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Abstract: Wide band gap II-VI semiconductor nanostructures have been extensively studied
according to their great potentials for optoelectronic applications, while heterojunctions are
fundamental elements for modern electronic and optoelectronic devices. Subsequently, a great
deal of achievements in construction and optoelectronic applications of heterojunctions based on
II-VI compound semiconductor one-dimensional nanostructures have been obtained in the past
decade. Herein, we present a review of a series of progress in this field. First, construction strategies
towards different types of heterojunctions are reviewed, including core-shell heterojunctions,
one-dimensional axial heterojunctions, crossed nanowires heterojunctions, and one-dimensional
nanostructure/thin film or Si substrate heterojunctions. Secondly, optoelectronic applications
of these constructed heterojunctions, such as photodetectors, solar cells, light emitting diodes,
junction field effect transistors, etc., are discussed briefly. This review shows that heterojunctions
based on II-VI compound semiconductor 1-D nanostructures have great potential for future
optoelectronic applications.
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1. Introduction

One-dimensional (1-D) semiconductor nanostructures have been attracting a great deal of
attention due to their excellent electronic and optoelectronic performance [1–5]. Many high efficiency
device applications were achieved based on building blocks of semiconductor nanostructures, such as
photodetectors, solar cells, laser diodes, field-effect transistors, etc. [6–9]. On the other hand,
wide band gap II-VI semiconductors have been extensively studied for many years according to
their great potentials for optoelectronic applications: blue-green laser diodes based on ZnSe [10],
high-efficiency solar cells based on CdTe thin films [11], high performance radiation detecting
devices based on CdZnTe [12], etc. However, there are still many difficulties in synthesis high
quality II-VI semiconductor films, which hindered their electronic and optoelectronic applications.
Low-dimensional, particularly one-dimensional II-VI semiconductors, have many advantages
over film/bulk counterparts, such as high crystalline perfection, reduced defects and controlled
doping, etc. [13]. Furthermore, they also presented excellent properties arising from unique
geometries and size-confinement effects [14]. For instance, a CdS/CdSe/CdS biaxial nanobelt with
well-defined morphology was synthesized for high sensitivity and excellent stability photodetector,
which had superior performance than thin film/bulk configurations due to its high crystal and large
surface-to-volume ratio [15].
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Heterojunctions are fundamental elements for modern electronic and optoelectronic devices [16,17].
With the rapid development of nanotechnology, heterojunctions based on semiconductor nanostructures
have caught the eye of investigators all over the world due to their excellent properties. Different types of
nanoscale heterojunction, such as axial, core-shell, and crossed heteorjunctions, have been constructed
based on GaN, Si, ZnO, etc. [18–20]. It should be pointed out that the nanoscale heterojunctions have
superior performances in terms of atomically sharp interfaces, fewer interface defects, and higher
emitting efficiency compared to their thin film and bulk counterparts. As a result, they open up
promising future for high-performance device applications, such as light emitting diodes, laser diodes,
photodetectors, and solar cells [21–24]. However, there are still many challenges in heterojunction
fabrication process so as to be suitable for large scale and stable device applications.

Herein, we present a review on heterojunctions based on II-VI compound semiconductor
one-dimensional nanostructures and their optoelectronic applications. First, construction strategies
toward different types of heterojunctions are reviewed, including core-shell heterojunctions,
one-dimensional axial heterojunctions, crossed nanowires heterojunctions, and one-dimensional
nanostructure/thin film or Si substrate heterojunctions. Secondly, optoelectronic applications
of these constructed heterojunctions, such as photodetectors, solar cells, light emitting diodes,
junction field effect transistors, etc., are discussed briefly. This review shows that heterojunctions
based on II-VI compound semiconductor 1-D nanostructures have great potential for future
optoelectronic applications.

2. Construction Strategies of Heterojunctions Based on II-VI Compound Semiconductor
1-D Nanostructures

2.1. Core-Shell Heterojunctions

Core-shell heterojunctions based on one-dimensional semiconductor nanostructures exhibit
unique advantages in terms of increased surface, shortened carrier collection path, and reduced
reflection, which are vitally important for high-performance electronic and optoelectronic nano-devices.
On the other hand, core-shell heterojuntions have been of particular interest in that their properties
can be easily tuned by changing the diameter and the chemical composition of both the core
and the shell. Heretofore, a number of strategies have been developed to construct core-shell
heterojunctions, including chemical vapor deposition (CVD), atomic layer deposition (ALD), pulsed
laser deposition (PLD), solution-based cation exchange reaction, sputtering, and molecular beam
epitaxy (MBE). For core-shell heterojunctions based on II-VI compound semiconductors, two-steps
methods were usually used as construction approaches. Wang et al. reported on the construction of
p-n junctions based on crystalline Ga-doped CdS-polycrystalline ZnTe nanostructures [25]. They first
used thermal evaporation method to synthesize n-type CdS nanowires on Au film-coated silicon
substrates. Ga and Ca2O3 were used as n-type dopants. Secondly, the p-type ZnTe shell doped
with Sb was deposited on the as-synthesized n-type CdS nanowires through another thermal
evaporation process. Transmission electron microscope (TEM) imagery showed that there was a sharp
distinction in contrast along the radial direction of the nanowire, which revealed its core-shell structure
(Figure 1a). Figure 1b shows a HRTEM image of the CdS-ZnTe core-shell nanowire, which depicted
that the CdS core had single crystal structure while the ZnTe shell was composed of a large number
of crystal grains with a size of 5–10 nm. Furthermore, the elemental mapping in Figure 1c–g clearly
displays the spatial distributions of S, Cd, Te, and Zn in the core and the shell. This showed that
the ZnTe shell layer continuously covered the entire surface of the CdS nanowire core. Zhou et al.
successfully synthesized nearly lattice matched all wurtzite CdSe/ZnTe core-shell nanowires on silicon
substrates [26]. CdSe and ZnTe have a small lattice mismatch and similar thermal expansion coefficients,
which is beneficial to construct a high-quality heteroepitaxial junction and could reduce the interfacial
recombination originating from the interface defects. Zhou and his co-workers first used a thermal
evaporation method to synthesize CdSe nanowires. Then, the ZnTe shell was grown epitaxially over
the CdSe core using the core as a growth template in a PLD system. Structural characterizations
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depicted that both the CdSe core and the ZnTe shell are single crystalline in a wurtzite structure.
Furthermore, the core-shell interface can only be distinguished with the assistance of slightly-distorted
lattice fringes due to a small lattice mismatch of 0.08% between wurtzite CdSe and wurtzite ZnTe
(Figure 2). That is to say, the CdSe core literally acts as a structural template for the ZnTe shell and
the interface between them is high-quality and abrupt. Otherwise, photoluminescence and Raman
spectroscopy characterization indicate efficient separation of photo-generated electron-hole pairs
across the CdSe/ZnTe interface, which mean that the heterojunction could have high performance in
optoelectronics devices. Yang et al. used a low-temperature solution-based cation exchange reaction
to create a heteroepitaxial junction between a single-crystalline CdS core and single-crystalline
Cu2S shell [27]. The solution method has a much lower cost and better reproducibility than MBE
and CVD methods. They first synthesized CdS nanowires by a physical vapor transport method.
Then, the as-grown CdS nanowire was dipped into CuCl solution to convert the surface CdS to a Cu2S
shell. TEM characterization depicted that both CdS and Cu2S are single crystal as shown in Figure 3.
Furthermore, the lattice mismatch of CdS and Cu2S is less than 4%, allowing epitaxial growth with
minimal formation of structural defects. On the other hand, the in situ electron energy loss spectrum
(EELS) mapping shows that cadmium is uniformly dispersed throughout the nanowire, whereas copper
is concentrated near the surface, confirming the core-shell structure. Zhang et al. fabricated coaxial
ZnSe/ZnO nanostructures by coating a ZnO thin film on the surface of pre-synthesized p-type ZnSe
1-D nanostructures by a sputtering method [28]. After the sputtering process, a layer of polycrystalline
ZnO nanoparticles is attached to the single crystalline ZnSe one-dimensional nanostructure synthesized
by a thermal evaporation method. Owing to the n-type behavior of ZnO resulting from intrinsic defects,
the core-shell ZnSe/ZnO heterojunction could act as a p-n junction and play an important role in
optoelectronic devices. Jie et al. constructed Ge-CdS core-shell heterojunction nanowires via a facile
ALD technique [29]. The ALD method can be easy to precisely control the thickness and component
of the shell, which is beneficial to tune the optoelectronic properties of heterojunctions. Jie et al. also
produced core-shell ZnSe/Si nanocables by a simple two-step growth method [30]. ZnSe nanowire
cores were first synthesized by thermal evaporation and then followed by the CVD growth of Si
shells. Structure characterization indicated that the ZnSe core had a cubic single-crystal structure
while the Si shell was polycrystalline and composed of a large number of crystal grains. Moreover,
the authors achieved p-type doping of Si shell by Boron diffusion and constructed a core-shell
structure p-n junction, which is favored for optoelectronic applications. Fang et al. synthesized
a kind of heterocrystalline-ZnS/single-crystalline-ZnO biaxial nanobelts and a kind of side-to-side
single-crystalline ZnS/ZnO biaxial nanobelts via a simple one-step thermal evaporation method.
In the ZnS/ZnO biaxial nanobelts, a ZnS domain is composed on the heterocrystalline superlattice
(3C-ZnS)N/(2H-ZnS)M[111]-[0001] with the atomically smooth interface between wurtzite and zinc
blende ZnS fragments [31,32]. Fang et al. also fabricated ZnO-Ga2O3 core-shell microwires by
a simple one-step chemical vapor deposition method. The ZnO crystal lattice could abruptly switch
to the Ga2O3 crystal lattice within 6–8 atomic layers without incurring noticeable structure defects at
the interface [33].
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Figure 1. (a) TEM image of a CdS-ZnTe core-shell nanowire. (b) HRTEM image of the CdS nanowire; 
and (c) the corresponding FFT pattern. (d) High-magnification TEM image of a CdS-ZnTe core-shell 
nanowire. (e–i) TEM image of an individual core-shell nanostructure and the corresponding 
elemental mapping images for: Cd (f); S (g); Te (h); and Zn (i). Reproduced with permission from 
[25], Copyright 2015, The Royal Society of Chemistry. 

 
Figure 2. Structural characterization of a CdSe nanowire and CdS/ZnTe core-shell nanowire. (a) Low 
magnification TEM image of an individual CdSe nanowire. Inset: the corresponding SAED pattern. 
(b) HRTEM of a CdSe nanowire demonstrating a single-crystalline, WZ structure. (c) A 
representative TEM image of an individual CdSe/ZnTe core-shell nanowire. Inset: the corresponding 
CBED pattern. (d) HRTEM images of the core-shell interface that display the interplanar spacing and 
epitaxial growth of the WZ ZnTe shell on the WZ CdSe core. (e) Inverse FFT image. Inset: core-shell 
interface processed from the white, dashed rectangle in (d). (f) A STEM image of a CdSe/ZnTe 
core-shell nanowire. Inset: EDS data obtained with a nanoprobe scan along the black line that 
extends axially across the interface. Reproduced with permission from [26], Copyright 2014, The 
Royal Society of Chemistry. 

Figure 1. (a) TEM image of a CdS-ZnTe core-shell nanowire. (b) HRTEM image of the CdS nanowire;
and (c) the corresponding FFT pattern. (d) High-magnification TEM image of a CdS-ZnTe core-shell
nanowire. (e–i) TEM image of an individual core-shell nanostructure and the corresponding elemental
mapping images for: Cd (f); S (g); Te (h); and Zn (i). Reproduced with permission from [25],
Copyright 2015, The Royal Society of Chemistry.
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Figure 2. Structural characterization of a CdSe nanowire and CdS/ZnTe core-shell nanowire. (a) Low
magnification TEM image of an individual CdSe nanowire. Inset: the corresponding SAED pattern.
(b) HRTEM of a CdSe nanowire demonstrating a single-crystalline, WZ structure. (c) A representative
TEM image of an individual CdSe/ZnTe core-shell nanowire. Inset: the corresponding CBED pattern.
(d) HRTEM images of the core-shell interface that display the interplanar spacing and epitaxial growth
of the WZ ZnTe shell on the WZ CdSe core. (e) Inverse FFT image. Inset: core-shell interface processed
from the white, dashed rectangle in (d). (f) A STEM image of a CdSe/ZnTe core-shell nanowire. Inset:
EDS data obtained with a nanoprobe scan along the black line that extends axially across the interface.
Reproduced with permission from [26], Copyright 2014, The Royal Society of Chemistry.
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Figure 3. Structural characterization of CdS and CdS-Cu2S core-shell nanowires. (a) Representative 
TEM image of an as-grown CdS nanowire with its tip capped by a gold nanoparticle. Inset: electron 
diffraction pattern taken on the single crystalline nanowire. (b) High-resolution TEM image of an 
individual CdS nanowire, showing the single crystalline structure. (c) High-resolution TEM image of 
a CdS-Cu2S nanowire at the heterojunction. (d) Constructed inverse FFT image along the growth 
direction for the area marked in c. The green area shows the typical lattice fringe distortion at the 
core-shell interface (see Supplementary Information). (e,f) EELS elemental mapping images for: Cd 
(e); and Cu (f). Reproduced with permission from [27], Copyright 2011, Nature Publishing Group. 

Regarding the core-shell architecture, 3-D core-shell nanowire array structure provides 
additional advantages over single nanowire-based devices owing to their unique features, such as a 
large surface area, excellent multichannel charge transport, and enhanced light absorption through 
light trapping and scattering. Zhou et al. fabricated a type of CdSe/ZnTe core-shell nanowire array 
for broad spectral detecting [34]. They first grew vertically aligned CdSe nanowire array on 
muscovite mica substrate by CVD method. Then, the as-synthesized CdSe nanowire array was 
transferred to a PLD system for coating ZnTe on CdSe nanowire array. The EDS line scan across the 
nanowire clearly demonstrated a characteristic core-shell elemental distribution, further confirming 
the successful synthesis of a CdSe/ZnTe core-shell nanowire array with an abrupt, nearly 
lattice-matched interface. Wang et al. constructed a fully wide band gap ZnO/ZnS type-II 
heterojunction core-shell nanowire array for high-performance broad UV/VIS photo-detecting [35]. 
ZnO nanowire array was first synthesized on ITO substrates and a ZnS shell layer was deposited by 
the PLD method. A HRTEM image of a typical single ZnO/ZnS core-shell nanowire shows that two 
different lattice fringes corresponding to the zinc-blend ZnS shell and wurtzite ZnO core separated 
by an abrupt interface can be seen (Figure 4). Furthermore, EDS line scan collected along the lateral 

Figure 3. Structural characterization of CdS and CdS-Cu2S core-shell nanowires. (a) Representative
TEM image of an as-grown CdS nanowire with its tip capped by a gold nanoparticle. Inset: electron
diffraction pattern taken on the single crystalline nanowire. (b) High-resolution TEM image of
an individual CdS nanowire, showing the single crystalline structure. (c) High-resolution TEM image
of a CdS-Cu2S nanowire at the heterojunction. (d) Constructed inverse FFT image along the growth
direction for the area marked in c. The green area shows the typical lattice fringe distortion at
the core-shell interface (see Supplementary Information). (e,f) EELS elemental mapping images for:
Cd (e); and Cu (f). Reproduced with permission from [27], Copyright 2011, Nature Publishing Group.

Regarding the core-shell architecture, 3-D core-shell nanowire array structure provides additional
advantages over single nanowire-based devices owing to their unique features, such as a large surface
area, excellent multichannel charge transport, and enhanced light absorption through light trapping
and scattering. Zhou et al. fabricated a type of CdSe/ZnTe core-shell nanowire array for broad
spectral detecting [34]. They first grew vertically aligned CdSe nanowire array on muscovite mica
substrate by CVD method. Then, the as-synthesized CdSe nanowire array was transferred to a PLD
system for coating ZnTe on CdSe nanowire array. The EDS line scan across the nanowire clearly
demonstrated a characteristic core-shell elemental distribution, further confirming the successful
synthesis of a CdSe/ZnTe core-shell nanowire array with an abrupt, nearly lattice-matched interface.
Wang et al. constructed a fully wide band gap ZnO/ZnS type-II heterojunction core-shell nanowire
array for high-performance broad UV/VIS photo-detecting [35]. ZnO nanowire array was first
synthesized on ITO substrates and a ZnS shell layer was deposited by the PLD method. A HRTEM
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image of a typical single ZnO/ZnS core-shell nanowire shows that two different lattice fringes
corresponding to the zinc-blend ZnS shell and wurtzite ZnO core separated by an abrupt interface
can be seen (Figure 4). Furthermore, EDS line scan collected along the lateral direction of a core-shell
nanowire shows the characteristic core-shell element distribution, which confirms the successful
synthesis of ZnO/ZnS core-shell nanowires.
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Cross-section SEM images showed that quasi-aligned ZnSe nanoribbons array was directly grown 
on the top of SiNWs array. HRTEM images taken from the junction interface area depict that ZnSe 
exhibits good epitaxial relationship with the SiNW due to their matched lattice structure (Figure 5). 
This unique materials combination and structure make it present excellent photovoltaic 
performance. Furthermore, to overcome the difficulty in complicated multi-step preparation 
process and high preparation cost, Zhang et al. exploited a facile method to fabricate single 
ZnSe-ZnO nanowire axial p-n junction by regioselectively oxidizing the p-type ZnSe nanowire in 
air as shown in Figure 6 [39]. They firstly transferred the as-synthesized p-type ZnSe nanowires 
onto the SiO2/Si substrate by a sliding transfer process. After that, Si3N4 protection layer was 
deposited on one end of the ZnSe nanowire via photolithography and magnetron sputtering 
techniques. Then, the sample was put into rapid thermal process system to oxidize the bare part of 
ZnSe nanowire at 700 °C in air. The Si3N4 layer could protect the covered nanowire part against 
being oxidized. As a result, regioselective oxidation of the ZnSe nanowire was achieved. 
Subsequently, the Si3N4 layer was etched by reactive ion etching and the unoxidized ZnSe part was 
uncovered. After the regioselective oxidation process, the whole nanowire consists, in part, of 

Figure 4. Structural characterization of a ZnO/ZnS core/shell nanowire showing low magnification top
view, FESEM images of: (a) an as-grown, ZnO nanowire array; and (b) a ZnO/ZnS core/shell nanowire
array; (c) an HRTEM image of a single ZnO/ZnS core/shell nanowire; and (d) the corresponding
energy dispersive spectroscopy (EDS) lateral line scan depicting elemental peaks characteristic to
core/shell nanowire structure. Reproduced with permission from [35], Copyright 2015, American
Chemical Society.

2.2. 1-D Axial Heterojunctions

The axial geometry of 1-D axial heterojunction is promising for integrating several p-n junctions
in a multi-junction optoelectronic devices, since it offers a large degree of material design freedom due
to efficient strain relaxation for lattice mismatched materials [36]. In addition, 1-D axial heterojunction
is considered to be fabricated more easily than core-shell approaches and expected to exhibit lower
leakage currents and, therefore, should possess a superior rectifying behavior compared to radial
structures [37]. 1-D axial heterojunctions, based on II-VI compound semiconductor nanostructures,
have also caught the eye of investigators and present excellent performance. For instance, Zhang et al.
constructed a kind of p-n heterojunction arrays by directly growing the p-type ZnSe nanoribbons on
highly-aligned n-type Si nanowires arrays [38]. Cross-section SEM images showed that quasi-aligned
ZnSe nanoribbons array was directly grown on the top of SiNWs array. HRTEM images taken from
the junction interface area depict that ZnSe exhibits good epitaxial relationship with the SiNW due to
their matched lattice structure (Figure 5). This unique materials combination and structure make it
present excellent photovoltaic performance. Furthermore, to overcome the difficulty in complicated
multi-step preparation process and high preparation cost, Zhang et al. exploited a facile method to
fabricate single ZnSe-ZnO nanowire axial p-n junction by regioselectively oxidizing the p-type ZnSe
nanowire in air as shown in Figure 6 [39]. They firstly transferred the as-synthesized p-type ZnSe
nanowires onto the SiO2/Si substrate by a sliding transfer process. After that, Si3N4 protection layer
was deposited on one end of the ZnSe nanowire via photolithography and magnetron sputtering
techniques. Then, the sample was put into rapid thermal process system to oxidize the bare part of
ZnSe nanowire at 700 ◦C in air. The Si3N4 layer could protect the covered nanowire part against being
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oxidized. As a result, regioselective oxidation of the ZnSe nanowire was achieved. Subsequently,
the Si3N4 layer was etched by reactive ion etching and the unoxidized ZnSe part was uncovered.
After the regioselective oxidation process, the whole nanowire consists, in part, of unoxidized ZnSe
and, in part, of post-oxidized ZnO, which constructed the ZnSe-ZnO axial p-n junction.
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Figure 5. (a) Cross-section FESEM image of the ZnSeNR/SiNW heterojunction array. (b,c) TEM
images of a single SiNW covered by the ZnSe layer. (d) HRTEM of the SiNW and ZnSe interface
detected at the circle region in (c). The junction interface was marked with a dashed line. Insets show
the fast Fourier transform (FFT) patterns of the SiNW (left) and ZnSe (right). (e) EDX spectrum of
the SiNW taken from the light area in (c). (f) EDX spectrum of the ZnSe taken from the dark area in (c).
Cu peaks come from the Cu grid used for TEM investigation. Reproduced with permission from [38],
Copyright 2011, The Royal Society of Chemistry.
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Figure 6. (a) Schematic illustration of the construction process of the ZnSe-ZnO axial p-n junction.
(b) The SEM image of a nanowire whose bare part has already been oxidized. (c) The SEM image
of a prepared ZnSe-ZnO nanowire axial p-n junction. Reproduced with permission from [39],
Copyright 2015, Elsevier B.V.

2.3. Crossed Nanowire Heterojunctions

Core-shell heterojunctions and 1-D axial heterojunctions are always fabricated via a series of
complicated multi-step nanostructure preparation process. On the other hand, investigators try to
assemble 1-D nanostructures after their synthesis in order to construct heterojunctions. The crossed
nanowire heterojunction is a kind of post-assembly heterojunction and presents many advantages,
including the ability to: (1) flexibly choose component materials; (2) independently tune the dopant
concentration of the component materials; (3) define abrupt, nanoscale junctions that are ideal for high
spatial resolution; and (4) assemble arrays for integrated nano-optoelectronic devices [40]. Lieber et al.
fabricated crossed n-CdS and p-Si nanowire heterojunctions by microfluidic-directed assembly using
orthogonal sequential flows of the CdS and Si nanowires [41]. Furthermore, they constructed a crossed
nanowire architecture by sequential deposition of p-type (Si) and n-type (CdS, CdSSe, CdSe, CaN,
and InP) nanowire materials using directed fluidic assembly. The crossed nanowire heterostructures
are electrically addressable at the cross points and can be described qualitatively by a staggered type-II
band diagram heterojunctions [42]. Nie et al. developed another approach to fabricated ZnSe/ZnO
crossed heterojunctions (Figure 7) [43]. They firstly dispersed n-type ZnO nanowires on the substrate.
Then, p-type ZnSe nanowires were transferred onto the substrate at a vertical direction to the ZnO
nanowires by a contact sliding transfer method.
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2.4. 1-D Nanostructure/Thin Film or Si Substrate Heterojunctions

II-VI group semiconductor one-dimensional nanostructures and Si substrates/semiconductor
films could be combined and be used to construct heterojunctions. There are many advantages of
this construction strategy: (1) it could avoid the complicated multi-step preparation and simply
the procedure of device fabrication; (2) it is compatible with traditional microelectronic technology;
and (3) it is suitable to develop align plane array integrated devices. Zhang et al. used a series of
micro-nanofabrication processes to construct p-ZnSe nanowire/n-Si substrate heterojunction [44].
The heterojunction construction follows these steps: photolithography and wet etching with buffered
oxide etch (BOE) solution was performed to define the SiO2 insulating pads on a SiO2 (300 nm)/n-Si
substrate. Then p-ZnSe nanowires were transferred from the growth substrate onto the patterned
SiO2/Si substrate via a simple sliding transfer process. After dispersion, some NWs would cross
on the edges of the SiO2 pads and partially contact with the underlying n-Si substrate. The p-ZnSe
nanowire/n-Si heterojunction could be formed in the contact regions. Finally, Au (50 nm) were
deposited on the SiO2 by electron-beam evaporation and served as the ohmic contacts to the NWs.
The stepwise process for the construction of the ZnSe nanowire/Si heterojunction is shown in
the Figure 8. Many other heterojunctions were fabricated based on the above constructions method,
such as ZnSe nanoribbon/Si nano-heterojunction [45], CdS:Ga nanoribbon/Si heterojunctions [46],
n-CdSe nanowire/p+-Si substrate heterojunction [47], p-ZnS nanoribbon/n-Si heterojunction [48],
p-CdS nanoribbon/n-Si heterojunctions [49], n-CdS nanowire/p+-Si substrate hybrid p-n junction [50],
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ZnSe nanowire array/Si p-n heterojunctions [51], ZnSe nanowire/Si p-n heterojunctions [52], and so on.
Furthermore, Xie et al. firstly used a Ag-assisted chemical etching method to obtain patterned
SiNWs array at particular area on the silicon substrate (Figure 9a). Then, they used mechanically
transferred method to transfer CdTe nanoribbons onto the Si substrate and heterojunctions could be
formed at the regions where the bottom surface on the nanoribbons contacts with the tips of n-type
SiNWs array [53]. Qin et al. fabricated n-CdSXSe1−X/p+-Si parallel-nanobelt heterojunctions on
a silicon-on-insulator (SOI) substrate [54]. First, the CdSXSe1−X nanoribbon suspension was dropped
onto the SOI substrate. Then photoresist pads were patterned by UV lithography on the SOI substrate,
with at least one pad covering one end of a single CdSXSe1−X nanoribbon. The photoresist together with
the uncovered CdSXSe1−X nanoribbon was then used as the mask for the following Si etching process
by an inductively-coupled plasma (ICP) etching technique. Later, the remaining photoresist was
removed by acetone. Finally, by UV lithography followed by a thermal evaporation and lift-off process,
an In/Au ohmic contact electrode was made on the nanoribbon. The fabrication process is shown in
Figure 9b. The constructed n-CdSXSe1−X/p+-Si parallel-nanobelts heterojunction was considered to
have the advantages of larger active region, smaller series resistance, higher electron and hole injective
current. Lee et al. also used SOI substrate to construct a kind of n-CdSe:In nanowire/p-Si nanoribbon
crossbar heterojunction which showed high stability and reproducibility in performance [18].
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Yu et al. fabricated n-ZnO nanowire/p-GaN film heterojunctions which were used as UV
light-emitting diodes and self-powered UV detector. Mg-doped p-GaN film was first grown by
low-temperature metal-organic chemical vapor deposition. A layer of Al2O3 insulating film was then
deposited via electron beam heating evaporation onto half of the GaN film using a shadow mask.
A single ZnO nanowire was subsequently placed across the boundary between the Al2O3 and GaN
films. The natural atomic bonding between the ZnO and GaN formed the p-n heterojunction. Finally,
metal electrodes were deposited in order to complete the device fabrication [55,56].
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Figure 9. (a) Schematic illustration of the fabrication process for the p-CdTeNR/n-SiNW array
heterojunction device. Reproduced with permission from [53], Copyright 2012, The Royal Society
of Chemistry. (b) Flowchart for the fabrication process of the n-CdSXSe1−X/p+-Si parallel-nanobelt
heterojunctions: (1) The NB suspension was dropped onto the SOI substrate and photoresist pads
(200 mm long, 50 mm wide) were patterned by UV lithography. (2) The Si was etched by ICP etching.
The photoresist together with the nanobelts were used as the mask. (3) The photoresist was removed.
The cross-section at the end of the nanobelts was magnified to show the undercut effect. (4) The final
device from two angles of view after the In/Au (10 nm/100 nm) ohmic contact electrode was made.
Reproduced with permission from [54], Copyright 2010, The Royal Society of Chemistry.

3. Optoelectronic Applications of Heterojunctions Based on II-VI Compound Semiconductor
1-D Nanostructures

There are many studies on the optoelectronic applications of heterojunctions based on II-VI
semiconductor nanostructures, such as solar cells, photodetectors, light emitting diodes, etc. In this
section, we mainly focus on the optoelectronic applications of the different types of heterojunctions
based on II-VI semiconductor nanostructures. The authors considered that the efficiency was
significantly underestimated because the nanowire is relatively thin and the light absorption is far from
complete. Furthermore, the efficiency could be increased by surface passivation in order to suppress
the carrier recombination of these surface states.

3.1. Solar Cells

Most of II-VI group semiconductors have direct band gaps and high optical absorption and
emission coefficients [57]. On the other hand, by combining semiconductors with different band
gaps, each part of the heterojunctions can selectively absorb the sunlight in a certain spectrum range,
thus leading to wider light absorption and more efficient light utilization. Thereby heterojunctions
have shown the great promise for realizing high performance solar cells [39]. A leading candidate for
photovoltaic applications is CdTe, which has a band gap of 1.45 eV and high optical absorption
coefficient. A film of CdTe with thickness of 2 mm will absorb nearly 100% of incident solar
radiation [58]. The most common solar cell configuration is p-CdTe/n-CdS heterojunction. For instance,
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Britt et al. successfully demonstrated the fabrication of 1 cm2 large thin-film CdS/CdTe solar cells with
an impressive efficiency of 15.8% under AM 1.5 G illumination [59].

In recent years, the studies of solar cells based on II-VI semiconductor nanostructures have caught
the eyes of investigators all over the world and gained fruitful results. Yang et al. fabricated a kind
of CdS/Cu2S core-shell nanowire solar cells with open-circuit voltage and fill factor values superior
to those reported for equivalent planar cells, and an energy conversion efficiency of ~5.4%, which is
comparable to that of equivalent planar cells despite low light absorption levels [9,60]. They also
integrated multiple cells on single nanowires in both series and parallel configurations for high output
voltages and currents (Figure 10). The dramatic photovoltaic performance of CdS/Cu2S core-shell
nanowire solar cells is considered to arise from the low-temperature solution-based cation exchange
reaction which could create a heterooepitaxial junction between a single-crystalline CdS core and
single-crystalline Cu2S shell. Zhou et al. fabricated a kind of photovoltaic device based on a single
CdSe/ZnTe core-shell nanowire [55]. In their device, indium and nickel were selected as the electrode
materials for the CdSe core and ZnTe shell, respectively. As a result, the device’s dark I-V curve
exhibits clear rectifying behavior while the rectifying curve shifts downwards due to the generation
of photocurrent under illumination. The best CdSe/ZnTe core-shell nanowire solar cell exhibited
an open circuit voltage of 0.18 V, a short-circuit current of 38 pA, and a fill factor of 0.38, which yielded
an energy conversion efficiency of 1.7%. Zhang et al. also designed photovoltaic devices based on
the coaxial ZnSe/ZnO p-n junction [52]. A power conversion efficiency of 1.24% and a large open
circuit voltage of 0.87 V under UV light were obtained. The large bandgaps of ZnSe and ZnO and
the high quality of the ZnSe/ZnO interface were considered to be related to the high performance of
the nano-heterojunction. Zhang et al. developed a kind of ZnO/ZnSe type II core-shell nanowire array
solar cell, which could offer strong enhancement in light absorption through increasing the junction
area and light trapping. Their result opened up new options in the selecting the absorber material for
solar cells [61].
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Figure 10. (a) SEM image of a PV unit; CdS and Cu2S are highlighted with yellow and brown
false colours, respectively. (b) I-V characteristic of a core-shell nanowire under 1 sun (AM 1.5 G)
illumination. (c) SEM image of three PV units from a single nanowire in series with the core-shell
regions marked by the brown rectangles. (d) I-V characteristic of the in series units under 1 sun
illumination (AM 1.5 G), showing that the voltages add and the current remains fixed. (e) SEM image
of four PV units from a single nanowire in parallel with the core-shell regions marked by the brown
rectangles. (f) I-V characteristic of the four units in parallel under 1 sun illumination (AM 1.5 G),
showing that the currents add and the voltage remains fixed. Reproduced with permission from [9],
Copyright 2011, Nature Publishing Group.
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Heterojunctions based on II-VI group semiconductor one-dimensional nanostructures and Si
substrates were also considered as an important candidate for next-generation solar cells. Wu et al.
constructed photovoltaic devices on the basis of the CdS:Ga nanoribbons/Si heterojunctions [46].
The devices presented an obvious PV behavior under AM 1.5 G light illumination: the open circuit
photo voltage and the short circuit current are deduced to be 0.45 V and 3.49 nA, respectively, leading
to a fill factor of 44.1% and a power conversion efficiency of 1.24%. Considering the large difference in
band gap, the CdS:Ga nanoribbon will absorb light with short wavelength, while Si can absorb long
wavelength light. The distinct structure of the heterojunction made the incident light with a wide
spectrum be absorbed and utilized more efficiently. This feature is superior to those of the conventional
solar cells based on Si, which showed poorer absorption in the short wavelength range. Moreover,
ZnSe nanowire/Si p-n junction [44], p-ZnSe nanowire array/Si p-n heterojunctions [51], and single
ZnSe nanowire/Si p-n heterojunction [52] were achieved based on the configuration of one-dimensional
nanostructures and Si substrates, and presented conversion efficiency of ~2.87%, 1.04%, and 1.8%,
respectively. To improve the devices’ performance, Wang et al. modified Ag nanoparticles on the ZnSe
nanoribbon/Si p-n heterojunction and made the photovoltaic performance improve dramatically
compared to the device without a Ag nanoparticle, as shown in Figure 11 [45]. It is considered
that the enhanced light absorption and electric field strength of the ZnSe nanoribbons modified
with Ag nanoparticles by localized surface plasmon resonance could lead to more electron-hole
pairs generation and improve the conversion efficiency. On the other hand, Xie and Zhang et al.
constructed heterojunctions based on II-VI group semiconductor one-dimensional nanostructures and
Si nanowire arrays in order to enhance the light absorption compared to planner Si substrates [39,53].
As a result, a p-CdTeNR/n-SiNW array heterojunction device with a conversion efficiency of 2.1% and
a p-ZnSeNRs/CH3-SiNW array heterojunction with a conversion efficiency of 2.27% were obtained.
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Figure 11. (a) Schematic illustration of ZnSe nanoribbon/Si heterojunction. (b) The top view SEM
image of a single nanoribbon device. (c) Dark I-V characteristics of devices in the semi-logarithmic
scale. (d) The J-V curves of devices embellished with different diameters of Ag nanoparticles measured
under AM 1.5 G illumination at 100 mW cm−2. Reproduced with permission from [45], Copyright 2016,
IOP Publishing Ltd.
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3.2. Photodetectors

II-VI group semiconductors have direct band gaps from 1.5 eV (CdTe) to 3.7 eV (ZnS), and the band
gaps of II-VI nanostructures could be further extended via quantum confinement effects. Therefore
II-VI nanostructures are very promising candidates for photodetection applications from NIR to UV
light. Moreover, photodetectors based on II-VI nanostructures are expected to have much improved
performance owing to their high quantum efficiency and high crystal quality [13]. On the other
hand, it is worth emphasizing that effective and rapid separation of the photo-generated carriers at
heterojunction photodetectors’ space-charge region could result in quickly photoresponse, which is
very different from the slow time photoconductive relaxation of one-dimensional photoconductors
originating from adsorbates on the nanostructures surface [62].

Xie et al. developed a kind of high-performance zero-power photodetector based on
a p-CdTeNR/n-SiNWs array heterojunction, which could be operated in the visible to near-infrared
range with good stability, high sensitivity, and fast response speed [53]. The photodetectors were run
under white light illumination with an intensity of 62.5 µW cm−2 and presented excellent stability and
reproducibility even at 600 Hz. On the other hand, the heterojunction devices reveals small rise time
(1.2 ms) and fall time (1.58 ms), which are much faster than the reported CdTe nanowires and CdTe
nanoribbons based photodetectors [63–65]. Wu et al. fabricated CdS nanoribbon/Si heterojunctions
based photodiodes and obtained smaller rise time of 300 µs and fall time of 740 µs under white light
illumination with intensity of 5.3 mW cm−2 (Figure 12) [61]. They think the fast photoresponse of the
heterojunction could be attribute to the high-quality p-n junction formed between the CdS nanoribbon
and the Si substrate. The interface defects are few, so the photogenerated carriers could be quickly
separated by the space charge region and then transferred to the electrodes. Additionally, based
on the high-quality ZnS NRs and achievement on ohmic contact, Yu et al. constructed a kind of
photodiodes by p-ZnS nanoribbon and n-Si substrate with a response speed as high as ~48 ms (rise
time). Furthermore, the device also exhibits stable optoelectrical properties with high sensitivity to
UV-VIS-NIR light and an enhancement of responsivities of 1.1 × 103 AW−1 for 254 nm under a reverse
bias of 0.5 V [48]. Bie et al. prepared self-powered ZnO/GaN nanoscale p-n junctions photodetector
with fast response time (219 µs) [55]. It should be pointed out that the nanoscale p-n junction shows
visible-blind sharp UV response which is benefitted from the high-quality ZnO and GaN materials
and the nanoscale device feature. On the other hand, Wang et al. fabricated ZnSe nanoribbon/Si p-n
heterojunction photodetector [45]. To improve its performance, Ag nanoparticles were modified onto
the ZnSe nanoribbon/Si p-n heterojunction device (Figure 13). The responsivity and detectivity were
improved to 184.8 mAW−1 and 9.20 × 1011 cm Hz1/2 W−1 for device decorated with Ag nanoparticles
of 39 + 64 nm compared to 117.2 mAW−1 and 5.86 × 1011 cm Hz1/2 W−1 for device without Ag
nanoparticles. When the heterojunction was irradiated by light illumination, the energetic hot electrons
from the localized surface plasmon resonance excitation of metallic plasmonic nanoparticles can
easily transfer to the nearby ZnSe nanoribbon with a relatively high energy. The injected electrons at
the ZnSe nanoribbons could migrate to the ZnSe/Si heterojunction interface, and were then separated
by the built-in electric field. Consequently, the plasmonic device exhibits enhanced photocurrent in
comparison with a device without Ag nanoparticles.
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Luo et al. constructed CdS-ZnTe core-shell nano-heterojunction photodetectors and measured
their photoresponse under light illumination with a wavelength of 638 nm and light intensity of
2 mW cm–2 at 1 V (Figure 14) [25]. The fabricated core-shell nano-heterojunction photodetectors
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exhibited responsivity of 1.55 × 103 AW−1, conductive gain of 3.3 × 103, detectivity of
8.7 × 1012 cm Hz1/2 W−1, which are much higher than the devices based on is greatly enhanced
by the piezo-phototronic effect [34]. Jie et al. fabricated Ge-CdS core-shell heterojunction nanowire
photodetectors with excellent diode characteristics and a pronounced photoresponse under light
illumination. Significantly, owing to the existence of a built-in electric field, the heterojunctions
could serve as self-driven photodetectors, with a high photodetection sensitivity of 18,000%, which
is remarkably much higher than arrays of CdS nanowires and CdS quantum dots [65,66]. Zhou et al.
also prepared a broad band photodetector based on II-VI binary CdSe/ZnTe core/shell nanowire array.
Its photodetection is better than previous reports on Ge nanowire photodetectors. The complementary
bandgaps of Ge and CdS also ensured that the device had a capability for broadband detection
from visible to infrared light. This study represents an important advance in fabricating core-shell
heterojunction NWs for high-performance optoelectronic applications [29]. Wang et al. developed an
efficient and highly sensitive broad band UV/VIS photodetector based on wide band gap ZnO/ZnS
heterojunction 3D core/shell nanowire array [37]. The abrupt interface between ZnO and ZnS
plays a dominant role in photon absorption via an indirect type-II transition which was strongly
manifested in the photodetection of visible illumination (blue and green). The absolute device
responsivity was further increased through the piezo-phototronic effect by an order of magnitude under
simultaneous application of load and illumination, resulting in three orders of change in the relative
responsivity. Moreover, photodetectors based on a crossed ZnSe-ZnO p-n nano-heterojunction and
ZnSe-ZnO axial p-n junction were constructed and exhibited excellent diode behaviors and heigh
sensitivity to ultraviolet light ilumination with good reproducibility and quick photoresponse [39,43].
Both devices showed much higher performance than the photodetectors based on ZnO, ZnTe, and CdSe
nanowires [67–69].
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Figure 14. (a) Stepwise process for the fabrication of a single CdS:Ga-ZnTe:Sb nanostructures.
(b,c) Representative FESEM images of a p-n junction device. (d) Rectification characteristics of the p-n
junction measured both in the dark and under light illumination. (e) I-V curve of the p-n junction under
light illumination at a log scale. (f) Photoresponse of the CdS:Ga-ZnTe:Sb nanostructures to the pulsed
light illumination, and the bias voltage is 1 V. Reproduced with permission from [29], Copyright 2011,
The Royal Society of Chemistry.
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3.3. Other Applications

There are many other electronic and optoelectronic applications for heterojunctions based on
II-VI group semiconductors, such as light emitting diodes, junction field-effect transistors, avalanche
photodiodes, etc. [18,41,42,47,50,53,54]. He and his co-workers firstly constructed a type of CdSe/Si
nano-heterojunction and then utilized the p-Si nanoribbons as gates and n-CdSe nanowires as
conduction channels to act as the nano-heterojunction junction field-effect transistors with high
stability and reproducibility in performance [18]. The electrical characteristics were shown in Figure 15.
It should be noted that the subthreshold swing value of this device (67 mV/dec) is only one-ninth of
the best values obtained from the top-gate devices and is very close to the theoretical limit (60 mV/dec).
On the other hand, the conductance of the device can be tuned by a factor of near 103 by a small
gate voltage variation from −2 to −1 V, concerning the nanoscale diameter of CdSe nanowires,
the channel width and thus source-drain current can be sensitively manipulated by the reverse
gate bias. Moreover, Lieber and cooperators firstly developed nanoscale avalanche photodiodes
from crossed p-Si and n-type CdS nanowire diodes (Figure 16) [41]. Their studies presented that
the nanoscale avalanche photodiodes exhibit ultrahigh sensitivity with detection limits of less than
100 photons, a subwavelength spatial resolution of at least 250 nm, excellent polarization sensitivity,
and can be assembled into small arrays. This excellent performance offers substantial promise in
diverse areas ranging from nanopositioning, integrated photonics, and near-field detection to real-time
observation of single dynamics.
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Figure 15. (a) Gate voltage-dependent Ids-Vds characteristics of a crossbar junction field effect transistor.
The inset shows the schematic diagram of the crossbar junction field effect transistor constructed with
Si nanoribbon as a gate and CdSe nanowire as a source-drain channel. (b) Ig-Vgs curve measured at
Vds = 0.5 V. A depletion layer with its thickness controlled by Vgs is formed at the Si nanoribbon
and CdSe nanowire interface, as depicted in the inset. Reproduced with permission from [18],
Copyright 2009, American Institute of Physics.
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construct novel high efficiency color tunable parallel-nanobelts heterojunction light emitting diodes 
[54]. The device structure has the advantage of larger active region, smaller series resistance, higher 
electron and hole injective current, and lower turn-on voltage. Figure 17 shows the room 
temperature EL spectra for several representative n-CdSXSe1−X/Si parallel-nanobelt heterojunction 
light emitting diodes at various forward biases from 2 to 7 V. The x value changes from 1 to 0. 
Consequently, the device emitted strong EL light spot from red to green (510–708 nm) which could 
be taken by a camera. This device configuration was considered to promise a bright future in 
various nano-device applications, such as electrically-driven lasers, multi-color displays, white light 
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Figure 16. Characterization of nanowire avalanche photodiodes. (a) I-V characteristic of the avalanche
photodiodes in dark (black line) and illuminated (red line) conditions; the device was illuminated with
500 nW of 488-nm light (red line). The inset shows a scanning electron micrograph of the n-CdS/p-Si
device; the scale bar is 4 µm. (b) Logarithmic scale of avalanche photodiodes I-V characteristics
(black line: dark; red line: illuminated) and the corresponding multiplication factor (blue line). (c) Plot of
the spatially-resolved photocurrent from the nano-avalanche photodiodes measured in the proportional
mode using a diffraction-limited laser; the bias voltage, laser power and scanning step size were −7 V,
200 nW, and 250 nm (in x and y), respectively. The inset shows a contour plot with slices taken every
100 nA. The nanowire positions are indicated on the plot by solid lines. Reproduced with permission
from [44], Copyright 2006, Nature Publishing Group.

In recent years, many semiconductor one-dimensional light emitting diodes have been studied.
Qin et al. used the n-type CdSXSe1−X alloy nanobelts and p-type Si nanobelts as building blocks
to construct novel high efficiency color tunable parallel-nanobelts heterojunction light emitting
diodes [54]. The device structure has the advantage of larger active region, smaller series resistance,
higher electron and hole injective current, and lower turn-on voltage. Figure 17 shows the room
temperature EL spectra for several representative n-CdSXSe1−X/Si parallel-nanobelt heterojunction
light emitting diodes at various forward biases from 2 to 7 V. The x value changes from 1 to 0.
Consequently, the device emitted strong EL light spot from red to green (510–708 nm) which
could be taken by a camera. This device configuration was considered to promise a bright
future in various nano-device applications, such as electrically-driven lasers, multi-color displays,
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white light illumination, etc. Lieber and his co-workers demonstrated the assembly of a wide
range of efficient direct-gap II-VI and III-VI semiconductor nanowires with silicon nanowires and
planar silicon structures to produce multicolor, electrically-driven nanophotonic and integrated
nanoelectronic-photonic systems [42]. Figure 18 depicts the electroluminescence of spectra from
crossed p-n diodes of p-Si and n-CdS, CdSSe, CdSe, and InP, which shows an EL peak maxima and
images characteristic of band-edge emission from the crossed junctions made with these materials:
CdS0.5Se0.5, 600 nm; CdSe, 700 nm; and InP, 820 nm. Furthermore, the authors developed the ability to
form nano-LEDs with non-emissive Si nanowire hole-injectors to assemble multicolor arrays consisting
of n-type GaN, CdS, and CdSe nanowires crossing a single p-type Si nanowire. Normalized emission
spectra recorded from the array demonstrated three spatially- and spectrally-distinct peaks with
maxima at 365, 510, and 690 nm consistent with band-edge emission from GaN, CdS, and CdSe,
respectively. In addition, color images of electroluminescence from the array shows the green and red
emission from p-Si/n-CdS and p-Si/n-CdSe crosses, respectively. The ability to assemble different
materials and independently tune the emission from each nano-LED offers substantial potential
producing specific wavelength sources, and demonstrates an important step towards integrated
nanoscale photonic circuits.
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Figure 17. (a) Typical I-V curves of a parallel-nanobelts heterojunction light emitting diodes and
a heterojunction light emitting diodes with point-shaped active region. The turn-on voltages for
them are 0.5 and 1.8 V, respectively. (b) Room-temperature EL spectra of the n-CdSXSe1−X/p+-Si
parallel-nanobelts heterojunction light emitting diodes with the x value changing from 1 to 0 at
the forward biases of 2–7 V, together with the corresponding visible light spots at 7 V. Reproduced with
permission from [54], Copyright 2010, The Royal Society of Chemistry.
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Figure 18. (a) EL spectra from crossed p-n diodes of p-type Si and n-type CdS, CdSSe, CdSe,
and InP, respectively (top to bottom). Insets to the left are the corresponding EL images for CdS,
CdSSe, CdSe (all color CCD), and InP (liquid-nitrogen-cooled CCD) nanoLEDs. The inset top
right shows representative I-V and SEM data recorded for a p-Si/n-CdS crossed nanowire junction
(scale bar = 1 mm); spectra and images were collected at +5 V).; (b) schematic and corresponding SEM
image of a tricolor nanoLED array. The array was obtained by fluidic assembly and photolithography
with 5 mm separation between NW emitters. (c) Normalized EL spectra and color images from
the three elements. Reproduced with permission from [53], Copyright 2005, Wiley-VCH.

4. Conclusions and Outlook

In this review, we comprehensively discussed the significant progresses in construction
and optoelectronic applications of heterojunctions based on II-VI compound semiconductor
one-dimensional nanostructures in the past decade. Various construction strategies toward
different types of heterojunctions were studied by researchers, including core-shell heterojunctions,
one-dimensional axial heterojunctions, crossed nanowires heterojunctions, and one-dimensional
nanostructure/thin film or Si substrate heterojunctions. Additionally, optoelectronic applications
of these constructed heterojunctions, such as photodetectors, solar cells, light emitting diodes,
and junction field effect transistors have been discussed and showed superior performance
to those made of their film counterparts. This review shows that heterojunctions based on
II-VI compound semiconductor 1-D nanostructures have great potential for future optoelectronic
applications. On the other hand, although many significant achievements have been made in
the construction and optoelectronic applications of heterojunctions based on II-VI compound
semiconductor one-dimensional nanostructures, further efforts are required to solve problems,
such as controllable fabrication with high uniformity and alignment, development of heterojunction
architectures, integration of optoelectronic devices based on heterojunctions at the large scale for
practical applications, and the development of flexible optoelectronic devices appropriate for wearable
devices. With the nanotechnology improving, we believe that these problems will be solved and
heterojunctions based on II-VI compound semiconductor 1-D nanostructures will exhibit great potential
on the next-generation of scaled down, flexible, low-power electronics and optoelectronics.
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