(k⊥)−1 ∂H(k⊥)

∂k⊥

]
, (8)

which is free from the condition of Equation (6) when the following condition is satisfied;

[T , ΓU ] = 0. (9)

Normally, order-2 symmetry operations stem from crystalline point/space-group symmetries
such as two-fold rotations and reflections with respect to the x⊥ axis. This means that systems with
W[U] 6= 0 are interpreted as a one-dimensional topological crystalline superconductor.

In the last part of this section, we review that W[U] naturally explains the Ising-anisotropic
response to a magnetic field [21,23]. The symmetry operation U is taken to be a two-fold rotation
or a reflection. The symmetry operation U flips or keeps the direction of applied magnetic field,
i.e., {U, Hmag} = 0 or [U, Hmag] = 0, respectively. Here Hmag denotes the Hamiltonian of magnetic
field including the Zeeman and vector potential terms. These operations are summarized in Table 1.

Table 1. Symmetry of magnetic field B applied along the x⊥, x‖1, and x‖2 directions, which are depicted
in Figure 1. C2(x⊥) is the two-fold rotation along the x⊥ axis. σ(xixj) is the mirror reflection with
respect to the xixj plane. These are symmetry operations of the semi-infinite system with the surface of
x⊥ = 0. − (+) indicates that the magnetic field is (not) flipped by the symmetry operation. S denotes
the direction of Majorana Ising spin protected by the topological invariant W[U] for U = C2(x⊥),
σ(x⊥x‖1), and σ(x⊥x‖2).

U B ‖ x⊥ B ‖ x‖1 B ‖ x‖2 S

C2(x⊥) + − − x⊥
σ(x⊥x‖1) − − + x‖2
σ(x⊥x‖2) − + − x‖1

In the former case ({U, Hmag} = 0), since the modified chiral symmetry still remains {ΓU , H0 +

Hmag} = 0, the modified topological invariant W[U] is well-defined and shares the same number
as that in the absence of magnetic field as long as Hmag is small enough, while not in the latter case
([U, Hmag] = 0). From Table 1, the latter case is realized only in the case that magnetic field is applied
for a specific direction in each symmetry operation. Therefore, the zero-energy surface states protected
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by W[U] are annihilated only by the magnetic field along the specific direction. Namely, Majorana
fermions on the surface acts as an Ising spin under a magnetic field.

In the following sections, developing the theory, we show only one winding number among
W[C2(x⊥)], W[σ(x⊥x‖1)], and W[σ(x⊥x‖2)] is possible to take a finite value for a given surface and
an irreducible representation of pair potential, i.e., the anisotropy of magnetic response is uniquely
determined, irrespective of the details of the system.

3. Topological Invariants for Irreducible Representations

We show that only one among three possible topological invariants W[C2(x⊥)], W[σ(x⊥x‖1)],
and W[σ(x⊥x‖2)] can become finite in a given superconducting pair potential. This is the decisive
evidence of Majorana Ising spin.

3.1. Symmetry of Crystalline Systems Including a Surface

In crystalline systems, all the symmetry operations other than time reversal and particle-hole
transformation are elements of a space group. Here we focus on the momentum line including the
time-reversal-invariant momentum k = Γ along which the one-dimensional topological invariant is
defined. Symmetry operations respecting the k = Γ point are (screw) rotation and (glide) reflection,
which are classified into those preserving (type-I) and inverting (type-II) the surface of x⊥ = 0.
The type-I symmetry operations are two-fold (screw) rotation C2(x⊥) along the x⊥ axis and mirror
(glide) reflections σ(x⊥x‖1) with respect to x⊥x‖1 plane and σ(x⊥x‖2) with respect to x⊥x‖2 plane
(Figure 2a). The type-II symmetry operations, on the other hand, are two (screw) rotations [C2(x‖1) and
C2(x‖2)] and one mirror (glide) reflection [σ(x‖1x‖2)], as shown in Figure 2b. Afterwards, we denote
a type-I operation by Ui then we have

[Ui, h(k⊥)] = 0. (10)

The spatial inversion I is represented in terms of Ui as

I = UiPi, (11)

for i = 1, 2, 3, where Pi is a type-II symmetry operation, i.e.,

h(k⊥) = P†
i h(−k⊥)Pi. (12)

x⊥

x‖1

x‖2

C2(x⊥)
σ(x⊥x 1)σ(x⊥x 2)

(a) Type I: U (b) Type II: P

x⊥

x‖1
x‖2

σ(x‖1x‖2)

C2(x‖2)C2(x‖1)

Figure 2. Point-group symmetry operations which preserve (a) and invert (b) the surface of x⊥ = 0.

3.2. Symmetry Operations in Superconducting States

Now define symmetry operations in a superconductor. A superconductor keeps a crystal
symmetry S (Ui or Pi) where the pair potential ∆(k) is a one-dimensional representation of S;

∆(k) = χ(S)S†∆(k′)S, (13)
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where χ(S) is the character of the one-dimensional representation and k′ is the momentum transformed
by S. Then, the symmetry operation S̃ in the superconducting state is defined as

S̃ =

(
S 0
0 χ(S)S

)
, (14)

which satisfies S̃†H(k)S̃ = H(k′). If S obeys S2 ∝ 1, χ(S) of the one-dimensional representation is
either χ(S) = 1 or χ(S) = −1, and

S̃ =

{
Sτ0, for χ(S) = +1,

Sτz, for χ(S) = −1.
(15)

In these cases, one obtains the following relation

S̃†ΓS̃ = χ(S)Γ, (16)

for Γ = τy [see Equation (4)].

3.3. Topological Invariant

In the following, we derive necessary conditions for finite-valued topological invariants, which is
defined by

W[Ũi, x⊥] =
i

4π

∫
k‖x⊥

dk · tr
[

ΓŨi
H(k)−1 ∂H(k)

∂k

]
k‖=Γ

. (17)

x⊥ indicates the direction normal to the surface, i.e., W[Ũi, x⊥] is the number of the Majorana
zero modes on the surface perpendicular to x⊥. Note that the type-II symmetries Pi may define
an topological invariant but it does not correspond to the zero-energy surface states since the surface is
not invariant against Pi. This is why only the type-I symmetries Ui are considered here. Glide reflection
along the direction parallel to the surface, e.g., a-glide with respect to the ac plane for the ab surface,
is one of the possible type-I Ui symmetries for the winding number. Screw rotation, however, is not
used for the winding number because the surface is not invariant by the operation. Glide reflection
that translates a system along the direction normal to the surface and screw rotation may define a bulk
invariant although the bulk-edge correspondence does not hold, as type-II Pi symmetry. Henceforth,
for the rotational symmetries, we suppress the suffix x⊥ as W[C̃2(x⊥), x⊥] = W[C̃2(x⊥)], due to the
uniqueness of the directions of the integrals, i.e., x⊥ must be along the rotational axis.

Now we derive the constraint to W[Ũi, x⊥] by the symmetries. One gets

W[Ũi, x⊥] = +p(Ũi, Ũl)χ(Ul)W[Ũi, x⊥], W[Ũi, x⊥] = −p(Ũi, P̃l)χ(Pl)W[Ũi, x⊥]. (18)

These equations are derived by applying unitary transformations by Ũl and by P̃l . Here we
introduce p(A, B) as

B−1 A B = p(A, B)A. (19)

Note that Ũl includes the n-fold rotation (if exist) in addition to the two-fold rotations.
In consequence, the conditions of

p(Ũi, Ũl)χ(Ul) = −p(Ũi, P̃l)χ(Pl) = 1, (20)

and of [T , ΓŨi
] = 0 (Equation (9)) are necessary for W[Ũi, x⊥] 6= 0. From the above condition, χ(Ui) = 1

is derived because of p(Ui, Ui) = 1.
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Next, we prove that the two-fold symmorphic symmetry operations, rotations and reflections,
satisfy the condition of Equation (9) while the nonsymmorphic ones, glide reflections, do not on the
Brillouin zone boundary. Symmetry operations are represented by the direct product of real-space
part Oi and spin part Σi, Ui = OiΣi. For two-fold rotations and mirror reflections, the real-space part
Oi is an orthogonal matrix with O2

i = 1 and [Oi, T ] = 0. The spin part is given by Pauli matrices
then Σ†

i = Σi, Σ2
i = 1, and {Σi, T } = 0. As a result, the chiral operator is given by ΓŨi

= Ũiτy so
that the condition of Equation (9) holds. For glide reflections, on the contrary, the orbital part Oi
on the Brillouin zone boundary is purely-imaginary matrix hence the condition Equation (9) is not
satisfied, i.e.,

W[Ũi, x⊥] = 0, for k‖ · τ = ±π/2, (21)

with Ũi being a glide reflection, where τ is the translation vector of the glide reflection (for details,
see Appendix B).

For symmorphic space groups, the necessary condition for W[Ũi, x⊥] 6= 0 is easily obtained as
follows. The commutation relations of the representations for symmetry operations in a point group
are uniquely determined to be

{Ui, Uj} = {Pi, Pj} = [Ui, Pi] = {Ui, Pj} = 0, i 6= j, (22)

in spinful systems. With the help of the above relation, the condition Equation (20) reduces to

χ(Ui) = −χ(Uj) = −χ(Pi) = χ(Pj) = 1. (23)

Here, χ(O) is the character of O hence the possible topological invariant is determined only from
the representation theory of point group, irrespective of details of the system, as summarized in the
tables in Appendix C. An example for a nonsymmorphic space group is also shown in Appendix C.
The condition of χ(Ui)χ(Pi) = χ(UiPi) = −1 is extracted from the above equations. This means
that the character of the spatial inversion I = UiPi must be −1 for the existence of topological
superconductivity. That is consistent with the absence of time-reversal-invariant Majorana fermion in
even-parity superconductors [32].

Finally, we show that two of W[C2(x⊥)], W[σ(x⊥x‖1)], and W[σ(x⊥x‖2)] always vanish.
Here C2(x⊥) is the two-fold (not screw) rotation, σ(x⊥x‖j) is the mirror or glide reflection with
respect to the x⊥x‖j plane. The statement is immediately seen from Equation (23) for symmorphic
space groups: χ(Ui) = 1 and χ(Uj) = 1 are not simultaneously satisfied. This is also true at k‖ = 0 for
nonsymmorphic space groups since the commutation relations of symmetry operations are the same
as those for the symmorphic space group. When σ(x⊥x‖1) is the x‖1-glide reflection, the commutation
relation changes from the symmorphic one at the boundary k‖1 = π/a‖1. W[σ(x⊥x‖1)], however,
vanishes from Equation (21). In consequence, it is impossible that two of W[C2(x⊥)], W[σ(x⊥x‖1)],
and W[σ(x⊥x‖2)] simultaneously take nontrivial values.

4. Winding Number Protected by n-Fold Rotational Symmetry

Besides order-2 symmetries, we clarify the winding number protected by the n-fold (n ≥ 3)
rotational Cn symmetry, [Cn, H(k)] = 0. We derive the necessary condition for nonzero topological
invariant associated with Cn for spinful systems. The spinless case was discussed in Ref. [33].
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4.1. Definition

Cn is represented by Cn = e−ijz2π/n, where jz denotes the total angular momentum along the
rotational axis. For spinful systems, Cn

n = −1 and the eigenvalue of Cn is obtained to be e−iµ2π/n for
µ = 0, · · · , n− 1. A Hamiltonian of Cn-symmetric system is block diagonalized to be

H(k)→ diag (H0(k), · · · , Hn−1(k)) , (24)

where Hµ(k) = V†
µ H(k)Vµ, Vµ = (vµ1, · · · , vµgµ), Cnvµj = e−iµ2π/nvµj, CnVµ = Vµe−iµ2π/n,

is Hamiltonian in the Cn = e−iµ2π/n eigenspace. gµ is the degeneracy of the eigenvalue of e−iµ2π/n then
∑n−1

µ=0 gµ = dim H(k).
In a superconductor with the n-fold rotational symmetry, [C̃n, H(k)] = 0, chiral symmetry in the

eigenspaces is found when [Γ, C̃n] = 0 holds:

{Γµ, Hµ(k)} = 0, Γµ = V†
µ ΓVµ, Γ2

µ = 1. (25)

Hereafter we assume that the pair potential is the A representation of Cn, i.e., ∆(k) = C†
n∆(k′)Cn,

because [Γ, C̃n] = 0 holds only in this case. The winding number in each eigenspace is

Wµ =
i

4π

∫ π/a⊥

−π/a⊥
dk tr

[
ΓµHµ(k)−1 ∂Hµ(k)

∂k

]
, (26)

which corresponds to the number of zero-energy end states of Hµ.

4.2. Time-Reversal Symmetry

Since the angular momentum is time-reversal odd, one finds

T −1C̃nT = C̃n, (27)

and

T Vµ = V−µT−µ, Tµ = V†
µT V−µ. (28)

Tµ is a unitary matrix:

[TµT†
µ ]ij =

g−µ

∑
k=1

v†
µiv̄−µkv̄†

−µkvµj = δij, (29)

where v̄µi is defined by v̄µi = T vµi. These lead to

T†
µ Hµ(−k)Tµ = +H−µ(k)∗, T†

µΓµTµ = −Γ−µ(k)∗. (30)

As a result, one finds

Wµ =
i

4π

∫ π/a⊥

−π/a⊥
dk tr

[
−Γ∗−µH−µ(−k)∗−1 ∂H−µ(−k)∗

∂k

]
= −W∗−µ, (31)

by applying the unitary transform by Tµ. Thus, Wµ = −W−µ owing to Wµ is a real integer. This relation
is a natural extension from Equation (6).
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4.3. Spatial Symmetry

The commutation relation of Cn and spatial symmetries, Ul and Pl, is given by [Ul, Cn] = 0
for [jz, Ul] = 0 and U†

l CnUl = C†
n for {jz, Ul} = 0. The same equations hold for Pl. This gives the

transformation of Hamiltonian;

Hµ(k) = U†
l,p(jz,Ul)µ

Hp(jz,Ul)µ
(k)Ul,p(jz,Ul)µ

, Hµ(k) = P†
l,p(jz,Ul)µ

Hp(jz,Ul)µ
(−k)Pl,p(jz,Ul)µ

, (32)

where Ul,µ = V†
µ UlVµ and Pl,µ = V†

µ PlVµ. The chiral operator is transformed by Ul,µ as

Γµ = χ(Ul)U†
l,p(jz,Ul)

Γp(jz,Ul)µ
Ul,p(jz,Ul)

. (33)

This is the same for Pl,µ. The winding numbers satisfy the following relations;

Wµ = χ(Ul)Wp(jz,Ul)µ
= −χ(Pl)Wp(jz,Pl)µ

. (34)

Combining these and Equation (31), one finds a necessary condition

χ(Ul)p(jz, Ul) = −χ(Pl)p(jz, Pl) = 1, (35)

for Wµ 6= 0.
In symmorphic space groups, from the above conditions, Wµ takes a finite value only for the A1u

(or its compatible) representation. The (anti)commutation relations of jz and the symmetry operations,
U1 = Cn, U2 = σ(x⊥x‖1), U3 = σ(x⊥x‖2), P1 = σ(x‖1x‖2), P2 = C2(x‖1), and P3 = C2(x‖2), are given by

[jz, Cn] = {jz, σ(x⊥x‖1)} = {jz, σ(x⊥x‖2)} = [jz, σ(x‖1x‖2)] = {jz, C2(x‖1)} = {jz, C2(x‖2)} = 0. (36)

From this and Equation (35), the necessary condition is given by

χ(Cn(x⊥)) = −χ(σ(x‖1x‖2)) = −χ(σ(x⊥x‖1)) = −χ(σ(x⊥x‖2))

= χ(C2(x‖1)) = χ(C2(x⊥x‖2)) = 1.
(37)

This holds for the A1u representation of the pair potential.

5. Example: Bilayer Rashba System

As an example, we show the magnetic response of Majorana Ising spin in the bilayer Rashba
superconductor [34], which are depicted in Figure 3. The Hamiltonian in the normal state reads

H0(kx, ky) =
k2

x + k2
y

2m
σ0s0− εσxs0 + α(kxsy − kysx)σz, (38)

where s and σ denote the Pauli matrices representing the spin and layer degrees of freedom, respectively.
Time-reversal-invariant Bogoliubov-de Gennes (BdG) Hamiltonian has the form

HBdG(kx, ky) =

(
H0(kx, ky)− µ ∆(kx, ky)

∆(kx, ky) −[H0(kx, ky)− µ]

)
= [H0(kx, ky)− µ]τz + ∆(kx, ky)τx, (39)

in the basis of (ck↑, ck↓, c†
−k↓,−c†

−k↑), where the arrows ↑ and ↓ denote the up and down spins,
respectively, and the indices for the layer degrees of freedom are implicit. When the Fermi level
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µ is located within the hybridization gap, as shown in Figure 3b, the Z2 topological invariant takes the
nontrivial value [34]. The above Hamiltonian is regularized on the square lattice as

H0(kx, ky)→
2− cos kx − cos ky

m
σ0s0− εσxs0 + α(sy sin kx − sx sin ky)σz. (40)

We consider the six types of odd-parity pair potentials, which are summarized in Table 2.

Figure 3. Schematic view of the Rashba bilayer between LaAlO3 and SrTiO3 [34]. (a) Two-dimensional
electron gases are formed in the interfaces. The energy dispersions of the finite system with the edge
normal to the x axis are shown in Figure 5 for possible pair potentials; (b) The energy dispersion of the
Hamiltonian Equation (38) in the normal state. The Fermi energy is located at E = 0. The parameters
are taken as m = 0.5, ε = 0.5, α = 2.

Table 2. Irreducible representations Γ of odd-parity pair potentials ∆ in the bilayer Rashba
superconductor under the D4h symmetry. W[U, x] is the winding number related to Majorana fermions
on the (100) edge and S denotes the direction of its Ising spin. These are taken from Table A1. 0 denotes
the absence of Majorana fermion.

Γ W [U, x] ∆ S

A1u W[C′2(x)] σysz x
A2u W[σv(xz), x] σzs0 y
B1u W[C′2(x)] sin kx sin kyσzs0 x
B2u W[σv(xz), x] (cos kx − cos ky)σzs0 y

Eu(x) 0 σysy 0
Eu(y) W[σh, x] σysx z

We show that the winding numbers W[U, x⊥] which associated with the Majorana fermions on
the (100) surface for each pairing. From Table 2, the A1u [∆(kx, ky) = ∆σysz], A2u [∆(kx, ky) = ∆σzs0],
B2u [∆(kx, ky) = ∆(cos kx − cos ky)σzs0], and Eu(y) [∆(kx, ky) = ∆σysx] pairing may have nonzero
winding numbers W[C′2(x)], W[σv, xσv 6= z], W[σv, xσv 6= z], and W[σh, x], respectively. The B1u pairing,
∆(kx, ky) = ∆ sin kx sin kyσzs0, on the other hand, does not open the gap at the time-reversal-invariant
momenta, ky = 0, π, so that the winding number is ill-defined. The Eu(x) pairing has no Majorana
fermion on the (100) surface. The symmetry operations and the corresponding chiral operators are
represented by

C′2(x) = σx(−isx), σv(xz) = σ0(−isy), σh = σx(−isz), (41)

and

ΓC′2(x) = iC′2(x)τy, Γσv(xz) = iσv(xz)τy, Γσh = iσhτy. (42)
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The winding number is calculated to be

W[U, x] =
∫ π

−π

dkx

2π

∂

∂kx
arg det q(ky), (43)

where q(ky) is the off-diagonal part of the Hamiltonian in the chiral basis (see Equation (A13)).
Figure 4 shows the winding of arg det q(ky) for each pairing, which immediately tells us that the

winding number is obtained to be W[C′2(x)] = −2, W[σv(xz), x] = −2, W[σv(xz), x] = 2, W[σh, x] = 2,
for A1u, A2u, B2u, and Eu(y) pairings, respectively. |W(U, x)| = 2 means that a Majorana Kramers pair
appears on the (100) edge. As a result, the systems are, indeed, topological superconductors with finite
winding numbers predicted by our general theory.
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−1 −0.5 0 0.5

(b) A2u

W [σv(xz),x] = −2

−1 −0.5 0 0.5

(c) B2u

W [σv(xz),x] = 2

−1 −0.5 0 0.5 1

(d) Eu(y)

W [σh,x] = 2

a
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d
et
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k
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kx/π
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Figure 4. Winding of the phase (integrand of W[U, x]) for the (a) A1u; (b) A2u; (c) B2u; and (d) Eu(y)
pairings. The winding numbers are obtained to be W[C′2(x)] = −2, W[σv(xz), x] = −2, W[σv(xz), x] = 2,
and W[σh, x] = 2, for cases (a–d), respectively.

Next, we verify the above result and the predicted Majorana Ising spins, which are shown in
Table 2, from the energy spectra of finite-sized systems. The corresponding finite-sized Hamiltonian
defined in (1 ≤ x ≤ Nx) along the x direction has the form H(ky) = H0(ky) + ∆̃(ky) with

H0(ky) =
Nx

∑
n=1

c†
n(ky)

[(
2− cos ky

m
+ µ

)
σ0s0 + α sin kyσzsx + εσxs0

]
τzcn(ky)

+

[
Nz−1

∑
n=1

c†
n(ky)

(
1

2m
σ0s0 +

α

2
σzsy

)
τz c̃n+1(ky) + h.c.

]
,

(44)

where cn(ky) = (cn↑(ky), cn↓(ky), c†
n↓(−ky),−c†

n↑(−ky))T is the annihilation operator of electron with
momentum ky on the n-th site. The pair-potential term is given by

∆̃(ky) =



Nx

∑
n=1

c†
n(ky)∆σyszτxcn(ky), for A1u,

Nx

∑
n=1

c†
n(ky)∆σzs0τxcn(ky), for A2u,

Nx−1

∑
n=1

c†
n+1(ky)i∆ sin kyσzs0τxcn(ky) + h.c., for B1u,

Nx

∑
n=1

c†
n(ky)∆ cos kyσzs0τxcn(ky)−

1
2

(
Nx−1

∑
n=1

c†
n+1(ky)∆σzs0τxcn(ky) + h.c.

)
, for B2u,

Nx

∑
n=1

c†
n(ky)∆σysyτxcn(ky), for Eu(x),

Nx

∑
n=1

c†
n(ky)∆σysxτxcn(ky), for Eu(y).

(45)
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We calculate the energy spectrum in the presence of a Zeeman field along x, y, and z directions,
which are expressed by the Hamiltonian

HB =
Nx

∑
n=1

c†
n(ky)

(
B · gµB

2
s
)

cn(ky) =
Nx

∑
n=1

c†
n(ky)h · scn(ky). (46)

For topological superconducting states, the Majorana zero modes still remain gapless in the
presence of a magnetic field perpendicular to the Majorana Ising spin. The direction of the Majorana
Ising spin for each pair potential is derived by the general theory studied in the previous section and
shown in Table 2. This is verified by the numerical results, which are shown in Figure 5.
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Figure 5. Energy spectra for odd parity pair potentials for ∆ = 0.1 and h = 0.03. The parameters are
the same as in Figure 3b.
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For the A1u pairing, Majorana zero modes exist at ky = 0 for the cases of B ‖ y and of B ‖ z,
while they vanish and a gap is generated for the case of B ‖ x. For the A2u pairing, Majorana zero
modes vanish only for the case of B ‖ y. Note that the A2u-pairing state under a magnetic field along
the z direction is the same as the pair-density-wave (PDW) state studied in Ref. [35,36]. There is no
Majorana zero mode for the B1u pairing because the bulk superconducting gap closes at ky = 0. For the
B2u pairing, on the other hand, the bulk superconducting gap closes at ky 6= 0 and remains finite at
ky = 0. Hence Majorana zero modes are emerged at ky = 0 and killed by a magnetic field along the y
direction. The Eu pairings are similar to the B1u and B2u pairings. The bulk gap vanishes at ky = 0 for
the Eu(x) pairing but survives for the Eu(y) paring. The emerged Majorana zero modes are gapped
only when a magnetic field is applied along the z direction. Namely, A1u, A2u, B2u, and Eu(y) pair
potentials, Majorana zero modes vanish for a specific direction of magnetic field, i.e., the Majorana zero
modes respond to the field as a Ising spin. This results on the Majorana Ising spins totally coincide
with those in Table 2.

6. Conclusions

We have derived possible nonzero topological invariants and the direction of Majorana Ising
spin for each irreducible representation of pair potential for time-reversal-invariant superconductors.
The obtained result is the detailed classification in the class-DIII superconductors in one spatial
dimension. Another point of view is a topological extension to the classification of superconducting
pair potential. Our result is general and does not depend on the detail of systems therefore it is useful
for all researchers on superconducting materials. The anisotropy can be detected by the tunneling
spectroscopy under a magnetic field or with a ferromagnetic junction because a zero-bias peak appears
in the presence of the Majorana zero modes [37].

Several examples have been shown for the bilayer Rashba superconductor, D4h, C4v, C2v point
groups, and the Pmma space group. In the other point groups, D6h, D3d, and D3h, another type of
anisotropic response can arise. This will be demonstrated in a separate paper. As for the topological
invariants, we focused only on the Z topological invariant in the paper. To complete the classification,
we also need to clarify the Z2 topological invariant and the related Majorana Ising spins. This issue
will be also addressed in a future paper.
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Appendix A. Bulk-Edge Correspondence in a Lattice Model

In this Appendix, we derive the bulk-edge correspondence, i.e., the number of zero-energy end
states equals to the one-dimensional winding number W, in lattice models.
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Appendix A.1. Number of Edge States

Firstly, we derive the number of zero-energy edge states in the corresponding lattice model with
the r-th neighbor hoppings, generalizing the discussion by W. Izumida et al. [33]. The Hamiltonian is
expressed in a semi-infinite lattice defined in n ≤ 0 as

H = ∑
n≤0

c†
nεcn +

r

∑
q=1

∑
n≤−q

(
c†

ntqcn+q + c†
n+qt†

qcn

)
, ε = ε1τ1 + ε3τ3, tq = tq1τ1 + tq3τ3. (A1)

The Schrödinger equation is given by

Eψn = εψn +
r

∑
q=1

(
tqψn+1 + t†

qψn−1

)
, (A2)

where ψn is the wavefuntion at the n-th site. Now we derive zero-energy (E = 0) end states, whose
fundamental solution of wavefunction has the form

ψn = λ−nφ, (A3)

for |λ| < 1 in the left-half space n ≤ 0. Substituting the above form into the Schrödinger equation,
one obtains [

ε +
r

∑
q=1

(
tqλ−q + t†

qλq
)]

φ = 0. (A4)

Multiplying τ3 to the above equation, one finds that the zero-energy states are chirality eigenstates,
i.e., φ is given by φ = φτχτ for τ2χτ = τχτ with τ = ±1 chirality. φτ is obtain by solving
qτ(λ)φτ = 0 with

qτ(λ) = ε1iτ + ε3 +
r

∑
q=1

{[
tq1iτ + tq3

]
λ−q +

[
t†
q1iτ + t†

q3
]
λq
}

, (A5)

For a nontrivial solution of φτ , the secular equation det qτ(λ) = 0 holds and has [r dim H(k)]
solutions. As a result, the fundamental solutions for the zero-energy end states are obtained to be

ψτ,n = λ−n
j φτ(λj)χτ , λj ∈ Qτ = {λ|det qτ(λ) = 0, |λ| < 1}, qτ(λj)φτ(λj) = 0. (A6)

The number of the independent solutions for the definite chirality τ is |Qτ |.
So as to obtain the physical solutions with a definite chirality τ, a boundary condition is imposed

on the system end n = 0, e.g., the fixed boundary condition ψτ,q = 0 for q ≥ −r + 1. The boundary
condition gives [r dim H(k)/2] conditions. Consequently, one obtains the number of the zero-energy
end states with the chirality of τ to be

Nτ =

∣∣∣∣|Qτ | −
r dim H(k)

2

∣∣∣∣ θ

(
|Qτ | −

r dim H(k)
2

)
. (A7)

One obtains only the trivial solution, ψτ,n = 0, for |Qτ | = r dim H(k)/2. det qτ(λ) = 0 is
equivalent to det qτ(λ)∗ = 0, which is explicitly shown as

det
{

ε1(−iτ) + ε3 +
r

∑
q=1

[
tq1(−iτ) + tq3

]
λq∗ +

r

∑
q=1

[
t†
q1(−iτ) + t†

q3
]
λ−q∗

}
= 0. (A8)
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This means that if solution is given by λ for τ = +1 then the solution for τ = −1 is given by λ∗−1.
Namely, one finds

|Q+|+ |Q−| = r dim H(k). (A9)

From the above condition, the possible (N+, N−) are classified into three cases:

(N+, N−) =


(N, 0), |Q+| >

r dim H(k)
2

,

(0, 0), |Q+| =
r dim H(k)

2
,

(0, N), |Q+| <
r dim H(k)

2
.

(A10)

Appendix A.2. Bulk-Edge Correspondence

Next, we calculate the winding number of the translational-invariant system, which is
described by

H(k) = ε +
r

∑
q=1

(
tqeikq + t†

qe−ikq
)

. (A11)

The winding number is given by

W =
i

4π

∫ π

−π
dktr

[
ΓH(k)−1 ∂H(k)

∂k

]

=
i

4π

∫ π

−π
dk tr

[(
1 0
0 −1

)(
0 q†−1(k)

q−1(k) 0

) 0
∂q(k)

∂k
∂q(k)†

∂k
0

] (A12)

= Im
∫ π

−π

dk
2π

∂

∂k
ln det q(k).

In this way, the basis in which the chiral operator is diagonalized makes it easy to calculate the
winding number. Then we first off-diagonalize the Hamiltonian as

H̃(k) = Λ3(k)τ1 + Λ1(k)τ2, Λj(k) = εj +
r

∑
q=1

(
tqjeikq + t†

qje
−ikq

)
. (A13)

This reduces the winding number to be

W = Im
∫ π

−π

dk
2π

∂

∂k
ln det [Λ3(k)− iΛ1(k)] = Im

∫ π

−π

dk
2π

∂

∂k
ln det q−(e−ik)

= −Im
∮
|λ|=1

dλ

2π

∂

∂λ
ln det q−(λ) = −|Q−|+

r
2

dim H(k),
(A14)

where the integral runs over the unit circle in the complex λ plane along the counter-clockwise direction.
The last line of the above equation is derived with the use of the argument principle because det qτ(λ)

has |Qτ | zeros within the unit circle and is asymptotically given by

det qτ(λ) ∼
1

λr[dim H(k)]/2
det(tr1iτ + tr3), (A15)

which has the order-[r dim H(k)]/2 pole. Thus W = −N− for |Q−| > [r dim H(k)]/2. Because W is
an integer, the above relation is rewritten as

W = W∗ = −Im
∫ π

−π

dk
2π

∂

∂k
ln det [Λ3(k) + iΛ1(k)] = |Q+| −

r
2

dim H(k). (A16)
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The winding number equals W = N+ for |Q+| > [r dim H(k)]/2. We finally arrive at the
bulk-edge correspondence:

W = N+ − N−. (A17)

Appendix B. Representation of Symmetry Operation

Order-2 symmetry operations of space groups are decomposed into the real-space part O(τ) and
spin part Σ;

{U|τ} = O(τ)Σ, (A18)

where τ is half a primitive translation vector. The spin part is independent of the translation. For (screw)
rotations, Σ is taken to be along the (screw) rotational axis. For (glide) reflections, on the other hand,
Σ is perpendicular to the (glide) reflection plane, Σ = s · n, where sx, sy, sz are the Pauli matrices and
n is the unit vector normal to the plane. Note that Σ2 = 1 and Σ anticommutes with time reversal,
{Σ, T } = 0. The real-space part O(τ) commutes with time reversal [O(τ), T ] = 0 and satisfies the
following relation

O(τ)2 = {1|2τ} = ei2k·τ , (A19)

in the momentum space. Therefore, the chiral operator is given by

Γ{U|τ} = e−ik·τ{U|τ}τy, Γ2
{U|τ} = 1. (A20)

In this choice, we obtain the commutation relation of Γ{U|τ} and time reversal T ;

{T , Γ{U|0}} = 0, (A21)

{T , Γ{U|τ}} = 0, for eik·τ = 1, (A22)

[T , Γ{U|τ}] = 0, for eik·τ = ±i. (A23)

For nonsymmorphic symmetry operations, τ 6= 0, representations at the zone center are different
from those at the zone boundary.

Appendix C. Tables for Irreducible Representations and Majorana Ising Spins

We show several examples of topological invariants W[Ũi, x⊥] under the D4h, C4v, and C2v
point-group symmetries in Table A1. The nonzero topological invariants, W[Ũi, x⊥], are derived by
applying Equation (23) to each representation. We also show the case for the space group Pmma that is

{{C2(z)|a/2}, {C2(x)|a/2}, {C2(y)|0}, {σ(xy)|a/2}, {σ(yz)|a/2}, {σ(xz)|0}} , (A24)

in Table A2, solving Equation (20) and the commutators, p(Ũj, Ũl), which are defined by
UjUl = p(Uj, Ul)UlUj, for the symmetry operations Uj in the Pmma group (Table A3). p(Uj, Ul) is
calculated in the same manner as in Ref. [38]. Note that the topological invariants for glide reflections
vanish, W[{U|a/2}, x⊥] = 0, for kxax = π, as discussed in Section 3.3. And also, Majorana fermions
do not appear on the (yz) plane even for W[{U|a/2}, x] 6= 0 since the nonsymmorphic symmetry
involving the half translation of a/2 is broken on the (yz) surface. Finally, the Majorana Ising spin
protected by W[Ũi, x⊥] is obtained to be parallel to the rotational axis for Ũi = C̃2 or normal to the
mirror plane for Ũi = σ, respectively, as explained in Section 2.
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Table A1. Possible topological invariants W[Ũi, x⊥] and the direction of the Majorana Ising spin on
the given surfaces for each irreducible representation of D4h, C4v, and C2v. The surface is denoted by
the mirror index (hkl) or the Cartesian coordinate (xixj). xσ of W[σ, xσ] is the direction normal to the
surface and is on the σ mirror plane. The C′2 axis is set to the x axis. The representations Eu(x) and
Eu(y) are defined in the bottom table.

D4h W [U, x⊥] (001) (100) (110)

A1u W[Cn], W[C′2], W[C′′2 ] [001] [100] [110]
A2u W[σv, xσv 6= [001]], W[σd, xσd 6= [001]] 0 [010] [11̄0]
B1u W[C′2], W[σd, xσd 6= [001]] 0 [100] [11̄0]
B2u W[C′′2 ], W[σv, xσv 6= [001]] 0 [010] [110]

D4h W [U, x⊥] (001) (100) (010) (110)

Eu(x) W[σv(010), xσv(010) 6= [100]], W[σh, xσh 6= [100]] [010] 0 [001] [001]
Eu(y) W[σv(100), xσv(100) 6= [010]], W[σh, xσh 6= [010]] [100] [001] 0 [001]

C4v W [U, x⊥] (001) (100) (110)

A1 W[σv, xσv 6= z], W[σd, xσd 6= z] 0 [010] [11̄0]
A2 W[C2] [001] 0 0
B1 W[σv, xσv 6= z] 0 [010] 0
B2 W[σd, xσd 6= z] 0 0 [11̄0]

E(x) W[σv(zx), xσv(zx) 6= x] [010] 0 0
E(y) W[σv(yz), xσv(yz) 6= y] [100] 0 0

C2v W [U, x⊥] (xy) (yz) (zx)

A1 W[σv(zx), xσv(zx) 6= z], W[σv(yz), xσv(yz) 6= z] 0 y x
A2 W[C2] z 0 0
B1 W[σv(zx), xσv(zx) 6= x] y 0 0
B2 W[σv(yz), xσv(yz) 6= y] x 0 0

D4h C2 C′
2(x) C′

2(y) σh σv(yz) σv(xz)

Eu(x) − + − + − +
Eu(y) − − + + + −

Table A2. Possible topological invariants W[Ũi, x⊥] in the Pmma space group for kxax = 0 (upper) and
kxax = π (lower).

Pmma W [U, x⊥](kx = 0) (xy) (yz) (xz)

Ag 0 0 0 0
B1g 0 0 0 0
B2g 0 0 0 0
B3g 0 0 0 0
Au W[{C2(z)|a/2}], W[{C2(x)|a/2}], W[{C2(y)|0}] z 0 x

W[{σ(xy)|a/2}, xσ(xy) 6= x, y}]
W[{σ(yz)|a/2}, xσ(yz) 6= y, z}]

W[{σ(xz)|0}, xσ(xz) 6= x, z}]
B1u W[{σ(xy)|a/2}, xσ(xy) 6= x, y}] 0 y x

W[{σ(yz)|a/2}, xσ(yz) 6= z}]
W[{σ(xz)|0}, xσ(xz) 6= z}]

B2u W[{σ(xy)|a/2}, xσ(xy) 6= y}] x 0 0
W[{σ(yz)|a/2}, xσ(yz) 6= y}]
W[{σ(xz)|0}, xσ(xz) 6= x, z}]

B3u W[{σ(xy)|a/2}, xσ(xy) 6= x}] y 0 z
W[{σ(yz)|a/2}, xσ(yz) 6= y, z}]

W[{σ(xz)|0}, xσ(xz) 6= x}]
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Table A2. Cont.

Pmma W [U, x⊥](kxax = π) (xy) (yz) (xz)

Ag W[{σ(yz)|a/2}, xσ(yz) 6= z] 0 0 x
B1g W[{C2(z)|a/2}] z 0 0

W[{σ(xy)|a/2}, xσ(xy) 6= y]
W[{σ(yz)|a/2}, xσ(yz) 6= y, z]

B2g W[{σ(xy)|a/2}, xσ(xy) 6= x, y] 0 0 0
W[{σ(yz)|a/2}, xσ(yz) 6= y, z]

B3g W[{σ(xy)|a/2}, xσ(xy) 6= x, y] x 0 0
W[{σ(yz)|a/2}, xσ(yz) 6= y]

Au W[{σ(xz)|0}, xσ(xz) 6= x, z] 0 0 0
B1u W[{σ(xz)|0}, xσ(xz) 6= z] 0 y 0
B2u W[{C2(y)|0}], W[{σ(xz)|0}, xσ(xz) 6= x, z] 0 0 y
B3u W[{C2(x)|a/2}], W[{σ(xz)|0}, xσ(xz) 6= x] y 0 0

Table A3. Commutator p(Uj, Ul) = U−1
j U−1

l UjUl for the Pmma group. A row and column correspond
to Uj and Ul , respectively.

{C2(z)|a/2} {C2(x)|a/2} {C2(y)|0} {σ(xy)|a/2} {σ(yz)|a/2} {σ(xz)|0}

{C2(z)|a/2} 1 −eikx ax −eikx ax eikx ax −1 −1
{C2(x)|a/2} −e−ikx ax 1 −e−ikx ax −1 eikx ax −1
{C2(y)|0} −e−ikx ax −eikx ax 1 −eikx ax −eikx ax 1
{σ(xy)|a/2} e−ikx ax −1 −e−ikx ax 1 −e−ikx ax −1
{σ(yz)|a/2} −1 e−ikx ax −e−ikx ax −eikx ax 1 −1
{σ(xz)|0} −1 −1 1 −1 −1 1
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