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Abstract: A theoretical study of the structural, elastic, and mechanical properties of B19 TiAl
intermetallic compound with orthorhombic structure has been carried out by using ab initio density
functional theory calculations based on the projector augmented wave and the generalized gradient
approximation. The optimized structure parameters are found to be in agreement with the available
experimental data. The orthorhombic B19 structure of TiAl is found to be mechanically stable
at ground state in terms of formation energy and single crystal elastic constants. Additionally,
the polycrystalline bulk, shear and Young’s moduli, Poisson’s ratio, Cauchy pressure, and anisotropy
factors are obtained from the single crystal elastic constants. At ground state, the B19 TiAl is found
to not only have intrinsic brittleness in terms of Pugh’s ratio, Poisson’s ratio, and Cauchy pressure,
but also exhibit elastic anisotropy in terms of elastic anisotropy factors and orientation dependence
of Young’s modulus.
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1. Introduction

γ-TiAl-based intermetallics with low densities and superior high-temperature properties are
extensively recognized as promising light-weight high-temperature structural materials for aerospace
and automotive applications [1]. However, a broad industrial implementation of these intermetallics is
severely inhibited by their room-temperature brittleness and limited hot workability. Alloying and
heat treatments are effective ways to overcome the brittleness and to improve the hot workability.
The usage of these techniques can lead to the formations of several lower symmetry ordered phases in
the microstructure [1–3]. Among lower symmetry phases, the orthorhombic B19 phase is commonly
observed in γ-TiAl-based intermetallics. Abe et al. [2] reported the formation of B19 TiAl phase in
metastable α2 (D019 structure) phase after rapid cooling in a Ti–48Al alloy. Tanimura et al. [4] observed
the appearance of B19 TiAl phase during the structural change from α (A3 structure) to α2 + γ (L10

structure) lamellar structures in a Ti–40Al alloy. Ducher et al. [5] observed the variants of B19 TiAl
phase to form in Fe containing γ matrix in Ti–48Al–2Cr–2Nb alloy. Appel et al. [3] made a careful
observation of B19 phase in Ti–(40-44)Al–8.5Nb alloys and admitted the B19 phase to be a transitional
phase between the cubic β (A2 structure) and/or βo (B2 structure) phase and the orthorhombic
O–Ti2AlNb phase. Additionally, the occurrence of B19 phase was observed by Schmoelzer et al. [6]
in Ti–45Al–3Mo–0.1B alloy and by Song et al. [7] in Ti–45Al–8.5Nb–0.2W–0.2B–0.02Y alloy, which
facilitates the precipitation of γ phase from α2 phase. The existence of B19 phase has a significant
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impact on the mechanical properties of the intermetallics [3,8–10]. Therefore, it is necessary to study
the mechanical properties of B19 phase to better understand its role in γ-TiAl-based intermetallics.

Elastic constants are fundamental and indispensable to describe the mechanical properties of
materials. They can be used to determine the bulk modulus B, shear modulus G, Young’s modulus E,
Poisson’s ratio ν, Cauchy pressure, and elastic anisotropy factor of materials. It is very obvious that
the elastic constants play an important role in determining the strength of the materials. Furthermore,
Pugh [11] has introduced the ratio between the shear modulus and the bulk modulus (G/B) to
distinguish the ductile/brittle behaviors of materials. A low (high) G/B value is correlated with
the ductility (brittleness) of the materials. The critical value of the brittle-to-ductile transition was
observed to be 0.5. Pettifor [12] has introduced the Cauchy pressure to describe the angular character
of atomic bonding related to the ductile/brittle characteristics of the materials. He suggested that a
larger positive Cauchy pressure corresponds to a ductile material with more metallic bonds, whereas
larger negative values indicate a brittle behavior with a more angular character of bonds. Additionally,
Frantsevich et al. [13] have distinguished the ductility/brittleness of the materials in terms of Poisson’s
ratio. The ductile materials have a larger Poisson’s ratio than 1/3. Besides, the elastic constants can
be also used to judge the mechanical stability of the materials with different crystal structures [14].
Therefore, a comprehensive analysis of elastic properties is necessary for better understanding the
mechanical properties of the materials.

With the rapid development of computer technology and computational science, the ab initio
calculation method has become an effective technique to study the properties of materials. In recent
years, the ab initio calculation method has been successfully used in investigating the elastic and
mechanical properties of some Ti–Al intermetallic compounds [15–22]. Besides, Nguyen-Manh and
Pettifor [23,24] have successfully studied the structural phase transitions related to the B19 phase in
γ-TiAl-based intermetallics by using ab initio calculations. Most recently, Holec et al. [25] took the ab
initio calculation method to study the preferential site occupations of ternary elements in B19 TiAl.
To our knowledge, the elastic and mechanical properties of B19 TiAl have not been reported in the
literature. Motivated by the interest in the elastic and mechanical properties of B19 TiAl, in this paper
we first determine its single crystal elastic constants by using ab initio calculations. Subsequently,
we further investigate the polycrystalline elastic and mechanical properties of B19 TiAl. The rest of the
arrangements are as follows: Section 2 describes the computational methodology in brief. Section 3
presents the single crystal elastic constants, polycrystalline elastic moduli, and elastic anisotropy along
with detailed discussions. Finally, the conclusions are drawn in Section 4.

2. Computational Methodology

2.1. Computational Details

Ab initio calculations on orthorhombic B19 TiAl were performed using the density functional
theory (DFT) based on the projector augmented wave [26] and the generalized gradient approximations
(GGA) parameterized by Perdew, Burke, and Ernzerhof (PBE) [27,28], as implemented in the Vienna
Ab initio Simulation Package (VASP) [29–31]. The configurations Ti 3s23p63d24s2 and Al 3s23p1

were treated as the valence electrons. An energy cutoff of 600 eV was used for the expansion of
electronic wave functions. A convergence threshold of 10−6 eV was used for the total energy of the
electronic self-consistency. A K-point mesh of 11 × 19 × 11 was generated using the Monkhorst–Pack
scheme [32] for numerical integrations over the Brillouin zone of B19 TiAl. Before the calculations of
elastic constants, the structure was fully relaxed with respect to the volume, shape, and internal atomic
positions until the atomic forces were less than 0.01 eV/Å for unit cell.

2.2. Calculations of Elastic Constants

An orthorhombic crystal has nine independent second-order elastic constants C11, C22, C33, C12,
C13, C23, C44, C55, and C66. We take two different ab initio techniques to determine the nine single
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crystal elastic constants of orthorhombic B19 TiAl. One is the energy density method (EDM), in which
the elastic constants are defined as the second derivatives of the strain energy per volume with respect
to the selected strain [33–35]. After imposing a small Lagrangian strain η on the perfect unit cell with
the equilibrium structural parameters, the strain energy density (∆E/V0) can be Taylor expanded in
powers of the strain tensor as

∆E
V0

=
1
2!

6

∑
i,j=1

Cijηiηj + O
(

η3
)

, (1)

where V0 is the volume of the perfect unit cell, and Cij represents the second-order elastic constants
in the Voigt notation, which replaces xx, yy, zz, yz, xz, and xy by 1, 2, 3, 4, 5, and 6, respectively.
To obtain the second-order elastic constants of B19 TiAl, we selected nine different strain modes given
in Table 1 to impose on the perfect unit cell with the equilibrium structural parameters. To minimize
the errors coming from higher-order terms, eleven strain energy data were calculated by varying the
value of tensor parameter δ from −0.015 to 0.015 in steps of 0.003 for each strain mode. The elastic
constants Cij can derive from the resulting variation in the strain energy density. Another is the
strain–stress method (SSM) embedded in the VASP, in which the elastic constants are defined as the
first derivatives of the stresses with respect to the strain tensor [36]. The elastic tensor is determined by
performing six finite distortions of the lattice and deriving the elastic constants from the strain–stress
relationship. The elastic tensor is calculated both for rigid ions, as well, as allowing for relaxation of
the ions. The ionic contributions are determined by inverting the ionic Hessian matrix and multiplying
it with the internal strain tensor [37,38]. The final elastic constants include both the contributions for
distortions with rigid ions and the contributions from the ionic relaxations.

Table 1. Selected strains (η) and the corresponding strain energy densities (∆E/V0) for orthorhombic
B19 TiAl [34].

No. η ∆E/V0

D1 (δ, 0, 0, 0, 0, 0) 1/2C11δ2

D2 (0, δ, 0, 0, 0, 0) 1/2C22δ2

D3 (0, 0, δ, 0, 0, 0) 1/2C33δ2

D4 ((1−δ2)−1/3−1, (1−δ2)−1/3−1, (1−δ2)−1/3−1, 2δ(1−δ2)−1/3, 0, 0) 2C44δ2

D5 ((1−δ2)−1/3−1, (1−δ2)−1/3−1, (1−δ2)−1/3−1, 0, 2δ(1−δ2)−1/3, 0) 2C55δ2

D6 ((1−δ2)−1/3−1, (1−δ2)−1/3−1, (1−δ2)−1/3−1, 0, 0, 2δ(1−δ2)−1/3) 2C66δ2

D7 ((1+δ)(1−δ2)−1/3−1, (1−δ)(1−δ2)−1/3−1, (1−δ2)−1/3−1, 0, 0, 0) 1/2(C11+C22−2C12)δ2

D8 ((1+δ)(1−δ2)−1/3−1, (1−δ2)−1/3−1, (1−δ)(1−δ2)−1/3−1, 0, 0, 0) 1/2(C11+C33−2C13)δ2

D9 ((1−δ2)−1/3−1, (1+δ)(1−δ2)−1/3−1, (1−δ)(1−δ2)−1/3−1, 0, 0, 0) 1/2(C22+C33−2C23)δ2

3. Results and Discussion

3.1. Structural Properties

Table 2 gives the calculated equilibrium lattice constants and atomic Wyckoff positions of B19
TiAl in this work. From the selected-area electron diffraction patterns, Abe et al. [2] measured the
lattice parameters of B19 TiAl to be a = 4.5 Å, b = 2.8 Å, and c = 4.9 Å. Ducher et al. [5] estimated
the lattice parameters of B19 TiAl to be a = 4.65 Å, b = 2.828 Å, and c = 4.94 Å, in the unit cell
of which Ti and Al atoms occupy the respective Wyckoff positions (1/4, 0, 5/6) and (1/4, 1/2,
1/3). Song et al. [7] measured the lattice parameters of B19 phase to be a = 4.64 Å, b = 2.90 Å, and
c = 5.10 Å. From high-energy X-ray diffraction patterns, Schmoelzer et al. [6] measured the lattice
parameters of B19 phase to be a = 4.65 Å, b = 2.93 Å, and c = 4.95 Å. These experimental data are
also given in Table 2 for comparison. It is found that the maximum deviations of the calculated
equilibrium lattice constants a, b, and c correspond to 2.94%, 2.29%, and 4.03% as compared with
the respective experimental values. Furthermore, the calculated equilibrium atomic positions are in
agreement with the respective experimental values [5]. These indicate that our calculated results agree
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basically with the available experimental results. Moreover, the formation energy Ef of B19 TiAl is
defined as Ef = [E(TiAl) − 2E(Ti) − 2E(Al)]/4, where E(TiAl) is the total energy of the whole unit cell,
i.e., per 4 atoms, and E(Ti) and E(Al) correspond to the total energy per atom of Ti and Al elements in
their standard states. The calculated formation energy is −0.416 eV/atom, indicating that B19 TiAl is
energetically stable.

Table 2. The equilibrium lattice constants (a, b, c) and atomic Wyckoff positions (x, y, z) of B19 TiAl.

Method a (Å) b (Å) c (Å) Atoms x y z

This work 4.632 2.863 4.895 Ti 1/4 0 0.8398
Al 1/4 1/2 0.3392

Exp. [2] 4.50 2.80 4.90
Exp. [6] 4.65 2.93 4.95
Exp. [5] 4.65 2.828 4.94 Ti 1/4 0 5/6

Al 1/4 1/2 1/3
Exp. [7] 4.64 2.90 5.10

3.2. Elastic and Mechanical Properties

The relation between the variation in energy and the tensor parameter of orthorhombic B19 TiAl
for each selected strain mode is fitted with a quadratic polynomial and a cubic polynomial, respectively.
The second-order coefficient in the cubic polynomial fitting is found to be in agreement with that in the
quadratic one because the small strains within ±0.015 may avoid the influence of higher-order terms
on the computed coefficient. After numerically obtaining the second-order coefficients in the quadratic
polynomials, the elastic constants Cij can be determined using the equilibrium lattice parameters.
The calculated results are listed in Table 3. Obviously, the elastic constants obtained by using two
ab initio techniques are in basic agreement with each other. The deviations are partially due to the
calculation techniques and fitting errors. Unfortunately, there are no available experimental and
theoretical values to check our calculated results. The obtained results in the present work could
provide a useful reference for future studies. Moreover, an orthorhombic crystal will be mechanically
unstable until its elastic constants satisfy the following necessary and sufficient conditions [14]:

C11 > 0, C11C22 − C2
12 > 0,

C11C22C33 + 2C12C13C23 − C11C2
23 − C22C2

13 − C33C2
12 > 0

C44 > 0, C55 > 0, C66 > 0 .
(2)

Table 3. The elastic stiffness (Cij in GPa) and compliance (Sij in GPa−1) constants of B19 TiAl.

Method EDM SSM

ij Cij Sij Cij Sij
11 206.58 0.00560 206.90 0.00553
22 191.33 0.00684 193.56 0.00660
33 216.70 0.00556 218.56 0.00544
44 53.16 0.01881 56.15 0.01781
55 55.37 0.01806 54.17 0.01846
66 73.08 0.01368 74.66 0.01339
12 70.73 −0.00183 68.03 −0.00170
13 48.15 −0.00055 47.40 −0.00058
23 82.07 −0.00218 79.65 −0.00204

It is clear that the orthorhombic B19 TiAl is mechanically stable in terms of our calculated
elastic constants.

From the single crystal elastic constants data, the polycrystalline bulk modulus B and shear
modulus G can be usually calculated by using the Voigt approximation [39] and the Reuss
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approximation [40] methods. For an orthorhombic crystal, the Voigt bulk (BV) and shear (GV) moduli
are given by

BV = 1
9 (C11 + C22 + C33 + 2C12 + 2C13 + 2C23),

GV = 1
15 (C11 + C22 + C33 + 3C44 + 3C55 + 3C66 − C12 − C13 − C23).

(3)

The Reuss bulk (BR) and shear (GR) moduli are given by

BR = 1
(S11+S22+S33)+2(S12+S13+S23)

,

GR = 15
4(S11+S22+S33)−4(S12+S13+S23)+3(S44+S55+S66)

,
(4)

where the Sij (=Cij
-1) are the elastic compliance constants. Hill [41] proposed that the effective bulk

(B) and shear (G) moduli should be the arithmetic averages of the Voigt and Reuss bulk (BV, BR) and
shear (GV, GR) moduli in practice, namely B = (BV + BR)/2 and G = (GV + GR)/2. Further, the Young’s
modulus E and Poisson’s ratio ν can be given by

E = 9BG
3B+G ,

ν = 3B−2G
2(3B+G)

. (5)

Table 4 gives the calculated results of the polycrystalline bulk modulus B, shear modulus G,
Young’s modulus E, and Poisson ratio ν of orthorhombic B19 TiAl. The B measures the resistance of a
material to a volume change. The G measures the resistance of a material to a shape change. The E is
defined as the ratio of tensile stress to tensile strain and often used to provide a measure of the stiffness
of the solid. The larger the value of E, the stiffer the material. The calculated values of B, G, and E of
B19 TiAl from the EDM are lower 0.13%, 10.84%, and 9.01% lower than the corresponding theoretical
values of γ-TiAl (113, 70.6, and 175 GPa) and 1.87%, 15.16%, and 12.98% lower than the corresponding
theoretical values of α2-Ti3Al (115, 74.2, and 183 GPa) [42]. These indicate that the plastic deformation
of B19 TiAl is easier and its compliancy higher than γ-TiAl and α2-Ti3Al.

Table 4. The Voigt, Reuss, and Hill bulk (BV, BR, B in GPa) and shear (GV, GR, G in GPa) moduli,
Young’s modulus (E in GPa) and Poisson ratio (ν) of polycrystalline B19 TiAl.

Method BV BR B GV GR G E ν

EDM 112.95 112.75 112.85 63.90 62.00 62.95 159.24 0.265
SSM 112.13 111.92 112.02 65.26 63.41 64.34 161.99 0.259

As mentioned in Section 1, Pugh’s ratio (G/B), Cauchy pressure, and Poisson’s ratio can allow us
to know the ductile/brittle nature of a material. According to the Pugh’s ratio [11], a material behaves
in a ductile manner if G/B < 0.5; otherwise, it should be brittle. The G/B ratios of 0.558 and 0.574
can be obtained from two ab initio techniques for B19 TiAl. It is clear that both G/B ratios are larger
than 0.5. The calculated G/B ratios of B19 TiAl from the EDM is 10.03% and 14.18% lower than the
theoretical data of γ-TiAl (0.62) and α2-Ti3Al (0.65) [42], respectively, indicating that B19 TiAl is more
ductile than γ-TiAl and α2-Ti3Al. Experimentally, Appel et al. [3,8–10] have measured the mechanical
properties of γ-TiAl-based intermetallics with the microstructure containing B19 phase and found that
the existence of B19 structure can give the intermetallics relatively high tensile ductility. According to
Pettifor’s rule [12], a material has more metallic (angular) bonds and thus is more ductile (brittle) if it
has a larger positive (negative) Cauchy pressure. For the orthorhombic system, the Cauchy pressures
can be defined as C23−C44 for the (100) plane, C13−C55 for the (010) plane, and C12−C66 for the (001)
plane. Based on the single crystal elastic constants obtained from the two techniques, the calculated
values are 28.91 GPa and 23.50 GPa for the pressure (C23−C44), −7.22 GPa and −6.77 GPa for the
pressure (C13−C55), and −2.34 GPa and −6.63 GPa for the pressure (C12−C66) for B19 TiAl. The results
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indicate that the bonding in the (100) plane have a strong metallic character, whereas those in the (010)
and (010) planes have an angular character. According to Frantsevich’s rule [13], a material is brittle if
its Poisson’s ratio is less than 1/3, otherwise the material is ductile. The Poisson’s ratios of 0.265 and
0.259 can be obtained from the two techniques for B19 TiAl. It is clear that both of the Poisson’s ratios
are also less than 1/3. From the above, it can be clearly shown that B19 TiAl is brittle in nature.

The elastic constants C11, C22, and C33 and C44, C55, C66, C12, C13, and C23 are closely related to the
elasticity of length and shape, respectively. As shown in Table 2, the elastic constant C11 is larger than
C22 and smaller than C33 for B19 TiAl, implying the anisotropy of its elasticity. The elastic anisotropy
can be described by the bulk modulus (Ba, Bb, and Bc) along the axes a, b, and c [34]. The axial bulk
modulus are given by

Ba = a dP
da = χ

1+α+β ,
Bb = b dP

db = Ba
α ,

Bc = c dP
dc = Ba

β ,
χ = C11 + 2C12α + C22α2 + 2C13β + C33β2 + 2C23αβ,

α = (C11−C12)(C33−C13)−(C23−C13)(C11−C13)
(C33−C13)(C22−C12)−(C13−C23)(C12−C23)

,

β = (C22−C12)(C11−C13)−(C11−C12)(C23−C12)
(C22−C12)(C33−C13)−(C12−C23)(C13−C23)

.

(6)

With respect to the b axis, the anisotropies of the bulk modulus along the axes a and c are defined as

Aa =
Ba
Bb

= α,
Ac =

Bc
Bb

= α
β .

(7)

The calculated values of Ba, Bb, Bc, and Aa, Ac are listed in Table 5. It is clear that the value of Ba is
significantly smaller than those of Bb and Bc for two different ab initio techniques, whereas in both
cases the value of Bb is very close to that of Bc. The results indicate that the compressibility along the a
axis is the largest whereas those along the axes b and c are very close to each other. Additionally, it is
found that the value of Aa is significantly smaller than one, whereas that of Ac is very close to one.
For an isotropic crystal the values of Aa and Ac must be one, while any departures from one measure
the anisotropic degree of the crystal. Hence, B19 TiAl is an elastic anisotropic crystal.

Table 5. The bulk modulus along the axes a, b, c (Ba, Bb, Bc in GPa) and anisotropic factors (Aa, Ac) of
B19 TiAl.

Method
Axial Bulk Modulus Anisotropy Factor

Ba Bb Bc Aa Ac

EDM 311.15 354.10 353.23 0.879 0.998
SSM 308.25 349.40 353.49 0.882 1.012

In addition to the axial bulk modulus, the shear anisotropy factors (A{100}, A{010}, and A{001}) in the
atomic bonding for {100}, {010}, and {001} planes can be calculated in terms of the elastic constants [34],
which are given by

A{100} =
4C44

C11+C33−2C13
,

A{010} =
4C55

C22+C33−2C23
,

A{001} =
4C66

C11+C22−2C12
.

(8)

For an isotropic crystal the values of A{100}, A{010}, and A{001} must be one, while any departures
from one are a measure of the anisotropic degree of the crystal. Chung and Buessem [43] have
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introduced the percent anisotropy factors of bulk modulus (AB) and shear modulus (AG) to measure
the crystal anisotropy, which are defined as

AB = BV−BR
BV+BR

× 100%,
AG = GV−GR

GV+GR
× 100%.

(9)

Ranganathan and Ostoja-Starzewski [44] have introduced a universal anisotropy factor to measure
the crystal anisotropy, which is defined as

AU = 5
GV

GR
+

BV

BR
− 6. (10)

For an isotropic crystal the values of AB, AG, and AU must be zero, while any departures from
zero are a measure of the anisotropic degree of the crystal. The calculated values of various anisotropy
factors are listed in Table 6. It is clear that the values of A{100}, A{010}, and A{001} are all departed from
one and the A{100} has the largest absolute deviation from one, which indicates that the shear anisotropy
for the {100} plane is the strongest. Additionally, it is observed that all of AB, AG, and AU have nonzero
positive values, and the value of AG is significantly larger than that of AB. These show that B19 TiAl is
elastic anisotropic and exhibits a small anisotropy of bulk modulus but a high anisotropic degree of
shear modulus.

Table 6. The shear anisotropy factors (A{100}, A{010}, and A{001}), percent anisotropy factors of bulk (AB)
and shear (AG) moduli, and universal anisotropy factor (AU) of B19 TiAl.

Method A{100} A{010} A{001} AB (%) AG (%) AU

EDM 0.650 0.908 1.140 0.086 1.508 0.155
SSM 0.679 0.857 1.130 0.095 1.437 0.148

Nevertheless, these factors are not enough for the complete description of the elastic anisotropic
behavior of the crystals. As a matter of fact, the orientation dependence of Young’s modulus E is usually
employed to analyze the elastic anisotropy of the crystals. For an orthorhombic crystal, the Young’s
modulus in any orientation is given by [45]

1
E
= S11l4

1 + (2S12 + S66)l2
1 l2

2 + S22l4
2 + (2S23 + S44)l2

2 l2
3 + S33l4

3 + (2S13 + S55)l2
1 l2

3 , (11)

where l1, l2, and l3 are direction cosines. Figure 1 shows the orientation dependent Young’s modulus
of B19 TiAl calculated by using the elastic compliance constants obtained from two different ab initio
techniques. It is clear that the Young’s modulus surface of the energy density method is overall similar
in contour to that of the strain–stress method. The Young’s modulus surface is a perfect spherical
surface for an isotropic crystal, but are both not the case for B19 TiAl. Furthermore, the orientation
dependence of Young’s modulus in the ab, bc, and ca planes are shown in Figure 2a–c, respectively.
The orbit of Young’s modulus in any plane should be a perfect circle for an isotropic crystal, but are
also not the case for B19 TiAl. These clearly show that B19 TiAl exhibit elastic anisotropy.
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Figure 2. The orientation dependent Young’s modulus of B19 TiAl in the ab plane (a) with the tensile
axis rotated from [100] to [010], the bc plane (b) with the tensile axis rotated from [010] to [001], and the
ca plane (c) with the tensile axis rotated from [001] to [100]. The solid and dashed lines represent the
calculated values of the energy density and the strain–stress methods, respectively.
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4. Conclusions

First-principles calculations have been performed in order to predict the structural, elastic,
and mechanical properties of orthorhombic B19 TiAl intermetallic compound at ground state.
The calculated lattice parameters and atomic positions are in agreement with the available experimental
data. The calculated formation energy shows that B19 TiAl is energetically stable. Moreover, the single
crystal elastic constants are also determined by using the energy density and the strain–stress methods,
respectively. The obtained elastic constants show that the orthorhombic B19 TiAl is mechanically
stable. Further, the polycrystalline bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio,
Cauchy pressure, and anisotropy factors of B19 TiAl are calculated in terms of its single crystal elastic
constants. From the calculated Pugh’s ratio, Cauchy pressure, and Poisson’s ratio, it is shown that B19
TiAl has intrinsic brittleness. A smaller Pugh’s ratio of B19 TiAl than γ-TiAl and α2-Ti3Al indicates
its relative ductility. Various anisotropy factors and the orientation dependence of Young’s modulus
of B19 TiAl show its anisotropy of elasticity. Because there are no available experimental values of
elastic properties in the literature for B19 TiAl, we think that the first-principles estimation is the only
reasonable tool for obtaining such important information.
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