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Abstract: The complete set of independent second- and third-order elastic constants of rare-earth
hexaborides LaB6 and CeB6 are determined by the combination method of first-principles calculations
and homogeneous deformation theory. The ground-state lattice parameters, second-order elastic
constants, and bulk modulus are in reasonable agreement with the available experimental data.
The third-order elastic constant of longitudinal mode C111 has a larger absolute value than other
shear modes, showing the contribution to lattice vibrations from longitudinal modes to be greater.
The pressure derivatives of the second-order elastic constants related to the third-order elastic
constants are calculated to be positive for the two hexaborides, which are consistent with those
of their polycrystalline bulk modulus and shear modulus. Furthermore, the effect of pressure
on the structural stability, mechanical property, and elastic anisotropy of the two hexaborides are
investigated, showing a reduction in mechanical stability and an increase in ductility and anisotropy
with increasing pressure.

Keywords: rare-earth hexaborides; elastic constants; mechanical property; elastic anisotropy;
first-principles

1. Introduction

Rare-earth hexaborides (REB6) have been widely used in various field-electron emitter devices and
high-energy optical systems due to their attractive properties of high melting point, high mechanical
strength, low work function, low volatility at high temperatures, conductivity, chemical resistance,
brightness, small optical size, long service life, and the monoenergetic character of their electrons [1].
These attractive properties are closely related to their crystal structure, which is a simple cubic
CsCl (space group Pm3m) structure with boron octahedra at the cube corners and a rare-earth atom
occupying the body-center position. In this structure, each rare-earth atom is surrounded by eight
boron octahedra, and the boron octahedra are linked together into a three-dimensional network.
It is generally accepted that the structural peculiarity should be taken as one of the basic starting
points to explain some of the anomalies in the REB6 systems. Currently, research focuses on the
developments and applications of the REB6 nanostructures. Understanding the mechanical behavior
of these structures is very important in the development and application stages. It is well-known
that nonlinear effects become significant in nanostructural materials. Nonlinear elastic properties are
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important for describing nonlinear effects in mechanical behavior. Thus, it is very necessary to study
nonlinear effects in the elasticity of the hexaborides.

In general, the second-order elastic constants (SOECs) Cij describe the linear elastic stress–strain
response for single crystals. Third-order elastic constants (TOECs) Cijk are important quantities
to characterize the nonlinear elasticity of the crystals. Both SOECs and TOECs are important
parameters to model the mechanical response of crystals under high pressure. Tanaka et al. [2]
have made measurements of the transit times of pulses of longitudinal and transverse ultrasonic
waves propagating in single crystal LaB6 at room temperature, and have determined its SOECs from
the resultant velocities. Baranovskiy et al. [3] measured the sound velocities along the principal
crystallographic axes of LaB6 at 78 K by employing the phase-frequency method, and evaluated its
SOECs and bulk modulus from the resultant sound velocities. Nakamura et al. [4,5] performed
sound velocity measurements with an ultrasonic apparatus based on the phase comparison method
to investigate the temperature dependence of the SOCEs in LaB6 and CeB6. Goto et al. [6] also
studied the temperature dependence of the SOECs in CeB6. Lüthi et al. [7] took the ultrasonic
and Brillouin scattering measurements to redetermine the SOECs of CeB6 at room temperature.
Moreover, Gürel and Eryiǧit [8] used a first-principles calculations method to study structural, elastic,
lattice-dynamical, and thermodynamical properties of LaB6 and CeB6. Tang et al. [9] performed a
first-principles study of structural, elastic, and electronic properties of CeB6 under pressure. Besides,
high-pressure phase transitions in LaB6 and CeB6 have been investigated experimentally. By using
Raman and X-ray diffraction measurements on LaB6, Teredesai et al. [10] proposed that a phase
transition from cubic to orthorhombic crystal structure occurs around 10 GPa, while Godwal et al. [11]
stated that there is no structural phase transitions up to at least 25 GPa. By using X-ray diffraction
measurements on CeB6, Leger et al. [12] revealed no structural phase transition at ambient temperature
up to 20 GPa. Foroozani et al. [13] failed to detect any change in crystal structure up to 85 GPa,
but they did not exclude the possibility of structural changes in the pressure range of 85−122 GPa.
Nevertheless, the TOECs and related elastic properties of LaB6 and CeB6 have not yet been investigated
either experimentally or theoretically to the best knowledge of the authors.

In recent years, first-principles calculations based on density functional theory (DFT) have been
employed to successfully determine the SOECs, TOECs, and higher-order elastic constants of single
crystals by utilizing a series of homogeneous deformation strains applied to a crystalline system to
obtain the energy–strain relations [14–16]. To study the nonlinear effects in the elasticity of LaB6

and CeB6, we shall use the same method to determine the SOECs and TOECs of both hexaborides.
Subsequently, the pressure derivatives of the effective SOECs have been estimated from the obtained
values of SOECs and TOECs. The polycrystalline bulk, shear, and Young’s moduli, Poisson’s ratio, and
their pressure dependence in LaB6 and CeB6 have also been studied along with the elastic anisotropy
of the two hexaborides. The paper is organized as follows. In Section 2, a brief description of
computational methodology is given. In Section 3, the results we have obtained are presented with
available experimental and theoretical values for comparison. Finally, the conclusions are drawn in
Section 4.

2. Computational Methods

2.1. First-Principles Total-Energy Calculations

First-principles calculations have been performed by means of the Vienna Ab initio simulation
package (VASP) code based on density functional theory (DFT) [17–19]. The projector augmented
wave (PAW) method was used for describing the ion–electron interaction [20,21]. The generalized
gradient approximation (GGA) of Perdew–Burke–Ernzerhof (PBE) was used for evaluating the
exchange-correlation energy [22,23]. The standard PAW potentials were used for La, Ce, and B
elements. A cutoff energy of 600 eV was chosen for the plane wave basis. A threshold of 10−6 eV
per atom on total energy was set for the convergence of electronic self-consistency. A 15 × 15 × 15
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Monkhorst–Pack grid of k-point was adopted for sampling the Brillouin zone [24]. Before calculating
the elastic constants, the structures of LaB6 and CeB6 were fully relaxed with respect to the volume,
shape, and internal atomic position until the atomic forces were less than 0.01 eV/Å. To accurately
calculate the elastic constants, the linear tetrahedron method was used for the final self-consistent
calculations of total-energies.

2.2. SOECs and TOECs of Single Crystal

In this paper, the method of the finite-strain continuum elasticity theory is employed to calculate
the SOECs and TOECs. Here we discuss the theory briefly, the details of which have been given in
References [25–29]. Let ai be the initial Cartesian coordinates of a material point in the unstrained state.
A finite homogeneous deformation carries the material point to the final position with the coordinates
xi in the strained state. After introducing the Jacobian deformation gradient

Jij =
∂xi
∂aj

(i, j = 1, 2, 3), (1)

the Lagrangian strain tensor in the stressed state may be defined as

ηij =
1
2

3

∑
r=1

(Jri Jrj − δij). (2)

The elastic strain energy (∆E) can be expanded in a Taylor series in terms of the strain tensor as

∆E =
V
2! ∑

ij
Cijklηijηkl +

V
3! ∑

ijklmn
Cijklmnηijηklηmn + O(η4), (3)

where V is the volume of the unstrained lattice. After applying the Voigt notation (11→1, 22→2, 33→3,
23→4, 13→5, and 12→6) to denote the strain tensor, the strain energy can be rewritten as

∆E =
V
2! ∑

ij
Cijηiηj +

V
3! ∑

ijk
Cijkηiηjηk + O(η4). (4)

For cubic systems, there are three independent SOECs (C11, C12, C44) and six dependent TOECs
(C111, C112, C123, C144, C155, C456). To obtain the complete set of SOECs and TOECs of LaB6 and
CeB6, we used six Lagrangian strain tensors in terms of a single strain parameter ξ. Table 1 gives
the relationship between the coefficients A2 and A3 and SOECs and TOECs for the six selected strain
tensors. For each strain tensor, the strain parameter ξ varied from −0.08 to 0.08 in steps of 0.01.
Inserting these strain tensors into Equation (4), the strain energy density Φ can be written as an
expansion in the strain parameter ξ as

Φ =
∆E
V

=
1
2

A2ξ2 +
1
6

A3ξ3 + O(ξ4), (5)

where A2 and A3 are the combinations of SOECs and TOECs, respectively. For every deformed
configuration, the atomic positions were optimized, and the total-energy was calculated by using
first-principles method based on DFT. The strain energy is defined as the total-energy difference
between the deformed and the perfect crystals. In this way, the dependencies of the strain energy ∆E on
the strain parameter ξ were obtained for each homogeneous deformation. By comparing with the
expressions from the finite-strain elasticity theory given in Table 1, the elastic constants were extracted
from a polynomial fit to the strain energy versus strain parameter curves under the various strains.
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Table 1. The coefficients A2 and A3 in Equation (5) of the corresponding selected strain tensors as the
linear combinations of the second- and third-order elastic constants for cubic crystal [14].

Strain A2 A3

η1 = (ξ, 0, 0, 0, 0, 0) C11 C111
η2 = (ξ, ξ, 0, 0, 0, 0) 2C11 + 2C12 2C111 + 6C112
η3 = (ξ, ξ, ξ, 0, 0, 0) 3C11 + 6C12 3C111 + 18C112 + 6C123
η4 = (ξ, 0, 0, 2ξ, 0, 0) C11 + 4C44 C111 + 12C144
η5 = (ξ, 0, 0, 0, 2ξ, 0) C11 + 4C44 C111 + 12C155

η6 = (0, 0, 0, 2ξ, 2ξ, 2ξ) 12C44 48C456

2.3. Pressure Derivatives of the Effective SOECs

When an external hydrostatic pressure is applied to a crystal, the effective SOECs are very useful to
describe the nonlinear elastic properties of the crystal. Usually, the effective SOECs under hydrostatic
pressure P (Cij(P)) can be expanded by a Taylor expansion as [15]

Cij(P) ≈ Cij +
dCij(P)

dP
P = Cij + C′ijP, (6)

where C′ij is the first-order pressure derivative, which can be determined from SOECs and TOECs,
and can be expressed for cubic systems as [15,25]

C′11 = −C111 + 2C112 + 2C11 + 2C12

C11 + 2C12
,

C′12 = −2C112 + C123 − C11 − C12

C11 + 2C12
,

C′44 = −2C155 + C144 + C11 + 2C12 + C44

C11 + 2C12
.

(7)

2.4. Pressure Derivatives of Polycrystalline Elastic Moduli

On the basis of the effective elastic constants, the bulk modulus B and shear modulus G for LaB6

and CeB6 under different pressure were obtained using the Voigt, Reuss, and Hill approximations [30–32].
For the specific case of cubic structures, the Voigt’s and Reuss’s bulk moduli can be expressed as

BV = BR =
C11 + 2C12

3
, (8)

and the Voigt’s and Reuss’s shear moduli are defined as

GV =
C11 − C12 + 3C44

5
,

GR =
5(C11 − C12)C44

3(C11 − C12) + 4C44
.

(9)

Hill proposed that the effective elastic moduli are the arithmetic averages of the Voigt and Reuss
moduli, and thus obtained by

BH =
BV + BR

2
,

GH =
GV + GR

2
,

(10)

where the subscripts “V” and “R” correspond to the Voigt and Reuss bounds, and the subscript “H”
represents the Hill averaging method. The Young’s modulus (E) and Poisson’s ratio (ν) are given by
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EX =
9BXGX

3BX + GX
,

νX =
3BX − 2GX

2(3BX + GX)
,

(11)

where X = V, R, H. The pressure derivative of the bulk and shear moduli can be given by

B′H = B′V = B′R =
C′11 + 2C′12

3
,

G′V =
C′11 − C′12 + 3C′44

5
,

G′R =
5[3(C11 − C12)

2C′44 + 4(C′11 − C′12)C
2
44]

[3(C11 − C12) + 4C44]2
,

G′H =
G′V + G′R

2
.

(12)

The pressure derivative of the Young’s modulus E′X and the Poisson’s ratio ν′X can be given by

E′X =
9(3B2

XG′X + B′XG2
X)

(3BX + GX)2 ,

ν′X =
9(B′XGX − BXG′X)

2(3BX + GX)2 .
(13)

Under the external hydrostatic pressure P, the polycrystalline elastic moduli YX(P) (Y = B, G, E, ν)
can be given by

YX(P) = YX +
dYX(P)

dP
P = YX + Y′XP. (14)

3. Results and Discussion

3.1. Second-Order and Third-Order Elastic Constants of REB6 (RE = La, Ce)

The calculated results of the lattice parameters and the SOECs of LaB6 and CeB6 at ground-state are
listed in Table 2 along with the published experimental values and other calculated results [2–9,13,33,34].
Comparison of the lattice constants shows that the calculated quantities of the present work are in
excellent agreement with the previous experimental and theoretical values. The maximum relative
error between our calculated result and the experimental data is 0.07% (0.65%) for LaB6 (CeB6),
and that between our and other calculated results correspond to 0.63% (0.96%) for LaB6 (CeB6).
The room-temperature lattice constant of LaB6 was measured as 4.156 Å from the X-ray power
diffraction patterns [2], which is larger than that (4.1407 Å) of CeB6 [34]. It is the same with the results
obtained in this study. These can be explained well by the larger atomic radius of La (2.74 Å) compared
with Ce (2.70 Å) [35].

The strain energy versus strain parameter curves under the various strains are fitted with a
suitable polynomial to obtain the coefficients A2 and A3 in the Equation (5) for determining the SOECs
and TOECs, as illustrated in Figure 1. The discrete points and the solid lines represent the results
obtained from the first principles calculations and fitted polynomials, respectively. Obviously, these
dependent curves of the strain energy on the strain have the characteristics of the asymmetry, which is
the expected behavior under finite-strain elastic deformation. The strain energy with negative strains
is always larger than that with positive strains, and thus the TOECs are typically negative. The fitted
curves match well with the first-principles calculations results. For the values of SOECs, it is possible
that some constants may be determined from a few polynomial fits (e.g., C44 from coefficients in f4(η),
f5(η), and f6(η)), together with obtaining slightly different results (e.g., for LaB6, C44 = 90.2, 89.1,
and 91.0 GPa from f4(η), f5(η), and f6(η)). In such cases, the average value of all results is given in
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Table 2. Measurements of the SOECs for LaB6 and CeB6 exhibit large discrepancies among themselves,
partly because of different techniques to obtain them. Especially, the SOEC C12 of CeB6 was measured
to be large negative in reference [6] while positive in references [5,7]. For LaB6, the calculated SOECs
of the present study are in reasonable accordance with the previous experimental and theoretical
results [2–4,8]. For CeB6, a negative value of C12 reported in reference [6] was also not found in
the present study. The calculated results of the SOECs are also in reasonable agreement with other
experiments [5,7] and previous calculations [8,9]. For the two hexaborides, the SOEC C11 measures
the resistance to linear compression along the uniaxial axes, and the others are mainly related to the
non-axial sound propagation. The values of C11 are significantly larger than the others in both systems,
implying that they are difficult to compress under uniaxial stress. In addition, the ground-state SOECs
of LaB6 and CeB6 can satisfy the three Born stability criteria for the cubic system [36]: C11 + 2C12 > 0,
C11 − C12 > 0 and C44 > 0, and thus their cubic structures are both mechanically stable.

Table 2. Lattice parameter a (in Å) and elastic constants Cij (in GPa) of LaB6 and CeB6.

Crystal Method a C11 C12 C44

LaB6

Present 4.154 474.1 24.3 90.1
Exp. [2] 4.156 453.3 18.2 90.1

Exp. [4,33] 4.1569 478 43 84
Exp. [3] 4.1565 463 45 89
The. [8] 4.1277 466 37 88

CeB6

Present 4.114 488.2 17.9 74.8
Exp. [5,13] 4.132 473 16 81
Exp. [7,34] 4.1407 508 19 79

Exp. [7] 472 53 78
Exp. [6] 406 −93 78
The. [9] 4.121 483 10 75
The. [8] 4.154 452 34 98
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Figure 1. The strain–energy relations for (a) LaB6 and (b) CeB6. The discrete points and the solid lines
represent the density functional theory (DFT) results and the results of third-order polynomial fitting,
respectively.

The TOECs allow the determination of anharmonic properties of crystals, such as thermal
expansion, interactions of acoustic and thermal phonons, and temperature and pressure dependence
of elastic constants. The evaluation of the TOECs is of general interest. The calculated TOECs of
LaB6 and CeB6 are given in Table 3. All the TOECs of the two hexaborides are negative except for the
values of C123 (=254.3 GPa (304.8 GPa) for LaB6 (CeB6)). The absolute values of their longitudinal
mode C111 (=−2647.1 GPa (−2568.4 GPa) for LaB6 (CeB6)) were found to be much greater than
the corresponding shear modes C112, C123, C144, C155, and C456, implying the contribution to lattice
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vibrations from their longitudinal modes is much greater. The highest absolute values of C111 indicate
a pronounced anisotropy in both materials. Unfortunately, no measurements or calculations on the
TOECs of LaB6 and CeB6 are available for comparison.

Table 3. Third-order elastic constants Cijk (in GPa) of LaB6 and CeB6.

Crystal C111 C112 C123 C144 C155 C456

LaB6 −2647.1 −373.2 254.3 −167.6 −340.4 −403.8
CeB6 −2568.4 −402.8 304.8 −69.6 −286.9 −408.4

3.2. Pressure Derivatives of the Effective Second-Order Elastic Constants of REB6 (RE = La, Ce)

The TOECs above were further used to evaluate the first-order pressure derivatives of LaB6 and
CeB6. These values are summarized in Table 4. A linear increase with pressure was observed for C11,
C12, C44 with pressure derivative C′ij of 4.586, 1.895, 0.451 and 4.507, 1.921, 0.085 for LaB6 and CeB6.
The pressure-induced variation in the longitudinal mode C11 was the largest, followed by the shear
mode C12, and the smallest for the pure shear mode C44. For the two hexaborides, the effect of the
pressure on the C12 was obviously smaller than that on the C11, but markedly greater than that on the
C44. Under hydrostatic pressure, the Born stability criteria for the cubic system are given by [9]

K1 = C̃P
11 + 2C̃P

12 > 0,

K2 = C̃P
11 − C̃P

12 > 0,

K3 = C̃P
44 > 0,

(15)

with

C̃P
ii = Cii(P)− P(i = 1, 4),

C̃P
12 = C12(P) + P.

(16)

In terms of the effective SOECs, these criteria can be expressed as

K1 = (C11 + 2C12) + (C′11 + 2C′12 + 1)P > 0,

K2 = (C11 − C12) + (C′11 − C′12 − 2)P > 0,

K3 = C44 + (C′44 − 1)P > 0.

(17)

From the pressure derivatives of the SOECs, the first-order pressure derivatives of K1 and K2

were calculated as 9.376 (9.349) and 0.691 (0.586) for LaB6 (CeB6), while that of the corresponding K3

was calculated to be −0.549 (−0.915). Thus, the K1 and K2 values of both materials linearly increase
while the K3 values linearly decrease with increasing pressure. When the pressure applied to LaB6

(CeB6) is beyond 164.1 GPa (81.7 GPa), the K3 has a negative value, as shown in Figure 2. This indicates
that the cubic structure of LaB6 (CeB6) can remain mechanically stable up to 164.1 GPa (81.7 GPa).
Previous high-pressure phase transitions showed that no structural phase transitions occur up to
25 GPa (85 GPa) for LaB6 (CeB6) [11–13]. Therefore, the results of the present work are basically
consistent with those of previous experiments.

Table 4. Pressure derivatives C′ij of the second-order elastic constants of LaB6 and CeB6.

Crystal C′11 C′12 C′44

LaB6 4.586 1.895 0.451
CeB6 4.507 1.921 0.085
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Figure 2. The pressure dependence of the K3 values of LaB6 and CeB6.

3.3. Pressure Derivatives of the Polycrystalline elastic moduli of REB6 (RE = La, Ce)

The polycrystalline bulk (B), shear (G), and Young’s (E) moduli and Poisson’s ratio (ν) of LaB6 and
CeB6 were calculated based on their single crystal SOECs, which are collected in Table 5. The calculated
bulk modulus (174.2 GPa) of LaB6 agrees well with the reported experimental values of 163, 184, 188,
164± 2, 173± 7, and 172 GPa [2–4,11,37], and the previous theoretical results of 185 and 180 GPa [3,8].
For CeB6, the calculated bulk modulus (174.7 GPa) of the present study are also in good accordance
with experimental measurements of 191, 168, 182, and 166 GPa [5,7,12] and other theoretical results
of 173 and 166.8 GPa [8,9]. The calculated G value of 120.9 GPa is excellently consistent with that of
121.2 GPa reported in Ref. [9]. The pressure derivatives of the bulk modulus and shear modulus of the
two hexaborides are calculated using the pressure derivatives of the single crystal SOECs, and then
those of the Young’s modulus and the Poisson’s ratio are also estimated. All the obtained results are
presented in Table 6. The calculated B′ value of 2.792 (2.783) for LaB6 (CeB6) can compare well with
the experimental value of 4.2± 1.5 [11] (3.15 [12]). One can see that the B′ and G′ are positive for both
materials, which agree well with the corresponding C′ijs. A similar behavior is found for the E′ and
ν′ being positive, and is in good accordance with the B′ and G′. The bulk modulus is a measure of
the resistance of a material to volume changes. The shear modulus is a measure of the resistance of
a material to shear deformation. The bulk modulus and shear modulus play an important role in
determining the strength of solids [38]. Usually, a superhard material has a high bulk modulus, high
shear modulus, and high shear strength. Thus, we can predict that LaB6 and CeB6 have high hardness.
The positive values of B′ and G′ mean that the elastic moduli B and G can increase gradually with the
pressure, showing that the two hexaborides with a simple cubic structure became more difficult to
compress and shear as the pressure increased. The Young’s modulus is a measure of the stiffness of a
material. The larger the value of E, the stiffer the material. The positive values of E′ demonstrate that
LaB6 and CeB6 become more and more stiff as the pressure increases.

Table 5. Polycrystalline bulk modulus B, shear modulus G, and Young’s modulus E (in GPa),
and Poisson’s ratio ν of LaB6 and CeB6.

Crystal Method B G E ν B/G

LaB6

Voigt 174.2 144.0 338.8 0.176
Reuss 174.2 118.5 289.8 0.223
Hill 174.2 131.3 314.8 0.199 1.327

CeB6

Voigt 174.7 138.9 329.4 0.186
Reuss 174.7 102.8 257.8 0.254
Hill 174.7 120.9 294.6 0.219 1.445
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Table 6. Pressure derivatives of polycrystalline elastic modulus B′ (bulk modulus), G′ (shear modulus),
and E′ (Young’s modulus), and Poisson’s ratio ν′ of LaB6 and CeB6.

Crystal Method B′ G′ E′ ν′(×10−3) (B/G)′

LaB6

Voigt 2.792 0.809 2.664 2.645
Reuss 2.792 0.618 2.089 2.445
Hill 2.792 0.713 2.379 2.550 0.014

CeB6

Voigt 2.783 0.568 2.165 2.942
Reuss 2.783 0.196 1.084 2.886
Hill 2.783 0.382 1.636 2.918 0.018

Pugh [39] has introduced the ratio between the bulk modulus and the shear modulus (B/G)
to assess the ductile/brittle behaviors of a material. A high (low) B/G value is correlated with the
ductility (brittleness) of the material. The critical value of the brittle-to-ductile transition was observed
to be ∼1.75. The B/G ratio was calculated as 1.327 (1.445) for LaB6 (CeB6) at ground-state, indicating
the brittleness of the hexaboride. The pressure derivative (B/G)′ can be obtained from those of the bulk
modulus and the shear modulus, which is expressed as (B/G)′ = (B′G− BG′)/G2. On this basis, the
(B/G)′ value was evaluated to be 0.014 (0.018) for LaB6 (CeB6), showing that the B/G ratio can increase
with increasing pressure. The pressure at which a brittle-to-ductile transition happens is predicted
as 30.1 GPa (16.5 GPa) for LaB6 (CeB6). Frantsevich et al. [40] distinguished the ductility/brittleness
of the materials in terms of Poisson’s ratio. Generally, a brittle material has a lower Poisson’s ratio
than 0.26. The ground-state value of the Poisson’s ratio is consistent with the B/G ratio for LaB6

(CeB6). The very small and positive values of ν′ imply a very slow increase of the ν of both materials
with the pressure. Pettifor [41] introduced the Cauchy pressure to describe the covalent character of
atomic bonding related to the ductile/brittle characteristics of a material. He suggested that larger
positive Cauchy pressure corresponds to a ductile material with more metallic bonds, whereas larger
negative values indicate a brittle behavior with a more covalent character of bonds. For a cubic system,
the Cauchy pressure Pc is defined as Pc = C12−C44. The Pc of LaB6 (CeB6) was calculated as−65.9 GPa
(−58.6 GPa) in terms of the ground-state SOECs given in Table 2. We can find that the bonding of
both materials is covalent with B/G < 1.75, leading to a brittle behavior. The pressure derivative P′c
can be obtained from those of the effective SOECs, which is given by P′c = C′12 − C′44. The P′c value
of LaB6 (CeB6) was estimated to be 1.444 (1.836) based on the values of C′12 and C′44 given in Table 4,
showing the increase of the Cauchy pressure with the pressure. Overall, the brittleness of LaB6 (CeB6)
can reduce as the pressure increases, which is consistent with the previous theoretical result [9].

3.4. Pressure Derivatives of the Elastic Anisotropy of REB6 (RE = La, Ce)

The elastic anisotropy of a material has an important implication in engineering science due to its
high association with the possibility of inducing microcracks in the material [42]. The elastic anisotropy
factor for a cubic crystal introduced firstly by Zener [43] is expressed as

AZ =
2C44

(C11 − C12)
. (18)

A single crystal with AZ = 1 is isotropic, while values smaller or greater than unity describe the
degree of elastic anisotropy. The pressure derivative A′Z can be obtained from those of the effective
SOECs, which is given by

A′Z =
[C′44(C11 − C12)− C44(C′11 − C′12)]

(C11 − C12)2 . (19)

Subsequently, Chung and Buessem [44] empirically improved the anisotropy factor of Zener by
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AC =
(GV − GR)

(GV + GR)
. (20)

A single crystal with AC = 0 is isotropic, otherwise it is anisotropic. The pressure derivative A′C
can be obtained from those of the elastic modulus G′V and G′R, which is given by

A′C =
2(G′V GR − GV G′R)

(GV + GR)2 . (21)

However, it is noteworthy that AZ and AC do not account for the bulk part of the elastic stiffness
tensor, and they are only effective for cubic crystals. To consider the contributions of the shear modulus
and bulk modulus, Shivakumar et al. [45] proposed a universal anisotropy index that is applicable
to various crystal systems, which was expressed as AS = BV/BR + 5GV/GR − 6. A nonzero value of
AS is a measure of the anisotropy. Because the BV is equal to the BR for cubic system, the AS can be
simplified as

AS = 5(
GV
GR
− 1). (22)

The pressure derivative A′S can be calculated in terms of those of the elastic modulus G′V and G′R,
which is given by

A′S = 5
(G′V GR − GV G′R)

G2
R

. (23)

In terms of the SOECs, the elastic moduli, and the corresponding pressure derivatives above, we
predicted the values and the pressure derivatives of various anisotropy factors for LaB6 and CeB6,
as presented in Table 7. The AZ values of less than one and the nonzero AC and AS values show the
elastic anisotropy of the two hexaborides at ground-state. Meanwhile, the negative values of A′Z and
the positive ones of A′C and A′S values indicate that the corresponding anisotropy factors can be far
away from unity with increasing pressure. These results show that the anisotropy of both materials
can be enhanced by increasing the pressure.

Table 7. Anisotropic factors A of LaB6 and CeB6 and their pressure derivatives A′ (×10−4).

Crystal AZ A′Z AC A′C AS A′S
LaB6 0.401 −1.956 0.097 2.002 1.076 24.560
CeB6 0.318 −6.900 0.149 10.700 1.756 147.830

4. Conclusions

The SOECs and TOECs of rare-earth hexaborides LaB6 and CeB6 have been determined by using
first-principles calculations and homogeneous deformation methods. The calculated lattice parameters,
SOECs, and bulk moduli are in reasonable accordance with the available experimental and theoretical
values. All the TOECs of both hexaborides have negative values except for C123. The highest absolute
values of the longitudinal modes C111 show that their contribution to lattice vibrations is the greatest,
and so also their anisotropy in C111. From the calculated elastic constants, the pressure derivatives of
the effective SOECs have been investigated along with the pressure effects on the structural stability,
mechanical properties, and elastic anisotropy. As the pressure increases, the mechanical stability
reduces, and the ductility and anisotropy increase for both hexaborides. The full set of TOECs of both
materials have been determined for the first time, and comparison could not be made as the same is
not available in literature. The measurements of the TOECs are essential for the research of LaB6 and
CeB6 in the future.
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