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Abstract: A review on mathematical elasticity of quasicrystals is given. In this review, the focus is on
various defects of quasicrystals. Dislocation and crack are two classes of typical topological defects,
while their existence has great influence on the mechanical behavior of quasicrystals. The analytic and
numerical solutions of dislocations and crack in quasicrystals are the core of the static and dynamic
elasticity theory, and this paper gives a comprehensive review on the solutions for dislocations and
crack with different configurations in different various important quasicrystalline systems. We review
some results in linear elasticity of quasicrystals, referring to different boundary value problems.
We also add some new achievements.

Keywords: quasicrystals; elasticity; crack; stress intensity factor; Dugdale model

1. Introduction

Quasicrystals are inter-metallic solids characterized by quasi-periodic long-range translational
symmetry and absence of the standard periodicity of crystals. Their existence was first recognized
in 1984 by Shechtman et al. by evaluating diffraction patterns obtained on specimens of rapidly
solidified alloys. This discovery was awarded the Nobel Prize of Chemistry 2011 [1]. Soon after the
discovery of the novel matter, elasticity, dynamics of elasticity, defects and other subjects concerning
mechanical behavior of quasicrystalline materials become an intensive subject of researches in theory
and experiment and attracted considerable attention of researchers [2–7]. Quasicrystal is deformable
under external loads, and certain thermal loads. About the elasticity of quasicrystals, the theoretical
physicists have provided various descriptions for quasicrystals. The phenomenological theory of
Landau and Lifshitz on the elementary excitation of condensed matters was essentially regarded as
the physical basis of elasticity of quasicrystals, and two types of excitations, phonons and phasons,
were considered for quasi-periodicity of materials [8–15]. In essence, the quasicrystal mechanical
behavior falls within the general framework for building models in the mechanics of complex materials:
inner degrees of freedom are attributed to every material element besides the degrees of freedom in
two- or three-dimensional ambient space. By exploiting a general model-building framework for the
mechanics of complex continua [16–18], they are deemed that there are two displacement fields u and
w, in which the former u named as the phonon field is similar to that in crystals; the latter w named as
the phase field is defined over the body. Thus, the total displacement field in a quasicrystal can be
expressed by

u = u‖ ⊕ u⊥ = u⊕w (1)

where u is in the parallel space or the physical space; w is in the complement space or the perpendicular
space, which is an internal space; and⊕ denotes the direct sum. Based on the above physical framework
and the extended methodology in mathematical physics from classical elasticity, the independent elastic
constants for different symmetries of quasicrystals can be determined [19–24]. Then, the mathematical
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elasticity theory of quasicrystals has been developed rapidly. In 2004, Fan and Mai give a review
based on the static elasticity theory of various quasicrystals [25]. Fan and his workers devoted to
development of a mathematical elasticity theory of quasicrystals and its applications [26]. First
Levine and Lubensky et al. obtained many solutions for the elasticity and dislocations in pentagonal
and icosahedral quasicrystals [27]. Then, Li provided two analytical solutions for a decagonal
quasicrystal with a Griffith crack and a straight dislocation [28,29]. Based on one-dimensional
hexagonal quasicrystals, Chen studied a three-dimensional elastic problem and gave a general solution
for this problem [30]. Liu et al. obtained the governing equations for plane elasticity of one-dimensional
quasicrystals and the general solutions [31]. Based on the stress potential function, Li accomplished
notch problem of two-dimensional quasicrystals [32]. Wang and Gao et al. obtained some solutions
for some elastic problems of some one-, two-dimensional quasicrystal [33–35]. Coddens deduced
the elasticity and dynamics of the phason and phonon in some quasicrystals [36]. Wang et al. and
Guo et al. discussed the phonon- and phason-type inclusions in icosahedral quasicrystals and an
elliptical inclusion in hexagonal quasicrystals [37,38]. More recently, the phonon–phason elasticity of
quasicrystals attracted a lot of attention. For example, Radi and Mariano focused their attention on the
straight cracks and dislocations in two-dimensional quasicrystals, and described linear elasticity of
quasicrystals and obtained some profound results for [39–41]. Li and his workers induced fundamental
solutions for thermo-elasticity of one-dimensional hexagonal quasicrystals with half infinite plane
cracks and obtained some solutions [42–44]. Of course, elastic theory of quasicrystals has been
developed by some researchers (for example, Li and Chai [45] and Sladek et al. [46]). A mass of
experimental observations have been provided for plastic deformation of quasicrystals based on
dislocation mechanism by Wollgarten et al., Feuerbacher et al., and Messerschmidt et al. [47–49].
Through a series of experimental observations, many studies have also been executed based on the
deformed Al-Pd-Mn single quasicrystals [50–53].

We have cited 53 references in this review article. We also obtain some new achievements.
For example, the crack opening displacement of an extended Dugdale model for anti-plane
quasicrystals and the stress intensity factor of an elastic problem of plane problem of two-dimensional
quasicrystals with elliptical hole with double cracks are deduced by using potential theory, which are
expressed in terms of closed form.

2. Fundamental Equations of Quasicrystals

Referring to a quasicrystal, in which phonon and phason fields exist simultaneously. Based
on the cut-and-projection theory, quasicrystals can be understood as a three-dimensional projection
of a higher-dimensional periodic space, with a huge number of field variables and field equations
involving its elasticity. The displacement vectors are labeled as u = (u1, u2, u3) for phonon field
and w = (w1, w2, w3) for phason field, respectively, which are both dependent on the spatial point
x = (x1, x2, x3) in the real space. Similar to classical elasticity, there are giving rise to two displacement
fields, so they are named the elastic strain tensors εij and wij can be expressed by equation 2 respectively.

εij =
1
2
(

∂ui
∂xj

+
∂uj

∂xi
), wij =

∂wi
∂xj

(2)

We reduce our analyses in small strain setting and linear elastic behavior. For the sake of simplicity, we
do not consider inertial effects, body forces, and phason self-actions so that, with these restrictions,
the balance equations with absent of the body force (for a complete derivation of them in large strain
regime, see [41]) read

∂σij

∂xj
= 0,

∂Hij

∂xj
= 0 (3)
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When quasicrystals are in the case of small deformation, the phonon stresses σij and phason stresses
Hij obey generalized Hooke’s law. Namely, they are linearly dependent upon both the phonon strains
and phason strains, that is it can be expressed by the following generalized Hooke’s law [25,26]:

σij = Cijklεkl + Rijklwkl , Hij = Rklijεkl + Kijklwkl (4)

where σij and εij phonon stresses and strains; ui and wi are phonon and phason displacements; Hij
and wij phason stresses and strains; and Cijkl , Kijkl and Rijkl the phonon, phason, phonon–phason
coupling elastic constants, respectively. This leads to a mathematical complexity in solving associated
boundary value problems. The elasticity equations for a variety of one-, two-, and three-dimensional
quasicrystals are concluded in [26]. To avoid duplication, here we no longer display these equations.

In light of the huge number of the field variables and their equations, the solution for three
elasticity problems of quasicrystals is not easily obtained. One commonly used method to solve the
elasticity problem is to eliminate the number of the field variables and equations above mentioned.
Similar to classical mathematical physics, we can utilize the eliminating element method in the
elasticity problem of quasicrystals. We can find the equations can be simplified for some meaningful
cases physically. The elasticity problem of quasicrystals includes in-plane mode case and anti-plane
mode case. For example, some field variables disappear while the materials are in plane mode case.
Meanwhile, these displacements and relevant strains and stresses are independent of the periodic
direction. For example, supposing there is a straight dislocation line along the periodic direction,
a crack penetrates periodic direction, etc., then, this fact implies ∂/∂x3(= ∂/∂z) = 0. Then,

∂µi
∂z

= 0,
∂wz

∂z
= 0, (i = 1, 2, 3) (5)

Hence,

εzz = wzz = 0, εyz = εzy =
1
2

∂µz

∂y
, εzx = εxz =

1
2

∂µz

∂x
(6)

∂σij

∂z
= 0,

∂Hij

∂z
= 0 (7)

2.1. The Elasticity of One-Dimensional Hexagonal Quasicrystals

There are many kinds of one-dimensional quasicrystals; we only discuss the simplest system of
one-dimensional hexagonal quasicrystals. For this type of quasicrystal, phonon displacements are
ux, ux, ux, phason displacement is wz (because wx = wy = 0), the corresponding strains are

εxx =
∂ux

∂x
, εyy =

∂uy

∂y
, εzz =

∂uz

∂z
(8a)

εyz = εzy =
1
2
(

∂uz

∂y
+

∂uy

∂z
), εzx = εxz =

1
2
(

∂uz

∂x
+

∂ux

∂z
), εxy = εyx =

1
2
(

∂ux

∂y
+

∂uy

∂x
) (8b)

wzx =
∂wz

∂x
, wzy =

∂wz

∂y
, wzz =

∂wz

∂z
(8c)

and other wij = 0. The strain components are nine in the lump. Formulas (8a–c) are the same with all
one-dimensional quasicrystals. The nine strains can be represented by vectors with nine components, i.e.,

[ε11, ε22, ε33, 2ε23, 2ε31, 2ε12, w33, w31, w32] (9)

or
[εxx, εyy, εzz, 2εyz, 2εzx, 2εxy, wzz, wzx, wzy]. (10)
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The corresponding stresses are

[σxx, σyy, σzz, σyz, σzx, σxy, σzz, σzx, σzy]. (11)

The elastic constant matrix is

[CKR] =



C11 C12 C13 0 0 0 R1 0 0
C12 C11 C13 0 0 0 R1 0 0
C13 C13 C33 0 0 0 R2 0 0
0 0 0 C44 0 0 0 0 R3

0 0 0 0 C44 0 0 R3 0
0 0 0 0 0 C66 0 0 0

R1 R1 R2 0 0 0 K1 0 0
0 0 0 0 R3 0 0 K2 0
0 0 0 R3 0 0 0 0 K2


(12)

where the four indexes of phonon elastic constants are reduced to two quotas, i.e., quotas
11→ 1, 22→ 2, 33→ 3, 23→ 4, 31→ 5, 12→ 6, thus Cijkl can be denoted as Cpq:

C11 = C1111 = C2222, C12 = C1122, C33 = C3333, C44 = C2323 = C3131

C13 = C1133 = C2323, C66 =
C11 − C12

2
=

C1111 − C1122

2
That fact means that the number of independent phonon elastic constants is five. Furthermore, the
phason elastic constants K1 = K3333, K2 = K3131 = K3232, i.e., there are only two independent phason
elastic constants. Finally, we also have R1 = R1133 = R2233, R2 = R3333, R3 = R2332 = R3131, i.e.,
obviously, there are three phonon–phason coupling elastic constants.

We may learn from the elastic constants matrix that the corresponding stress–strain relations are:

σxx = C11εxx + C12εyy + C13εzz + R1wzz,
σyy = C12εxx + C11εyy + C13εzz + R1wzz,
σzz = C13εxx + C13εyy + C33εzz + R2wzz,
σyz = σzy = 2C44εyz + R3wzy,
σzx = σxz = 2C44εzx + R3wzx,
σxy = σyx = 2C66εxy,
Hzz = R1(εxx + εyy) + R2εzz + K1wzz,
Hzx = 2R3εzx + K2wzx,
Hzy = 2R3εyz + K2wzy

(13)

and other Hij = 0.
The equilibrium equations are: 

∂σxx
∂x +

∂σxy
∂y + ∂σxz

∂z = 0,
∂σyx
∂x +

∂σyy
∂y +

∂σyz
∂z = 0,

∂σzx
∂x +

∂σzy
∂y + ∂σzz

∂z = 0,
∂Hzx

∂x +
∂Hzy

∂y + ∂Hzz
∂z = 0.

(14)

Here are four displacements, nine strains and nine stresses, which added up to 22 field variables.
The corresponding field equations are 22, consisting of four for equilibrium equations, nine equations
of deformation geometry, and nine stress–strain relation. It is evident that the elastic equilibrium
problem of one-dimensional hexagonal quasicrystals is a little complicated. In the following we give a
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simplified treatment. If there is a straight dislocation or a Griffith crack along the direction of the atom
quasi-periodic arrangement, the deformation is independent of the z-axis, therefore

∂

∂z
= 0 (15)

This fact leads to
∂ui
∂z

= 0,
∂wz

∂z
= 0, (i = 1, 2, 3) (16a)

εzz = wzz = 0, εyz = εzy =
1
2

∂uz

∂y
, εzx = εxz =

1
2

∂uz

∂x
(16b)

∂σij

∂z
= 0,

∂Hij

∂z
= 0 (16c)

The generalized Hooke’s law is simplified as

σxx = C11εxx + C12εyy,
σyy = C12εxx + C11εyy,
σxy = σyx = 2C66εxy,
σzz = C13(εxx + εyy),
σyz = σzy = 2(C44εyz + R3wzy),
σzx = σxz = 2C44εzx + R3wzx,
Hzz = R1(εxx + εyy),
Hzx = 2R3εzx + K2wzx,
Hzy = 2R3εyz + K2wzy.

(17)

In the absence of the body force and generalized body force, the equilibrium equations are

∂σxx
∂x +

∂σxy
∂y = 0

∂σyx
∂x +

∂σyy
∂y = 0

∂σzx
∂x +

∂σzy
∂y = 0

∂Hzx
∂x +

∂Hzy
∂y = 0

(18)

Equations (15)–(18) define two uncoupled problems. The first of them is

σxx = C11εxx + C12εyy,
σyy = C12εxx + C11εyy,
σxy = (C11 − C12)εxy,
σzz = C13(εxx + εyy),
Hzz = R1(εxx + εyy),
∂σxx
∂x +

∂σxy
∂y = 0, ∂σyx

∂x +
∂σyy
∂y = 0,

εxx = ∂ux
∂x , εyy =

∂uy
∂y , εxy = 1

2 (
∂uy
∂x + ∂ux

∂y )

(19)

This is the classical plane elasticity of conventional hexagonal crystals. The problem has been studied,
extensively using the stress function approach, e.g. it introduces

σxx =
∂2u
∂y2 , σyy =

∂2u
∂x2 , σxy = − ∂2u

∂x∂y
(20)

Then, equations are reduced to solve
∇2∇2u = 0 (21)
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The problem is considerably discussed in the elasticity of crystals, so we do not consider it here. We
are concerned with the problem of phonon–phason coupling anti-plane elasticity. We illustrate the
basis equations of anti-plane elasticity for one-dimensional hexagonal quasicrystals. The stress tensors
are related to the strain tensors repressed by

σyz = σzy = 2C44εyz + R3wzy

σzx = σxz = 2C44εzx + R3wzx

Hzx = 2R3εzx + K2wzx

Hzy = 2R3εyz + K2wzy

(22)

The deformation geometry relations are{
εzx = εxz =

1
2

∂uz
∂x , εzy = εyz =

1
2

∂uz
∂y

wzx = ∂wz
∂x , wzy = ∂wz

∂y
(23)

The equilibrium equations are

∂σzx

∂x
+

∂σzy

∂y
= 0,

∂Hzx

∂x
+

∂Hzy

∂y
= 0 (24)

Substituting the deformation geometry relations into the stress–strain relations, and then into the
equilibrium equations, yields the final governing equations such as{

C44∇2uz + R3∇2wz = 0
R3∇2uz + K2∇2wz = 0

(25)

Considering C44K2 − R2
3 6= 0, we have

∇2uz = 0,∇2wz = 0 (26)

where ∇2 = ∂
∂x2 +

∂
∂y2 , so uz and wz are two harmonic functions.

It is well known that the two-dimensional harmonic functions uz and wz can be a real part or
an imaginary part of any analytic functions φ(t) and ψ(t) of complex variable z = x + iy, i =

√
−1,

respectively, i.e., {
uz(x, y) = Reφ1(z)
wz(x, y) = Reψ1(z)

(27)

In this version, Equation (26) should be identically satisfied.
Substituting Equation (27) into Equation (23), we have{

σzx − iσzy = C44φ′1 + R3ψ′1
Hzx − iHzy = K2ψ′1 + R3φ′

(28)

in which φ′1 = dφ1
dz , ψ′1 = dψ1

dz .
Based on Equation (28), we get{

σzy = σyz = − 1
2i [C44(φ

′
1 − φ′1) + R3(ψ

′
1 − ψ′1)]

Hzy = − 1
2i [K2(ψ

′
1 − ψ′) + R3(φ

′
1 − φ′1)]

(29)

2.2. The Elasticity of Two-Dimensional Quasicrystals

As everyone knows, the five-fold and ten-fold symmetries quasicrystals of point groups 5, 5 and
10, 10 are different in plane elasticity from that of point groups 5 m and 10 mm [26]. The difference lies
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in only the phonon–phason coupling elastic constants, in which the former has two coupling elastic
constants R1 and R2 rather than one constant R. In this section, we mainly discuss linear theory for
decagonal quasicrystals of point group 10.

We assume that the atom arrangement is periodic along the z-direction and quasiperiodic along
the plane, and denote x = x1, y = x2, and z = x3 for a two-dimensional decagonal quasicrystal.
According to quasicrystal elasticity theory, the equations of deformation geometry are

εij =
1
2
(

∂ui
∂xj

+
∂uj

∂xi
), wij =

∂wi
∂xj

(30a)

When the body force is neglected, the equilibrium equations are

∂σij

∂xj
= 0,

∂Hij

∂xj
= 0 (30b)

and the concrete generalized Hooke’s law of decagonal quasicrystals of point group 10 is

σxx = L(εxx + εyy) + 2Mεxx + R1(wxx + wyy) + R2(wxy − wyx)

σyy = L(εxx + εyy) + 2Mεyy − R1(wxx + wyy)− R2(wxy − wyx)

σxy = σyx = 2Mεxy + R1(wyx − wxy) + R2(wxx + wyy)

Hxx = K1wxx + K2wyy + R1(εxx − εyy) + 2R2εxy

Hyy = K1wyy + K2wxx + R1(εxx − εyy) + 2R2εxy

Hxy = K1wxy − K2wyx − 2R1εxy + R2(εxx − εyy)

Hyx = K1wyx − K2wxy + 2R1εxy − R2(εxx − εyy)

(31)

where the elastic constants L = C12, M = C66 = (C11 − C12)/2; ui and wi denote the phonon
displacement and the phason displacement; σij and εij the phonon stress and the phonon strain; Hij
and wij phason stress and strain; and Cijkl , Kijkl and Rijkl the phonon, phason and phonon–phason
coupling elastic constants, respectively. We assume that a plane notch penetrates through the solid
along the period direction. In this case, it is evident that all the field variables are independent of z.

According to the deformation geometry equation, deformation compatibility equations are as follows:
∂2εxx
∂y2 +

∂2εyy
∂x2 = 2 ∂2εxy

∂x∂y
∂wxx

∂y =
∂wxy

∂x
∂wyy

∂x =
∂wyx

∂y

(32)

The strain components εij and wij can be expressed by the stress components σij and Hij, i.e.,



εxx = 1
4(L+M)

(σxx + σyy) +
1
4c [(K1 + K2)(σxx − σyy)− 2R1(Hxx + Hyy)− 2R2(Hxy − Hyx)]

εyy = 1
4(L+M)

(σxx + σyy)− 1
4c [(K1 + K2)(σxx − σyy)− 2R1(Hxx + Hyy)− 2R2(Hxy − Hyx)]

εxy = εyx = 1
2c [(K1 + K2)σxy − R2(Hxx + Hyy) + R1(Hxy − Hyx)]

wxx = 1
2(K1−K2)

(Hxx − Hyy) +
1
2c [M(Hxx + Hyy)− R1(σxx − σyy)− 2R2σxy]

wyy = − 1
2(K1−K2)

(Hxx − Hyy) +
1
2c [M(Hxx + Hyy)− R1(σxx − σyy)− 2R2σxy]

wxy = 1
2c [−R2(σxx − σyy) + 2R1σxy] +

1
2(K1−K2)

(Hxy + Hyx) +
M
2c (Hxy − Hyx)

wyx = 1
2c [R2(σxx − σyy)− 2R1σxy] +

1
2(K1−K2)

(Hxy + Hyx)− M
2c (Hxy − Hyx)

(33)

with
c = M(K1 + K2)− 2(R2

1 + R2
2)
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If the stress functions φ, ψ1 and ψ2 are introduced, such as σxx = ∂2 ϕ

∂y2 , σyy = ∂2 ϕ

∂x2 , σxy = σyx = − ∂2 ϕ
∂x∂y

Hxx = ∂ψ1
∂y , Hxy = − ∂ψ1

∂x , Hyx = − ∂ψ2
∂y , Hyy = ∂ψ2

∂x

(34)

then, the equilibrium Equation (30b) is automatically satisfied. Substituting above equations into
Equation (33), the deformation compatibility equations expressed by stress components yields

1
2(L+M)

∇2∇2 ϕ + K1+K2
2c ∇2∇2 ϕ + R1

c ( ∂
∂y Π1ψ1 − ∂

∂x Π2ψ2)+
R2
c ( ∂

∂x Π2ψ1 +
∂

∂y Π1ψ2) = 0
( c

K1−K2
+ M)∇2ψ1 + R1

∂
∂y Π1φ + R2

∂
∂x Π2φ = 0

( c
K1−K2

+ M)∇2ψ2 − R1
∂

∂x Π2φ + R2
∂

∂y Π1φ = 0

(35)

in which ∇2 = ∂2

∂x2 +
∂2

∂y2 , Π1 = 3 ∂2

∂x2 − ∂2

∂y2 , Π2 = 3 ∂2

∂y2 − ∂2

∂x2 , c is given by above. By now, the numbers
of equations and unknown functions have been reduced to 3.

We introduce a new unknown function G(x, y) such as
φ = c1∇2∇2G,
ψ1 = −( 1

R1
∂

∂y Π1 + R2
∂

∂x Π2)∇2G
ψ2 = (R1

∂
∂x Π2G− R2

∂
∂y Π1)∇2G

(36)

If we let
∇2∇2∇2∇2G = 0, (37)

then Equation (35) is satisfied, in which

c1 =
c

K1 − K2
+ M (38)

The general solution of Equation (38) can be expressed as

G = 2Re
[

g1(z) + zg2(z) +
1
2

z2g3(z) +
1
6

z3g4(z)
]

(39)

in which gi(z)(i = 1, 2, 3, 4) are analytic functions of complex variable z = x + iy = reiθ .

2.3. The Elasticity of Three-Dimensional Quasicrystals

There is no periodicity in three directions of elasticity of three dimensional quasicrystals. Therefore,
field variables including the phonon field ui and the phase field wi exist simultaneously in these three
directions. Besides icosahedral quasicrystals, three dimensional quasicrystals also include cubic
quasicrystals. Due to their tediousness, we only discuss the elasticity of three-dimensional icosahedral
quasicrystals here. The elasticity of cubic quasicrystals is neglected.

The equations of deformation geometry are

εxx = ∂ux
∂x , εyy =

∂uy
∂y , εzz =

∂uz
∂z

εyz =
1
2 (

∂uz
∂y +

∂uy
∂z ), εzx = 1

2 (
∂uz
∂x + ∂ux

∂z ), εxy = 1
2 (

∂uy
∂x + ∂ux

∂y )

wxx = ∂wx
∂x , wyy =

∂wy
∂y , wzz =

∂wz
∂z

wyz =
∂wy
∂z , wzx = ∂wz

∂x , wxy = ∂wx
∂y

wzy = ∂wz
∂y , wxz =

∂wx
∂z , wyx =

∂wy
∂x

(40)



Crystals 2017, 7, 373 9 of 23

which are similar in form to those given in previous, but here ui and wi have six components, and εij
and wij have 15 components in total.
The elastic constants of phonon field are very simple, merely two, and can be expressed by Lame′

coefficient, that is
Cijhl = λδijδhl + µ(δihδjl), i, j, h, l = 1, 2, 3 (41)

The elastic constants of the phases are

K1111 = K2222 = K1212 = K2121 ≡ K1

K1331 = K3111 = K1113 = K1311 = K2213 = K1322 = K2312 = K1223 = −K2231

= −K3122 = −K2321 = −K2123 = −K1232 = −K3212 = −K3221 = −K2132 ≡ K2

K3333 = K1 + K2

K2323 = K3131 = K3232 = K1313 = K1 − K2

(42)

The phonon–phason coupling elastic constant is only one, and mark as R.

Based on the matrix expression of the generalized Hooke’s law

[
σij
Hij

]
=

[
[C] [R]
[R]T [K]

][
εij
wij

]
,[

σij
Hij

]
=
[

σij Hij

]T

,

[
εij
wij

]
=
[

εij wij

]T
, we know the explicit relationship between stresses

and strains as below:

σxx = λθ + 2µεxx + R(wxx + wyy + wzz + wxz),
σyy = λθ + 2µεyy − R(wxx + wyy − wzz + wxz),
σzz = λθ + 2µεyy − 2Rwzz,
σyz = 2µεyz + R(wzy − wxy − wyx) = σzy,
σzx = 2µεzx + R(wxx − wyy − wzx) = σxz,
σxy = 2µεxy + R(wyx − wyz − wxy) = σyx,
Hxx = R(εxx − εyy + 2εzx) + K1wxx + K2(wzx + wxz),
Hyy = R(εxx − εyy − 2εzx) + K1wyy + K2(wxz − wzx),
Hzz = R(εxx + εyy − 2εzz) + (K1 + K2)wzz,
Hyz = −2Rεxy + (K1 − K2)wyz + K2(wxy − wyx),
Hzx = 2Rεzx + (K1 − K2)wzx + K2(wxx − wyy),
Hxy = −2R(εyz + εxy) + K1wxy + K2(wyz − wzy),
Hzy = 2Rεyz + (K1 − K2)wzy − K2(wxy + wyx),
Hxz = R(εxx − εyy) + K2(wxx + wyy) + (K1 − K2)wxz,
Hyx = 2R(εxy − εyx) + K1wyx − K2(wyz + wzy),

(43)

where θ = εxx + εyy + εzz.
The equilibrium equations are as follows:

∂σxx
∂x +

∂σxy
∂y + ∂σxz

∂z = 0, ∂σyx
∂x +

∂σyy
∂y +

∂σyz
∂z = 0,

∂σzx
∂x +

∂σzy
∂y + ∂σzz

∂z = 0, ∂Hxx
∂x +

∂Hxy
∂y + ∂Hxz

∂z = 0,
∂Hyx

∂x +
∂Hyy

∂y +
∂Hyz

∂z = 0, ∂Hzx
∂x +

∂Hzy
∂y + ∂Hzz

∂z = 0.

(44)

Based on Equation (44), we can get the deformation compatibility equations
∂2εxx
∂y2 +

∂2εyy
∂x2 = 2 ∂2εxy

∂x∂y , ∂εyz
∂x = ∂εzx

∂y
∂wxy

∂x = ∂wxx
∂y , ∂wyy

∂x =
∂wyx

∂y , ∂wzy
∂x = ∂wzx

∂y

(45)
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If we introduce five stress potential functions ϕ1(x, y), ϕ2(x, y), ψ1(x, y), ψ2(x, y), ψ3(x, y), which are
satisfied with 

σxx = ∂2φ1
∂y2 , σxy = − ∂2φ1

∂x∂y , σyy = ∂2φ1
∂x2

σzx = ∂φ2
∂y , σzy = − ∂φ2

∂x

Hxx = ∂ψ1
∂y , Hxy = − ∂ψ1

∂x , Hyx = ∂ψ2
∂y

Hyy = − ∂ψ2
∂x , Hzx = ∂ψ3

∂y , Hzy = − ∂ψ3
∂x

(46)

and 

φ1 = c2c3R ∂
∂y (2

∂2

∂x2 Π2 −Λ2Π1)∇2∇2G
φ2 = −c3c4∇2∇2∇2∇2G
ψ1 = c1c2R ∂2

∂y2 (2
∂2

∂x2 Π1Π2 −Λ2Π2
1)∇2G + c2c4Λ2∇2∇2∇2∇2G

ψ2 = c1c2R ∂2

∂x∂y (2
∂2

∂x2 Π2
2 −Λ2Π1Π2)∇2G + 2c2c4

∂2

∂x∂y∇
2∇2∇2∇2G

ψ3 = − 1
R K2c3c4∇2∇2∇2∇2∇2G,

(47)

then the equilibrium equations and the deformation compatibility equations will be satisfied
automatically. After derivation, the final control equation is

∇2∇2∇2∇2∇2∇2G = 0 (48)

(the approximation of R2

K1µ << 1), in which

c1 = R(2K2−K1)(µK1+µK2−3R2)
2(µK1−2R2)

, c2 = 1
R K2(µK2 − R2)− R(2K2 − K1)

c3 = µ(K1 − K2)− R2 − (µK2−R2)
2

µK1−2R2 , c4 = c1R + 1
2 c3(K1 +

µK1−2R2

λ+µ )
(49a)

Π1 = 3
∂2

∂x2 −
∂2

∂y2 , Π2 = 3
∂2

∂y2 −
∂2

∂x2 ,∇2 =
∂2

∂x2 +
∂2

∂y2 , Λ2 =
∂2

∂x2 −
∂2

∂y2 . (49b)

In summary, the icosahedral quasicrystals have six displacement components, 15 strain
components, and 15 stress components, i.e., 36 unknown functions in total. It is the same as the number
of fundamental equations. From the mathematical point of view, it can be solved under appropriate
boundary conditions. Similarly, the problem may be decomposed into plane and anti-plane problems.
In terms of the anti-plane problem, we will illustrate it with an example.

3. Some Examples

3.1. Complex Variable Theory for Elasticity of Quasicrystals with Defects

As we all know, it is very difficult to solve plane problems of the materials with defects in the
physical plane (z-plane). For some complicated configuration, we have two common conformal
mappings, and one is

z = ω(ζ) = R(ζ +
n

∑
k=0

dkζ−k)
n

∑
k=0
|dk| ≤ 1 (50)

to transform the exterior of the material with defects in the z-plane into the exterior of the unit circle in
the ζ-plane. Through the transformation, we can have

ln z = ln

[
Rζ(1 +

n

∑
k=0

dkζ−(k+1))

]
= ln R + ln ζ + ln(1 +

n

∑
k=0

dkζ−(k+1))
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Because we have |ζ| > 1 outside the unit, we can obtain
n
∑

k=0

∣∣∣ dk
ζk+1

∣∣∣ < 1 and

ln(1 +
n

∑
k=0

dkζ−(k+1)) = (
n

∑
k=0

dkζ−(k+1)) +
1
2
(

n

∑
k=0

dkζ−(k+1))
2

+ · · · · · · = f (ζ),

in which f (ζ) is analytic outside the unit circle. For the same reason, we have the formula
a1
z = a1

Rζ(1+
n
∑

k=0
dkζ−(k+1))

= a1
Rζ (1−

n
∑

k=0
dkζ−(k+1) − · · · · · · ) and so on.

The other conformal mapping is

z = ω(ζ) = R(
1
ζ
+

n

∑
k=0

Ckζk)
n

∑
k=0
|Ck| ≤ 1 (51)

to transform the exterior of the material with defects in the z-plane into the interior of the unit circle in
the ζ-plane.

3.2. An Extended Dugdale model for Anti-Plane Quasicrystals

We deduce the boundaries: it is assumed that there is a penetrating elliptical orifice along the
periodic direction z in one-dimensional hexagonal quasicrystals. At this moment, it belongs to plane
elasticity problem in the periodic plane x− y. In the periodic oxy plane, we suppose elliptic orifice

equation is L : x2

a2 + y2

b2 = 1, in which a and b are the long and short axis respectively in Figure 1.
Considering that the quasicrystal is not subjected to external forces at infinity, it is subjected to the
shearing force τ along the quasi-periodic direction on the surface of the elliptical hole. We can express
the boundary by formulas as follows:{

z→ ∞, σyz = σzx = Hzy = Hzx = 0
z = t ∈ L, σyz = −τ, Hzy = −τ1

(52)

Draw the conformal mapping

z = w(ζ) = A(mζ +
1
ζ
), A =

a + b
2

, m =
a− b
a + b

(53)

into the problem to transform the region containing ellipse at the z-plane onto the interior of the unit circle
at the ζ-plane. Obviously, ζ = σ = eiθ on the unit circle r. Signing φ1(w(ζ)) = φ(ζ), ψ1(w(ζ)) = ψ(ζ),
we deduce

φ′1(z) =
φ′(ζ)

w′(ζ)
, ψ′1(z) =

ψ′(ζ)

w′(ζ)
(54)

Colligating Equations (52)–(54), we can get ϕ(ζ) = K2τ−R3τ1
C44K2−R2

3
2iAmζ

ψ(ζ) = −C44τ1−R3τ
C44K2−R2

3
2iAmζ

(55)
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In a similar manner, we can also calculate the solution of following boundary conditions
z→ ∞, σyz = σzx = Hzy = Hzx = 0
z ∈ _

z1mz2, σyz = −τ, Hzy = 0
z ∈ _

z1nz2, σyz = 0, Hzy = 0.
(56)

The solution is

ϕ(ζ) = AK2τ
π(C44K2−R2

3)
[− 4

ζ ln σ2 + (mζ + 1
ζ ) ln( σ2−ζ

σ2−ζ
σ2+ζ
σ2+ζ ) + (mσ2 +

1
σ2
) ln σ2+ζ

σ2−ζ

+(mσ2 +
1
σ2
) ln( σ2−ζ

σ2+ζ )]

ψ(ζ) = − AR3τ
π(C44K2−R2

3)
[− 4

ζ ln σ2 + (mζ + 1
ζ ) ln( σ2−ζ

σ2−ζ
σ2+ζ
σ2+ζ ) + (mσ2 +

1
σ2
) ln σ2+ζ

σ2−ζ

+(mσ2 +
1
σ2
) ln( σ2−ζ

σ2+ζ )]

(57)

Now, we solve the problem of the Dugdale model of one-dimensional hexagonal anti-plane
quasicrystals. The boundary conditions are as follows:

z→ ∞ : σyz(z) = τ(∞), σxz = Hxz = Hzx = Hyz = Hzy = 0
y = 0,

∣∣x∣∣< a : σxz = σyz = Hxz = Hyz = Hzx

y = 0, a <
∣∣x∣∣< a + R : σyz = τ, σxz = Hxz = Hyz = Hzx = Hzy = 0

(58)

This problem can be transformed into two simple questions:{
z→ ∞ : σyz(z) = τ(∞), σxz = Hxz = Hzx = Hyz = Hzy = 0
y = 0,

∣∣x∣∣< a + R : σyz = σxz = Hxz = Hyz = Hzx = Hzy = 0
(59a)

and 
z→ ∞ : σyz(z) = σxz = Hxz = Hzx = Hyz = Hzy = 0
y = 0,

∣∣x∣∣< a : σxz = σyz = Hxz = Hyz = Hzx

y = 0, a <
∣∣x∣∣< a + R : σyz = τ, σxz = Hxz = Hyz = Hzx = Hzy = 0

(59b)

The conformal mapping is

z = w(ζ) =
a + R

2
(ζ +

1
ζ
) (60)
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to transform the region containing ellipse at the z-plane onto the interior or the exterior of the unit
circle at the ζ-plane. The solution of problem I has been given. To highlight problem, the only thing to
do is replace τ by σ∞, A by a+R

2 , and ζ of the formula by 1
ζ , τ1 = 0, m = 1. Thus, there are

ϕ(ζ) = (a+R)K2τ(∞)i
C44K2−R2

3

1
ζ

ψ(ζ) = − (a+R)R3τ(∞)i
C44K2−R2

3

1
ζ

(61)

The solution of problem II has also been given, only to substitute −σs for τ in (57), a + R for a
over there. Consequently,

ϕ(ζ) = − (a+R)K2τ

2π(C44K2−R2
3)
[− 4iφ2

ζ + 2z
a+R ln σ2

2−ζ2

σ2
2−ζ2 + (σ2

2 + σ2) ln( σ2+ζ
σ2−ζ

σ2−ζ
σ2+ζ )]

ψ(ζ) = (a+R)R3τ

2π(C44K2−R2
3)
[− 4iφ2

ζ + 2z
a+R ln σ2

2−ζ2

σ2
2−ζ2 + (σ2 + σ2) ln( σ2+ζ

σ2−ζ
σ2−ζ
σ2+ζ )]

(62)

Superposition of the above two types, that is, the total complex potential. Because the stress is limited
where ζ = 0, the first item of Equation (29) must be zero. It is obtained as follows

φ2 = −πτ(∞)

2τ
(63)

Likewise, σ2 = eiϕ2 represents one of a value of ζ on the unit circle r, it corresponds to
z = a = (a + R) cos ϕ2, hence it can get

R = a[sec(
πτ(∞)

2τ
)− 1] (64)

Based on the theory of fracture, the displacement of the curve L is

(uz)L = Re[ϕ1(z)]L = Re[ϕ(ζ)]r (65)

Among which, z = x + iy, L indicate the crack surface, r the unit circle, φ(ζ) = φ1(w(ζ)) = φ1(z),
ζ = σ = eiϕ on the unit circle, and there are

σ2
2−ζ2

σ2
2−ζ2 = e2iφ2−e2iφ

e−2iφ2−e2iφ = sin(φ−φ2)
sin(φ+φ2)

e2iφ2

σ2+ζ
σ2−ζ ·

σ2−ζ
σ2+ζ = eiφ2+eiφ

eiφ2−eiφ · e−iφ2−eiφ

e−iφ2+eiφ = sin φ+sin φ2
sin φ−sin φ2

(66)

If we let
δ = uz(x, 0+)− uz(x, 0−) = 2uz(x, 0) (67)

denote the crack opening displacement. Deduce

δt = lim
x→a

2uz(x, 0) = lim
φ→φ2

2uz(x, 0) (68)

Let ϕ = ϕ2 + ∆ϕ, we have

sin(φ− φ2) = sin ∆φ ≈ ∆φ, sin φ− sin φ2 ≈ ∆φ cos φ2 (69)

and can get the result

δt =
−4K2τa

π(C44K2 − R2
3)
[ln sec(

πτ(∞)

2τ
)] (70)
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The problem of the Dugdale model of three-dimensional anti-plane quasicrystals is similar to the
one of one-dimensional hexagonal anti-plane quasicrystals. After a series of calculating, in case of
duplication, we show the conclusions directly

δt =
−2(K1 − K2)τa

π[R2 − µ(K1 − K2)]
[ln sec(

πτ(∞)

2τ
)] (71)

3.3. An Extended Dugdale Model for Plane Problem of Two-Dimensional Quasicrystals

Secondly, we consider one example of plane problem of two-dimensional quasicrystals. There is a
Griffith crack with the length of 2(l + b) along the z axis in the generalized cohesive force model of
quasicrystals (see Figure 2.).Crystals 2017, 7, 373  17 of 27 
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Figure 2. Generalized cohesive force model of quasicrystals.

We have assumed already that the stress distribution within the plastic zone is known. Thus, the
generalized cohesive force model of quasicrystals can be expressed as follows:

σyy = σ(∞), Hyy = 0, σxx = σxy = 0, Hxx = Hxy = 0
√

x2 + y2 → ∞
σyy = σxy = 0, Hyy = Hxy = 0 y = 0, |x| < l
σyy = σs, σxy = 0, Hyy = 0, Hxy = 0 y = 0, l < |x| < l + b

(72)

This problem can be reduced into a superposition of the following two problems:
σxx = σxy = σyy = 0, Hxx = Hxy = Hyy = 0

√
x2 + y2 → ∞

σyy = σxy = 0, Hxy = Hyy = 0 y = 0, |x| < l
σyy = σs, σxy = 0, Hxy = Hyy = 0 l < |x| < l + b

(73a)

and {
σyy = σ(∞), σxx = σxy = 0, Hxx = Hxy = 0

√
x2 + y2 → ∞

σyy = σxy = 0, Hyy = Hxy = 0 y = 0, |x| < l + b
(73b)

Thus, the nonlinear problem is reduced into an “equivalent” elasticity problem. However,
the calculation cannot be completed in the z-plane due to the complicacy of the evaluation, and we use
the conformal mapping

z = ω(ζ) =
(l + b)

2
(ζ +

1
ζ
) (74)
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to transform the exterior of the crack in the z-plane into the exterior or interior of the unit circle in the
ζ-plane. It is worth noting that h̃2(ζ) and h2(ζ) will no longer be referred in the following text. It is
clear that the boundary condition can be written as follow:

f4(ζ) + f3(ζ) +
ω(ζ)

ω(ζ)
f ′4(ζ) =

i
32c1

∫
(Tx + iTy)ds (75)

in which f4(ζ) denotes h4(ζ) or h̃4(ζ); f3(ζ) represents h3(ζ) or h̃3(ζ); and Tx and Ty are generalized
surface tractions in the x-direction and y-direction, respectively. In above analysis process, the phason
filed can be discussed similarly, so it is omitted here.

For the problem in Equation (73a), we have the solution h4(ζ) =
1

32c1
· σs(l+b)ϕ2

π · 1
ζ −

1
32c1
· σs

2πi

[
z(ln σ2−ζ

σ2−ζ + ln σ2+ζ
σ2+ζ )− l ln (ζ−σ2)(ζ+σ2)

(ζ+σ2)(ζ−σ2)

]
,

h3(ζ) =
1

32c1
· σs(l+b)ϕ2

π · 2ζ
ζ2−1 −

1
32c1
· σs l

2πi ln (ζ−σ2)(ζ+σ2)
(ζ+σ2)(ζ−σ2)

,
(76)

and for the problem in Equation (73b), the solution is h̃4(ζ) = − 1
32c1

σ(∞)

2 (l + b) 1
ζ

h̃3(ζ) = − σ(∞)

32c1
(l + b)

[
ζ

(ζ2−1)

] (77)

in which
σ2 = eiϕ2 , l = (l + b) cos ϕ2 (78)

and we must point out that σ2 = eiϕ2 corresponds to z = l in the z-plane.
Thus, we have the complex potentials of the generalized cohesive force model of quasicrystals

as follows:

_
h4(ζ) = h4(ζ) + h̃4(ζ) =
(l+b)
32c1
·
(

σs ϕ2
π − σ(∞)

2

)
1
ζ −

1
32c1
· σs

2πi

[
z(ln σ2−ζ

σ2−ζ + ln ζ+σ2
ζ+σ2

)− l ln (ζ−σ2)(ζ+σ2)
(ζ+σ2)(ζ−σ2)

]
,

_
h3(ζ) = h3(ζ) + h̃4(ζ) =

(l+b)
32c1
·
(

2σs ϕ2
π − σ(∞)

)
2ζ

ζ2−1 −
1

32c1
· σs l

2πi ln (ζ−σ2)(ζ+σ2)
(ζ+σ2)(ζ−σ2)

.

(79)

Because the stresses are finite values in the tip of plastic zone, we have

(l + b)
32c1

·
(

σs ϕ2

π
− σ(∞)

2

)
1
ζ
= 0 (80)

and we obtain

ϕ2 =
π

2
σ(∞)

σs
(81)

At the same time, noting that l = (l + b) cos ϕ2, one can have the size of plastic zone

b = l

[
sec(

π

2
σ(∞)

σs
)− 1

]
(82)

Now, we will calculate the crack tip opening displacement δt. According to the solutions in
Equations (76) and (79) and the displacement formula, after a lengthy calculation, we have

uy(x, 0) = (128c1c2 − 64c3)Im(
_
h4(ζ)) (83)
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By substituting Equation (79) into Equation (83) and noting Equation (81), one can obtain

uy(x, 0) =
(4c1c2 − 2c3)

c1
· σs(l + b)

2π
·
[

cos ϕ ln
sin(ϕ2 − ϕ)

sin(ϕ2 + ϕ)
− cos ϕ2 ln

(sin ϕ2 − sin ϕ)

(sin ϕ2 + sin ϕ)

]
(84)

Thus, we have

δt = lim
x→l

2uy(x, 0) = lim
φ→φ2

2uy(x, 0) =
(8c1c2 − 4c3)σsl

c1π
ln sec(

π

2
σ(∞)

σs
) (85)

When we assume that and R2 = 0 in all equations, then δt will become the corresponding solution of
point group 10 mm quasicrystals

δt =
2σsl

π

[
1

L + M
+

K1

MK1 − R2

]
ln sec(

π

2
σ(∞)

σs
) (86)

Let the phonon–phason coupling constant R = o(K1), K1 → 0 , then one will have the crack tip opening
displacement for conventional crystals such as

δt =
2σsl

π

(L + 2M)

(L + M)M
ln sec(

π

2
σ(∞)

σs
) (87)

in which L = C12 and M = C66. If the crystals are of isotropic solid, there are L = λ, and M = µ,
which are Lame constants, i.e.,

δt =


(1+κ)σs l

πµ ln sec(π
2

σ(∞)

σs
) = 4(1−ν)σs l

πµ ln sec(π
2

σ(∞)

σs
), plane strain state

(1+κ′)σs l
πµ ln sec(π

2
σ(∞)

σs
) = 4σs l

(1+ν)πµ
ln sec(π

2
σ(∞)

σs
), plane stress state

(88)

in which κ = 3− 4ν is for plane strain, κ′ = 3−ν
1+ν is for plane stress, and ν is not only the Poisson

ratio of the isotropic solid, but is also exactly reduced into the well-known classic Dugdale solution in
nonlinear fracture mechanics of conventional structural (engineering) materials.

3.4. An Elastic Problem of Plane Problem of Two-Dimensional Quasicrystals with Elliptical Hole with Double
Cracks

Based on Equation (36), it leads to
σxx = −32c1Re(Ω(z)− 2g4′′′ (z))
σyy = 32c1Re(Ω(z) + 2g4′′′ (z))
σxy = σyx = 32c1ImΩ(z)

(89)

in which
Ω(z) = g3

(4)(z) + zg4
(4)(z)

in addition, we replace g′′′3 (z) and g′′4 (z) by h3(z) and h4(z), and we can get

σxx + σyy = 128c1Reg′′′4 (z) = 128c1Reh′4(z) (90a)

σyy − σxx + 2iσxy = 64
(

g(IV)
3 (z) + zg(IV)

4 (z)
)
= 64

(
h′3(z) + zh′′4 (z)

)
(90b)

According to Reference [23], there are

h4(z) = d1(X + iY) ln z + Bz + h0
4(z) (91a)

h3(z) = d2(X− iY) ln z +
(

B′ + iC′
)
z + h0

3(z) (91b)
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in which
d1 = 1

64c1π×(32(4c1c2−c3−c1c4)+1)

d2 = − 4c1c2−c3−c1c4
2c1π×(32(4c1c2−c3−c1c4)+1)

c2 =
(L + M)(K1 + K2) + c

4c(L + M)
, c3 =

R2
1 + R2

2
c

, c4 =
K1 + K2

c

Thereby, we have

h∗4(ζ) + h∗3(0) +
1

2πi

∫
r

w(σ)

w′(σ)

h∗′4 (σ)

σ− ζ
dσ =

1
2πi

∫
r

f0(σ)

σ− ζ
dσ (92)

h∗3(ζ) + h∗4(0) +
1

2πi

∫
r

w(σ)

w′(σ)
h∗′4 (σ)

σ− ζ
dσ =

1
2πi

∫
r

f0(σ)

σ− ζ
dσ (93)

f0(σ) = i
32c1

∫
X + iYds− (d1 − d2)(X + iY) ln σ− w(σ)

w′(σ)
d1(X− iY)σ

−2Bw(σ)− (B′ − iC′)w(σ)
(94)

in which X and Y indicate the surface force components of the surface force X and Y, respectively; and
B and B′ − iC′ are decided by primary stress.

Supposing that elliptic hole with two cracks is in an infinite plane, the major semi-axis is a,
the minor semi-axis is b, the crack length is c− a, we may have the elliptical hole center as the origin,
and the crack where the straight line coordinate system is established for the X axis (Figure 3).
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Figure 3. A model of two dimensional quasicrystals with an elliptical hole with double cracks.

The problem is solved using the conformal mappings

z = w(ζ) = a+b
2

2(d2+1)(1+ζ2)+(d2−1)
√
(1+ζ)4+2k(1−ζ2)

2
+(1−ζ)4

8dζ

+ a−b
2

8dζ

2(d2+1)(1+ζ2)+(d2−1)
√
(1+ζ)4+2k(1−ζ2)

2
+(1−ζ)4

(95)

among which

k =
d4 + 6d2 + 1

(d2 − 1)2 , d =
c +
√

c2 − a2 + b2

a + b
(96)

This mapping maps the exterior of the crack in the z-plane into the exterior or interior of the unit circle
in the ζ-plane.

The mapping maps the inner angle of the unit circle on the mathematical plane to the
infinite plane of the elliptical hole with double cracks on the physical plane, and w−1(c)→ 1 ,
w−1(bi)→ −i , w−1(−c)→ −1 , w−1(−bi)→ i . Meanwhile, the shore point (a+, 0) is mapped to



Crystals 2017, 7, 373 18 of 23

the point
(

2d
d2+1 ,− d2−1

d2+1

)
, and the lower shore (a−, 0) is mapped to the point

(
2d

d2+1 , d2−1
d2+1

)
. In the

fracture theory, defining the complex stress intensity factor is

K = KI − iKII (97)

Besides, we consider z − z1 = r1eiθ1 , where z1 indicates one of the end of the crack tip field,
namely, z→ z1 , there is

σxx + σyy = 2Re
K√

2π(z− z1)
(98)

We know
σxx + σyy = 128c1Reh′4(z) (99)

Thus,
K = 64

√
2πc1

√
z− z1h′4(z) (100)

Then, the stress intensity factor can be determined

K(c,0)
I − iK(c,0)

II = 64
√

2πc1
√

z− z1h′4(z) (101)

There are boundary conditions:√
x2 + y2 → ∞ : σxx = σxy = 0, σyy = q, Hxx = Hxy = Hyx = Hyy = 0 (102a)

(x, y) ∈ L :


σxx cos(n, x) + σxy cos(n, y) = 0
σyx cos(n, x) + σyy cos(n, y) = 0
Hxx cos(n, x) + Hxy cos(n, y) = 0
Hyx cos(n, x) + Hyy cos(n, y) = 0

(102b)

y = ±0, a < x < c : σxy = σyy = 0, Hyx = Hyy = 0 (102c)

y = ±0,−c < x < −a : σxy = σyy = 0, Hyx = Hyy = 0 (102d)

L means elliptical hole, cos(n, x) and cos(n, y) are on behalf of outside normal direction cosine of any
point on the line L, respectively, and n is outward normal of the curve.

We take care of the following facts

B =
q

128c1
, B′ + iC′ =

q
64c1

, X = Y = X = Y = 0 (103a)

and
h4(ζ) =

q
128c1

w(ζ) + h∗4(ζ), h3(z) =
q

64c1
w(ζ) + h∗3(ζ) (103b)

By the knowledge of the Cauchy integral formula and the analytic continuation, and paying
attention to |σ| = 1, w(σ) = w(σ), we know

h∗4(ζ) + h∗3(0) +
1

2πi

∫
r

w(σ)

w′(σ)

h∗′4 (σ)

σ− ζ
dσ =

1
2πi

∫
r

f0(σ)

σ− ζ
dσ (104)

It can be

h∗4(ζ) =
1

2πi

∫
r

f0(σ)

σ− ζ
dσ =

1
2πi

∫
r

− q
64c1

w(σ)− q
64c1

w(σ)

σ− ζ
dσ = − q

32c1
· 1

2πi

∫
r

w(σ)

σ− ζ
dσ (105)
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In same manner, we have

h∗3(ζ) = −
q

32c1
· 1

2πi

∫
r

w(σ)

σ− ζ
− w(σ)

w′(σ)
h∗′4 (σ)dσ (106)

In view of the above facts, it is easy to obtain

h∗′4 (ζ) = − q
32c1

· 1
2πi

∫
r

w′(σ)
σ− ζ

dσ (107)

Meanwhile, we note the mapping in Equation (95) yields

w′(ζ) =
(
1− ζ2)[(d2 + 1

)
+

(d2−1)(1+k)(1+ζ2)√
(1+ζ)4+2k(1−ζ2)

2
+(1−ζ)4

]
− a+b

8dζ2 +
8d(a−b)[

2(d2+1)(1+ζ2)+(d2−1)
√
(1+ζ)4+2k(1−ζ2)

2
+(1−ζ)4

]2


(108)

It is obvious that w′(ζ) is analytical outside the unit circle and continuously to the boundary, thus we
can get

1
2πi

∫
r

w′(σ)
σ− ζ

dσ =
(a + b)

(
d2 + 1

)
4d

(109)

Therefore,

h′4(ζ) =
q

128c1
w′(ζ)− q

128c1

(a + b)
(
d2 + 1

)
d

(110)

Finally, we have the tress intensity factor

K(c,0)
I =

q(a + b)
√

π(d4 − 1)√
2d[(d2 − 1)a + (d2 + 1)b]

, K(c,0)
II = 0 (111)

If we regard static stress intensity factor K‖,static
I =

√
πaq of mode I centric crack problems as the

normalized stress intensity factor, then the dimensionless stress intensity factor can be introduced as
K‖

K‖,static . The comparison of the normalized stress intensity factor of various crack radio is depicted in
Figure 4.
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An Extended Dugdale Model for Plane Problems of Three-Dimensional Icosahedral Quasicrystal

The boundary conditions of the extended Dugdale model for plane problems of three-dimensional
icosahedral quasicrystal can be expresses as follows:

z→ ∞ : σyy(z) = σ(∞), σxx = σxy = Hxx = Hxy = Hyy = 0
y = 0,

∣∣x∣∣< a : σxx = σyy = σxy = Hxx = Hyy = Hxy = Hyx

y = 0,
∣∣x∣∣< a + R : σyy = σs, σxx = σxy = Hxx = Hyy = Hxy = Hyx = 0

(112)

According to Reference [23], the general solution of Equation (48) is

G =
1

128
Re[g1(z) + zg2(z) + z2g3(z) + z3g4(z) + z4g5(z) + z5g6(z)].

Meanwhile, it yields 
σxx + σyy = 48c2c3RImΓ′(z)
σyy − σxx + 2iσxy = 8ic2c3R(12ψ′(z)−Ω′(z))
uy + iux = −6c3R( 2c2

λ+µ + c4)Γ(z)− 2c3c7RΩ(z)

λ = C12, µ = C11−C12
2

(113)

The boundary condition above can be written as follows:

3Γ(z)−Ω(z) = 0 (114)

In the above analytic process, the phason field has been omitted. We can calculate the solution
by the complex variable function method, however, the formulation and calculations are lengthy and
omitted; we only give the final outcome:

Γ(ζ) = (a+R)
12c2c3R [

σsφ2
π −

σ(∞)

2 ] 1
ζ −

1
12c2c3R

σs
2π

[
z(ln σ2−ζ

σ2−ζ + ln σ2+ζ
σ2+ζ )− a ln (ζ−σ2)

(ζ+σ2)
(ζ+σ2)
(ζ−σ2)

]
(115)

in which
z = w(ζ) =

a + R
2

(ζ +
1
ζ
)

Based on the same principle with the above problem, we have

(a + R)
12c2c3R

[
σs ϕ2

π
− σ(∞)

2
]
1
ζ
= 0. (116)

Then,

ϕ2 =
πσ(∞)

2σs
. (117a)

R = a[sec(
π

2
σ(∞)

σs
)− 1]. (117b)

uy(x, 0) = −12c3R(
c2

λ + µ
+ c4)Re(Γ(ζ)). (117c)

δt = CTOD = lim
x→a

2uy(x, 0) = lim
ϕ→ϕ2

2uy(x, 0) = 2(
1

λ + µ
+

c4

c2
)

σsa
π

ln sec(
π

2
σ(∞)

σs
). (117d)

sec(
π

2
σ(∞)

σs
) = 1 +

1
2
(

π

2
σ(∞)

σs
)

2

+ · · · · · · (117e)

All parameters have been given above. All these solutions can be found in Reference [26]. We neglect
the complicated and lengthy computation process.
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4. Conclusions

The static elastic problems of quasicrystals are mathematically daunting. For the statics problem
of quasicrystals, systematical and direct methods of mathematical physics are provided to solve the
equations under appropriate boundary value conditions, and many analytical solutions are constructed.
Based on previous theory static elastic problems of quasicrystals, this paper mainly presents for static
elastic response of quasicrystals by using complex potential method. Two kinds of case are considered.
One is the anti-plane problem of static elastic problems of the crack for quasicrystals, in which
we mainly consider one-dimensional hexagonal quasicrystals and three-dimensional icosahedral
quasicrystals. The results of analysis are obtained based on some regular specimen. The other is
the plane problem of static elastic problems of the crack for two-dimensional quasicrystals, in which
we mainly consider the quasicrystals with ten-fold symmetries. The phonon and phason elastic
fundamental fields along with their coupling effect in crack analysis are explicitly presented in terms
of analytical expressions. Through comparing the results of quasicrystals, this paper reveals that the
influence of phason field and phonon–phason coupling, which occupy an important position in elastic
deformation behavior of quasicrystals, should not be neglected.
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