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Abstract: For a long time we have shared the belief that the physics of the Hume-Rothery
electron concentration rule can be deepened only through thorough investigation of the interference
phenomenon of itinerant electrons with a particular set of lattice planes, regardless of whether d-states
are involved near the Fermi level or not. For this purpose, we have developed the FLAPW-Fourier
theory (Full potential Linearized Augmented Plane Wave), which is capable of determining the square
of the Fermi diameter, (2kF)

2, and the number of itinerant electrons per atom, e/a, as well as the set
of lattice planes participating in the interference phenomenon. By determining these key parameters,
we could test the interference condition and clarify how it contributes to the formation of a pseudogap
at the Fermi level. Further significant progress has been made to allow us to equally handle transition
metal (TM) elements and their compounds. A method of taking the center of gravity energy for energy
distribution of electrons with a given electronic state has enabled us to eliminate the d-band anomaly
and to determine effective (2kF)

2, and e/a, even for systems involving the d-band or an energy gap
across the Fermi level. The e/a values for 54 elements covering from Group 1 up to Group 16 in the
Periodic Table, including 3d-, 4d- and 5d-elements, were determined in a self-consistent manner.
The FLAPW-Fourier theory faces its limit only for elements in Group 17 like insulating solids Cl and
their compounds, although the value of e/a can be determined without difficulty when Br becomes
metallic under high pressures. The origin of a pseudogap at the Fermi level for a large number of
compounds has been successfully interpreted in terms of the interference condition, regardless of the
bond-types involved in the van Arkel-Ketelaar triangle map.
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1. Introduction

1.1. e/a versus Valence in the Hume-Rothery Electron Concentration Rule

The establishment of the empirical Hume-Rothery electron concentration rule dates back to 1926
when Hume-Rothery [1] pointed out, for the first time, that CuZn, Cu3Al and Cu5Sn crystallize into bcc
structure with a common valence equal to 3/2, as given by a composition average of valence electrons
per atom. Here, Cu, Zn, Al and Sn were referred to as mono-, di-, tri- and tetra-valent metals, which are
meant as being capable of donating one, two, three and four outermost electrons in its free atom to
form the respective compounds. In 1928, Westgren and Phragmén [2] revealed that, through extensive
powdered X-ray diffraction studies, Cu5Zn8 and Al4Cu9 compounds, both having been called the
gamma-brass since that time, commonly contain 52 atoms per cubic unit cell and stabilize at an average
valence electron concentration per atom equal to 21/13, in spite of different stoichiometric ratios
involved in them. Since then, the stabilization of isostructural alloys and compounds at a specific
composition-averaged valence has been referred to as the Hume-Rothery electron concentration rule.
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In 1936, Mott and Jones [3] could successfully interpret the Hume-Rothery electron concentration
rule in terms of the contact of the Fermi sphere with the set of Brillouin zone planes specific to a given
phase. We believe that they could intuitively recognize the Fermi sphere-Brillouin zone interactions
to play a key role in the physics behind the Hume-Rothery rule in noble metal alloys. While the
metallurgist Hume-Rothery and crystallographers Westgren and Phragmén took a composition average
of valences of constituent elements in a compound, Mott and Jones apparently treated it as an average
number of free electrons per atom defined from the diameter of the Fermi sphere in the reciprocal space.

We consider it to be of crucial importance at this stage to distinguish the electron concentration e/a
derived from the Fermi sphere in the reciprocal space from the valence of an element, which is defined
in a real space to represent a measure of its combining power with neighboring atoms when it forms
chemical compounds. However, these two quantities have often been used without differentiation in
the past. For example, even though Mott and Jones actually calculated the number of free electrons
per atom from the Fermi sphere in contact with the Brillouin zone planes, they referred to them as the
“valency electrons per atom” in their textbook [3]: unity for Cu, Ag, and Au, two for Zn, Cd and Hg,
three for Al, Ga and In, four for Si, Ge and Sn and zero for Ni (See Note 1). This means that Mott and
Jones implicitly disregarded the difference between e/a in the electron theory of metals and valence in
chemistry. We consider these two quantities to coincide with each other, as far as pure elements are
concerned. However, caution must be exercised in dealing with alloys and compounds, where charge
transfer is significant among constituent elements.

1.2. Historical Survey on the e/a Issue for Transition Metals (TM) and Their Compounds

After the great success by Mott and Jones [3], a consensus has been gradually built in such a way
that alloys or compounds obeying the Hume-Rothery electron concentration rule are limited to those
in which the electronic structure can be described in terms of the nearly free electron (NFE) model.
Indeed, no one has been able to judge if the Hume-Rothery electron concentration rule can be extended
to transition metal (TM) bearing compounds, where the free electron model definitely fails and the
electron concentration e/a for TM elements has remained unresolved.

A great surprise and confusion arose in the early 1990s when Tsai et al. [4–6] discovered a series of
Al-Cu-TM (TM = Fe, Ru and Os) and Al-Pd-TM (TM = Mn, Tc and Re) quasicrystals. They employed
the Hume-Rothery electron concentration rule as a guide, despite the fact that e/a values of TM
elements like Fe, Ru and etc. had not been well established. Tsai [7] boldly employed negative e/a
values reported by Raynor [8] for the TM elements involved and proposed that the two series of
Al63Cu25TM12 (TM = Fe, Ru, Os) and Al70Pd20TM10 (TM = Mn, Tc, Re) quasicrystals are commonly
stabilized at about e/a = 1.75 by taking composition averages of e/a values of constituent elements:
(e/a)Al = 3.0, (e/a)Cu = 1.0, (e/a)Pd = −0.66, (e/a)Fe = (e/a)Ru = (e/a)Os = −2.66 and (e/a)Mn = (e/a)Tc =
(e/a)Re =−3.66. Tsai’s discovery of a series of Al-TM-bearing quasicrystals was so impressive that many
researchers in the community of quasicrystals in the late 1990s to the 2000s had accepted Raynor’s
negative e/a for the TM elements without arousing much criticism against it. Even an attempt to
theoretically show the possession of a negative e/a value for Mn dissolved in the Al-Pd-Mn quasicrystal
was reported [9].

A different set of e/a values for 3d-TM elements is also available in literature, as was proposed by
Pauling in 1938 [10]. The values of e/a proposed by Pauling and Raynor for elements in the Period
4 of the Periodic Table are summarized in Figure 1. Pauling’s metallic valence increases one by one
from unity for K up to six for Cr but remains constant at six over Cr to Ni [10]. This is in sharp contrast
to negative e/a values proposed by Raynor discussed above. In the present article, we will make full
use of first-principles FLAPW (Full-potential Linearized Augmented Plane Wave) electronic structure
calculations to self-consistently determine e/a values of 54 elements in the Periodic Table including
3d-, 4d- and 5d-TM elements [11–20]. Since we deny not only Raynor’s negative e/a values for 3d-TM
elements but also Pauling’s metallic valences from Ti to Ni, we consider it to be worthwhile at this
stage to point out why their approaches are physically unacceptable.
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Pauling was the first to try to extend the concept of valence in inorganic compounds to the 3d-
TM elements, where metallic bonding dominates. Pauling described the valence band of elements in 
the Period 4 including all 3d-TM elements like Fe as a superposition of a widely spread free electron-
like band A and a weakly interacting narrow band B, as illustrated in Figure 2. It was assumed that a 
step by step increase in melting temperature from K, Ca, Sc, Ti to V with subsequent leveling off 
above about 1800 K up to Ni reflects an increase in the number of electrons filled in the band A and, 
thereby, contributes to reinforcement in bonding, while the emergence of magnetism from Cr to Ni 
is brought about by filling electrons into the band B. Pauling further conjectured that, among five d-
atomic orbitals, 2.56 electrons are allowed to enter the band A, whereas remaining 2.44 electrons to 
enter the band B according to the Hund rule. He claimed his model to be able to explain not only an 
increase in melting temperature with its subsequent leveling off but also the behavior of the 
saturation magnetization with increasing the atomic number in the Period 4 elements. However, we 
must admit that the Pauling model is only qualitative and lacks rigorousness in its arguments. It is 
too crude to extract any quantitative information about the topics deeply related to the electronic 
structure of alloys and compounds involving 3d-TM elements. 

 
Figure 2 Pauling model of the valence band for 3d-elements like Fe (cI2) [10,11]. 

Upon discussing the e/a issue for the 3d-TM elements alloyed with Al, Raynor fully relied on 
the Pauling model and directed his attention to the magnetism in the compound with the highest Al 

Figure 1. Metallic valence or e/a proposed by Pauling [10] and Raynor [8] for elements in the Period
4 including 3d-transition metals [11].

Pauling was the first to try to extend the concept of valence in inorganic compounds to the 3d-TM
elements, where metallic bonding dominates. Pauling described the valence band of elements in the
Period 4 including all 3d-TM elements like Fe as a superposition of a widely spread free electron-like
band A and a weakly interacting narrow band B, as illustrated in Figure 2. It was assumed that a
step by step increase in melting temperature from K, Ca, Sc, Ti to V with subsequent leveling off
above about 1800 K up to Ni reflects an increase in the number of electrons filled in the band A and,
thereby, contributes to reinforcement in bonding, while the emergence of magnetism from Cr to Ni
is brought about by filling electrons into the band B. Pauling further conjectured that, among five
d-atomic orbitals, 2.56 electrons are allowed to enter the band A, whereas remaining 2.44 electrons to
enter the band B according to the Hund rule. He claimed his model to be able to explain not only an
increase in melting temperature with its subsequent leveling off but also the behavior of the saturation
magnetization with increasing the atomic number in the Period 4 elements. However, we must admit
that the Pauling model is only qualitative and lacks rigorousness in its arguments. It is too crude to
extract any quantitative information about the topics deeply related to the electronic structure of alloys
and compounds involving 3d-TM elements.
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Upon discussing the e/a issue for the 3d-TM elements alloyed with Al, Raynor fully relied on
the Pauling model and directed his attention to the magnetism in the compound with the highest Al



Crystals 2017, 7, 9 4 of 112

content in the Al-TM (TM = Cr, Mn, Fe, Co and Ni) alloy systems: Al7Cr, Al6Mn, Al3Fe, Al9Co2 and
Al3Ni. The disappearance of magnetism in all these Al-rich compounds was attributed to the complete
filling of vacant states in the band B by electrons supplied from the host element Al. After simple
manipulations using the Pauling model, he provided the values of e/a for several 3d-TM elements:
(e/a)Cr = −4.66, (e/a)Mn = −3.66, (e/a)Fe = −2.66, (e/a)Co = −1.71 and (e/a)Ni = −0.61. Here a negative
sign was assigned, because these TM elements serve as recipients of electrons from the host Al. As is
clear from the arguments above, the Pauling model is too primitive and reflects the electronic structure
of neither realistic elements nor compounds. Unfortunately, Raynor employed the unqualified Pauling
model to evaluate e/a values quantitatively. We consider e/a arguments based on either the Pauling or
the Raynor model not to be trustworthy and, thus, its use should be abandoned. Until now, values of
e/a proposed more than a half century ago by Pauling and Raynor have been nevertheless employed
by many researchers [7,21,22] due presumably to the lack of more reliable data.

1.3. e/a-Dependent Hume-Rothery-Type Stabilization Mechanism

In 1984, Shechtman et al. [23] discovered a quasi-crystalline phase in rapidly quenched Al-Mn
alloys. A quasicrystal is characterized as a highly ordered intermetallic compound having two-,
three- and five-fold rotational symmetries but yet with the lack of translational symmetry. Since its
unit cell is infinitely large and the Bloch theorem fails, first-principles electronic structure calculations
are no longer feasible. All we have done in the past to deepen the understanding of the electronic
structure of quasicrystals is to work on a so-called approximant resuming a periodic lattice while
having the same local structure as that in a quasicrystal as its counterpart.

Both quasicrystals and their approximants can be described in terms of a six- or five-dimensional
hyper-cubic lattice in the framework of the so-called cut-and-projection method. A quasi-lattice
for an icosahedron-type quasicrystal can be generated by projecting a hyper-cubic lattice in the
six-dimensional space into three-dimensional space by choosing its projection angle equal to the

so-called golden ratio of

√
5 + 1
2

≈ 1.6180 . . . [24]. This irrational ratio appears in an infinite limit of
the Fibonacci chain (See Note 2). Replacing the golden ratio by any rational ratio in the Fibonacci chain
generates a periodic lattice with the same local structure as that in a quasicrystal. This is called an
approximant to the quasicrystal. Thus, both quasi-lattice and approximant lattice are mathematical
products linked with the Fibonacci chain. Indeed, not only quasicrystals but also approximants
containing more than 100 atoms in the unit cell have been experimentally discovered. No matter
how large its unit cell is, first-principles electronic structure calculations are feasible for approximants,
where the lattice periodicity is assured.

The electronic structure calculations have been so far reported for many 1/1-1/1-1/1
approximants with 138 up to 168 atoms in the unit cell and also for 2/1-2/1-2/1 approximants
with 680 atoms in the unit cell [13]. It turned out that all approximants so far studied possess a
pseudogap across the Fermi level. On the other hand, a pseudogap at the Fermi level has to be
searched experimentally in the case of quasicrystals. Indeed, its presence has been confirmed through
various tools such as soft X-ray emission spectroscopy, photoemission spectroscopy and electronic
specific heat measurements [24].

A formation of a pseudogap at the Fermi level is known to serve as stabilizing its phase as a result
of transferring electrons with the highest kinetic energies into deeper states. It has been estimated
that the formation of a pseudogap at the Fermi level with its width of 0.5 to 1 eV and its height 0.2
to 0.6 times as high as the free electron density of states (DOS) can lower the electronic energy by
30 to 50 kcal/mol relative to the free electron DOS. This is indeed a size of pseudogap observed
experimentally in quasicrystals and their approximants and its energy gain is high enough to stabilize
a given structure [19].

In addition to quasicrystals and their approximants, there are many different compounds with a
giant unit cell, e.g., containing more than 20 atoms per unit cell. They are simply referred to as complex
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metallic alloys (CMAs) and are in most cases characterized by the formation of a deep pseudogap
across the Fermi level. Honestly speaking, the evaluation of a gain in energy due to the formation
of a pseudogap at the Fermi level in each realistic system is a formidable task, since nobody knows
what phases are actually competing with the phase of our interest. On top of this, it is not possible to
construct more than two disorder-free structures for any competing phases with a given composition.
In the present work, we proceed with our discussions such that the formation of a pseudogap across
the Fermi level is significant enough to stabilize a given phase without any further attempt to study
issues on relative phase competitions.

The formation of a pseudogap across the Fermi level can be interpreted in two ways: one is the
orbital hybridization effect between the unlike constituent atoms in an alloy or in a compound and the
other is the interference phenomenon of itinerant electrons with a set of lattice planes. Consider first
the situation, where Al and Mn atoms are placed about 4 Å apart, which roughly corresponds to
a distance typically found in Al-Mn compounds. As illustrated in Figure 3a, the Al-3p level is so
close to the Mn-3d level that wave functions of respective atoms are overlapped and result in the two
levels called the highest occupied molecular orbital state (HOMO) or bonding level and the lowest
unoccupied molecular orbital state (LUMO) or the anti-bonding level.
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neighboring Al-3p and Mn-3d atomic wave-functions; (b) Formation of a pseudogap between bonding
and anti-bonding sub-bands due to orbital hybridizations between Al and Mn atoms in an Al-Mn
approximant [11,18].

The orbital hybridization effect between unlike atoms also works in a solid. Here the bonding and
anti-bonding levels are spread into the bonding and anti-bonding bands, respectively. Figure 3b shows
the partial DOSs (pDOS) of Al-3s, Al-3p and Mn-3d states for the 1/1-1/1-1/1 approximant Al114Mn24

containing 138 atoms per cubic unit cell [18]. One can see that orbital hybridizations take place
between Al-3s, Al-3p and Mn-3d states, resulting in splitting of the Al-3s, Al-3p and Mn-3d pDOSs
into the respective bonding and anti-bonding sub-bands and, thereby, leaving a deep pseudogap
across the Fermi level. It is important to note that only the bonding sub-band is filled with electrons
and anti-bonding sub-band remains unoccupied. This is certainly responsible for stabilizing this
CMA phase (See Note 3). A pseudogap formation mechanism based on orbital hybridization effects
discussed above apparently stems from the local atomic structure around unlike atoms, as illustrated
in Figure 3, and has nothing to do with the periodicity of lattice characteristic of a crystal. Hence,
a pseudogap formation can be observed not only in crystals but also in any condensed matter including
liquid and amorphous metals with the lack of lattice periodicity.

A pseudogap in a crystal as well as in a quasicrystal can be also interpreted through the
interference phenomenon of electrons with the set of lattice planes, regardless of the degree of orbital
hybridization effects discussed above. We can alternatively say that, as long as the lattice periodicity
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(or quasi-periodicity) is assured, its origin can be discussed in terms of the Fermi surface-Brillouin
zone interactions in the reciprocal space. Only through this mechanism can one link the two key
words, that is, the Hume-Rothery electron concentration rule and the formation of a pseudogap at the
Fermi level.

Let us consider the situation, in which an electron with the wavelength λF is propagating
perpendicularly to a given set of lattice planes in the real space. The interference phenomenon
occurs when λF coincides with the lattice spacing 2d. This is schematically illustrated in Figure 4.
When the condition λF = 2d is fulfilled, the stationary wave of either sine-type or cosine-type is
formed, resulting in opening a gap. The interference condition above is alternatively written as

(2kF)
2 = |G|2 (1)

in the reciprocal space, where (2kF)
2 is the square of the Fermi diameter and |G|2 is the square of the

reciprocal lattice vector corresponding to the set of lattice planes involved in the interference condition.
Obviously, the electron wave vector and the reciprocal lattice vector are rigorously parallel to each
other for the interference phenomenon to occur.
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In the case of a simple cubic lattice with the lattice constant a, the reciprocal lattice vector pointing

to, say, the (100) plane is given by G100 =

(
2π

a

)
(1 0 0). Since the interference condition is satisfied

at one half of the reciprocal lattice vector, we say that an energy gap opens at kx = ±π

a
. In this way,

a cube with the edge length
2π

a
is formed in the reciprocal space. This is called the first Brillouin zone

of a simple cubic lattice, across which an energy gap opens.
In the cubic system with lattice constant a, the set of lattice planes with Miller indices (h k l)

accompanies the reciprocal lattice vector G =

(
2π

a

)
(h k l). In the present article, we express

the reciprocal lattice vector and wave vector of electrons in units of
(

2π

a

)
. Hence, the relation

|G|2 = h2 + k2 + l2 holds.
As mentioned in Section 1.1, Mott and Jones (1936) were the first to point out that the observed

electron concentration e/a =
1× 5 + 2× 8

13
=

21
13

= 1.615 for the gamma-brass Cu5Zn8 is close to
e/a = 1.538 calculated from the condition that the free electron Fermi sphere touches the bcc-Brillouin
zone bounded by 24-fold {411} and 12-fold {330} zone planes with |G|2 = 18. The two different Fermi
surface-Brillouin zone interactions in the bcc structure are depicted in Figure 5 [11,14]: in (a) the free
electron Fermi sphere touches the bcc first Brillouin zone at e/a = 1.48, while in (b) it touches the
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bcc higher Brillouin zone at e/a = 1.538. Note that the selection of higher Brillouin zone planes is
indispensable for the gamma-brass. Only the use of the large Brillouin zones bounded by 24-fold {411}
and 12-fold {330} zone planes with |G|2 = 18 allows us to envision the interaction with a large Fermi
sphere accommodating e/a = 1.538 in a straightforward manner. A distance from the origin Γ to centers
of 36 zone planes in (b) is equal because of the condition |G|2 = 18. Thus, the free electron Fermi
sphere touches all 36-face zone planes simultaneously, leading to the satisfaction of the interference
condition (2kF)

2 = |G|2 within the free electron model.
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for cubic systems. An insertion

of (2kF)
2 = 18 and N = 52 immediately leads to e/a = 1.538 [11,14,19]. The value of e/a thus obtained

is obviously smaller than e/a = 21/13 = 1.615. As will be discussed in Section 4.2, we show that our
first-principles FLAPW-Fourier theory yields the value of e/a in an almost perfect agreement with 21/13.

In 1989, Fujiwara [25] succeeded in calculating the electronic structure for the Al-Mn approximant
containing 138 atoms per unit cell by using first-principles Linearized Muffin-Tin Orbital-Atomic
Sphere Approximation (LMTO-ASA) electronic structure calculations. He revealed a deep pseudogap
at the Fermi level and suggested it to be responsible for stabilizing this unique compound with
a giant unit cell. Over the period from 1989 up to the early 2000s, the LMTO-ASA electronic
structure calculations had been almost exclusively carried out worldwide for a variety of 1/1-1/1-1/1
approximants like Al-Li-Cu, Al-Mg-Zn, Al-Cu-Fe and Al-Pd-Mn (see, for example, [19]) and all the
results are consistent with the findings of a pseudogap at the Fermi level, though its depth and width
vary from a system to system.

It is worth mentioning at this stage the advantage and disadvantage of the LMTO-ASA method
upon studying the electronic structure for CMAs including approximants. Similarly to the FLAPW
method, the muffin-tin sphere (MT-sphere or atomic sphere) is introduced to divide each Wigner-Seitz
cell into non-overlapping atomic sphere and interstitial region. The LMTO wave function is constructed
by reinforcing the solution of Schrödinger equation solved inside the atomic spheres by adding the
tail of spherical harmonics [26]. Since the LMTO wave function is composed of only s-, p-, d- and
f-like waves per constituent element in a compound, efficient calculations are feasible even for CMAs.



Crystals 2017, 7, 9 8 of 112

This is the reason why first-principles LMTO band calculations had been exclusively employed for
compounds containing more than 100 atoms per unit cell since the late 1980s.

Unlike the FLAPW method, the LMTO wave function in the interstitial region is not expanded
into plane waves with respect to the reciprocal lattice vectors. Thus, the LMTO method is not suitable
to extract information about the interference phenomenon of electrons with the set of lattice planes.
Researchers in the community of quasicrystals over the period from 1989 up to the 2010s had simply
been satisfied with finding a deep pseudogap at the Fermi level without any discussion of its origin
from the viewpoint of the interference phenomenon. They simply took the presence of a pseudogap
at the Fermi level as evidence for the validity of the Hume-Rothery-type stabilization mechanism.
Here we must emphasize that the phrase “Hume-Rothery-type stabilization mechanism” can be used only
when the origin of a pseudogap at the Fermi level can be analyzed in terms of the interference condition.

We consider the FLAPW-Fourier theory we have developed to be the most powerful to extract
detailed information about e/a-dependent interference phenomenon. There had been a consensus such
that the number of superimposed plane waves in the interstitial region sometimes exceeds 2000 and
this makes it difficult to perform the FLAPW band calculations for CMAs with more than 100 atoms
per unit cell. After the 2000s, however, the so-called “APW+lo” (augmented plane wave-local orbital)
method has been introduced to overcome this difficulty [27]. Now we could perform the FLAPW
electronic structure calculations even for 2/1-2/1-2/1 approximants containing 680 atoms per unit cell.
We have developed the FLAPW-Fourier method in 2005 for the first time and could successfully analyze
the origin of a pseudogap at the Fermi level in the Cu5Zn8 gamma-brass in terms of the e/a-dependent
interference phenomenon [28].

The essence of the FLAPW-Fourier theory is briefly introduced in this section. We focus on the
FLAPW wave function in the interstitial region, which is expanded into Fourier series with respect
to reciprocal lattice vectors allowed to a given system. By making full use of this methodology,
we construct several energy spectra. Among them, the two most important ones are mentioned below.

First, the energy dependence of the square of the Fourier coefficient (hereafter simply referred to as
the Fourier coefficient) is calculated at symmetry points of the Brillouin zone. This has been named the
FLAPW-Fourier spectra. The Fourier coefficients for |G|2-specified electronic states successively appear
on symmetry points and are distributed over a finite energy range in a realistic system. Now each
energy spectrum extending over a finite energy range is replaced by its center of gravity energy. This is
a key step to circumvent anomalies due to the d-band or an energy gap and has enabled us to discuss
the Hume-Rothery-type stabilization mechanism, regardless of the degree of metallic, covalent and
ionic bondings involved. Then, we focus on how the center of gravity energy increases with increasing
the electronic state {2|k + G|}2

ZSPs at symmetry points (see Section 2.4.1) and pick up the one falling
closest to the Fermi level. This refers to the electronic states at the Fermi level and, at the same time,
represents the reciprocal lattice vector or the set of lattice planes or Brillouin zone planes interacting
with electrons at the Fermi level. This means that we can simultaneously extract both quantities (2kF)

2

and |G|2 appearing in Equation (1) from the FLAPW-Fourier spectra.
Second, we construct the dispersion relation E = f (ki + G) for electrons, from which the square of

the Fermi diameter and e/a can be deduced from Equation (2). The dispersion relation thus constructed
is called the Hume-Rothery plot, since it allows us to determine e/a appearing in the Hume-Rothery
electron concentration rule. Here again the use of the center of gravity method is mandatory to
circumvent the d-band anomaly across the Fermi level. More details will be discussed in Section 2.5.

1.4. Stoichiometric Compounds versus Chemically Disordered Solid Solutions

The Hume-Rothery electron concentration rule established over the mid 1920s to mid 1930s refers
to the successive appearance of phases at specific e/a values in noble metals Cu, Ag and Au alloyed
with polyvalent elements such as Zn, Ga, and etc. Among them, the fcc α-phase is known to terminate
at about e/a = 1.4 and to transform into bcc β-phase at about e/a = 1.5. In order to theoretically prove
the α/β phase transition to occur at e/a = 1.4, say, in the Cu-Zn alloy system, one has to calculate the
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total-energy with the accuracy less than 0.1% for both disordered fcc and disordered bcc alloys with the
same composition and to see if the difference in the total-energies changes its sign in the neighborhood
of e/a = 1.4. The total-energy consists of kinetic energy of valence electrons, bonding energy of inner
electrons and potential energy. Only when a total-energy difference between the two phases is proved
to originate solely from the difference in the kinetic energy of valence electrons, one may then take it
as a theoretical proof for the Hume-Rothery electron concentration rule associated with the α/β phase
transition in noble metal alloys [19].

The coherent potential approximation (CPA) has been employed as a powerful tool to calculate the
electronic structure of a disordered alloy. However, the electron wave vector is smeared and no longer
a good quantum number as a result of the disruption of a periodicity in the potential. The van-Hove
singularity including a pseudogap appearing in the DOS is extremely small in simple structure phases
such as fcc and bcc in noble metal alloys. This small singularity would be smeared out because of
the disorder. All these difficulties would prevent us from keeping the accuracy in determining a
total-energy difference between the two competing phases within the level of 0.1% [19]. We cannot
help but judge the discussion of relative stability in noble metal alloys like the α/β phase transition to
be is still beyond our reach.

It is, therefore, really astonishing that Mott and Jones ignored all these difficulties and adopted
the simplest free electron model, which was an only tool available to them in 1936, to discuss the
Hume-Rothery electron concentration rule in noble metal alloys. Their success certainly owes to
their profound intuition to catch the essence of the problem. The present work exclusively employs
stoichiometric compounds free from any disorder to allow us to rely on the FLAPW electronic structure
calculations with high accuracy while intentionally avoiding to work on chemically disordered systems.
The structure data on compounds were collected from both Pearson’s Handbook [29] and material
database provided by National Institute for Materials Science (NIMS), Japan [30]. Our aim in the
present article is to guide readers to grasp the physics on the long-standing issue concerning the
universality and versatility of the e/a-dependent Hume-Rothery stabilization mechanism. This has been
accomplished by analyzing the interference phenomena in compounds with a variety of bond-types
or different degrees of metallic, covalent and ionic bondings, or the different degrees of orbital
hybridizations involved.

2. The FLAPW-Fourier Theory and Its Application to Elements in the Periodic Table

The present Section describes first what the FLAPW-Fourier theory is, how to operate its computer
program and what information can be extracted by executing it. After reviewing such fundamentals,
we select six elements from Period 3 of the Periodic Table starting from Na, through Al, Si, P, S up to
Cl. In addition, metallic Br (oI2) synthesized under high pressures and α-Mn (cI58) as a representative
of the transition metal elements are included to explore characteristic features of the electronic
structure with a particular emphasis on the interference phenomenon or Fermi surface-Brillouin
zone interactions involved.

2.1. WIEN2k-FLAPW Program Package

The WIEN2k program package has been developed by Blaha, Schwarz, Madsen, Kvasnicka and
Luiz, Vienna University of Technology, Institute of Physical and Theoretical Chemistry, Vienna, Austria,
and is commercially available worldwide [27]. The package is based on the FLAPW method plus local
orbitals (lo) scheme within the framework of the density functional theory (DFT). Relativistic effects are
also taken into account. It allows us to efficiently perform the FLAPW electronic structure calculations
even for a compound with a giant unit cell like 2/1-2/1-2/1 approximants containing 680 atoms per
unit cell. The FLAPW-Fourier theory discussed in the present Section has been elaborated since 2011 by
using the WIEN2k program package [11–20]. In the WIEN2k-FLAPW electronic structure calculations,
we have exclusively employed the GGA-PBE (Generalized Gradient Approximation-Perdew, Burke and
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Ernzerhof) for exchange-correlation energy and dealt with only non-magnetic states even for 3d-TM
elements like Fe, Co and Ni.

2.2. Representations of Quantities in Reciprocal Space

In the present article, both electron wave vector k and reciprocal lattice vector G in the reciprocal

space are expressed in units of
2π

a
for a cubic lattice with the lattice constant a [11–20]. Hence,

the reciprocal lattice vector G =

(
2π

a

)
(h k l) is simply given by G = (h k l), where integers h, k and l

represent the set of Miller indices and |G|2 = h2 + k2 + l2 holds.
The discussion on a cubic crystal may easily be generalized into any crystals with primitive

vectors (R1 R2 R3) in the real space. Take R3 along the z-axis and R2 in the yz-plane. In the Cartesian
coordinate system, we have

R1 =
(

R1x R1y R1z
)
, R2 =

(
0 R2y R2z

)
, R3 = (0 0 R3z) (3)

The angles among three primitive translational vectors are set to be α, β and γ and then the volume
Ωuc enclosed by the three primitive vectors is given by

Ωuc = R1 · (R2 ×R3) = R1R2R3

√
sin2 α sin2 β− (cos γ− cos α cos β)2 (4)

Since the primitive reciprocal lattice vectors are defined as K1 = 2π
R2 ×R3

Ωuc
, K2 = 2π

R3 ×R1

Ωuc
and

K3 = 2π
R1 ×R2

Ωuc
, any arbitrary reciprocal lattice vector can be expressed as

G =

(
2π

Ω1/3
uc

)

(
hbc sin α

Ω2/3
uc
√

B
− kcaA

Ω2/3
uc sin α

√
B
+

labA cos α

Ω2/3
uc sin α

√
B
− lab cos β

Ω2/3
uc sin α

)
i

+

(
kca

Ω2/3
uc sin α

− lab cos α

Ω2/3
uc sin α

)
j +

(
lab

Ω2/3
uc

)
k

, (5)

where i, j and k are mutually orthogonal unit vectors in the reciprocal space, |R1| = a, |R2| = b,
|R3| = c, A = cos γ − cos α cos β, B = sin2 α sin2 β − (cos γ− cos α cos β)2 and (h k l) is the set of
Miller indices.

In the case of cubic system, the square of G in Equation (5) leads to

|G|2 =

(
2π

a

)2[
h2 + k2 + l2

]
, (6)

since |R1| = |R2| = |R3| = a, α = β = γ = 90◦ and Ωuc = a3 hold. There is the selection rule for the bcc
and fcc phases and specific sets of Miller indices are prohibited (See Note 4).

In orthorhombic system with |R1| = a, |R2| = b, |R3| = c, α = β = γ = 90◦ and Ωuc = abc,
Equation (5) is reduced to

|G|2 =

(
2π

(abc)1/3

)2[(
bc
a2

)2/3
h2 +

( ca
b2

)2/3
k2 +

(
ab
c2

)2/3
l2

]
. (7)

Note that the value of |G|2 in an orthorhombic crystal no longer becomes integer, since the quantity in
square bracket involves lattice constants.
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In a hexagonal system, an insertion of |R1| = |R2| = a, |R3| = c, α = β = 90◦, γ =120◦ and
Ωuc =

√
3

2 a2c into Equation (5) leads to

|G|2 =

 2π(√
3

2 a2c
)1/3


2( 4c

3a

)2/3(
h2 + hk + k2

)
+

(
a2
√

3
2c2

)2/3

l2

 (8)

The value of |G|2 in a hexagonal crystal again does not take integers, since the quantity in square
bracket involves lattice constants.

Fourteen Bravais lattices and related Pearson symbols are summarized in Figure 6. Note that
crystals are divided into seven lattice systems. By introducing centering operations into seven lattice
systems, we can generate well-known fourteen Bravais lattices. An extra table added to the right-hand
side would be helpful to remind readers of the fact that hexagonal in the crystal family can also be
classified into trigonal and hexagonal with respect to crystal system. The first Brillouin zones for
representative crystal lattices are depicted in Figure 7. In the present work, the Pearson symbol follows
immediately after elements and compounds to facilitate readers to envision its structure and the
Brillouin zone involved.
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(c) face-centered cubic (fcc) lattice; (d) hexagonal close packed (hcp) lattice; (e) rhombohedral lattice
and (f) base-centered orthorhombic lattice [11].

2.3. The FLAPW-Fourier Theory

The first Brillouin zone is partitioned into Nk meshes in the WIEN2k. The wave vector ki is
assigned to each mesh. The Schrödinger equation is self-consistently solved at each wave vector ki,
giving rise to the set of energy eigen-value Ej and corresponding wave function ψ

(
Ej, ki

)
, where j is

called the band index. The FLAPW wave function specified in terms of wave vector ki and energy
eigen-value Ej(ki) in the interstitial region is expanded into plane waves with respect to the reciprocal
lattice vectors Gp allowed for a given system:

ψj(r, ki) =
1√
V

∑
p

Cj
ki+Gp

exp
{

i
(
ki + Gp

)
· r
}

, (9)

where V is the volume of the unit cell and integer p runs as many as several hundreds to a few
thousands. Its number is limited by the key band parameter RMTKmax, where RMT is the smallest
muffin-tin (or atomic sphere) radius in the unit cell and Kmax is the magnitude of the largest vector
K = ki +Gp in Equation (9) (See Note 5). The number of energy eigen-states at a given ki with different
band indices is limited by the maximum energy εmax chosen. A nomenclature of the “FLAPW-Fourier”
theory has been invented, since Equation (9) takes a form of Fourier expansion of the FLAPW wave
function with respect to the reciprocal lattice vector Gp. It should be emphasized that Equation (9) is
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dependent on the wave function inside the atomic sphere, since they are smoothly connected across
its boundary.

Information about the atomic structure for any element as well as compound is first entered
into WIEN2k. Then, various band parameters such as Nk and RMTKmax are initialized. Once this is
done, we can run SCF (Self-Consistent Field) calculation cycles until the energy eigenvalue converges
into a level of 0.0001 Ry (See Note 6). In order to carry out the FLAPW-Fourier analysis, one has to
rewrite a default command “WFFIL” by “WFPRI” during the process “initialization of the calculation”.
By doing so, WIEN2k generates “case.output1” file after the completion of the SCF cycles. It lists
the Fourier coefficient Cj

ki+Gp
of the FLAPW wave function at selected wave vector ki inside the first

Brillouin zone and energy eigen-value Ej(ki) as a function of the wave vector K = ki + Gp, where Gp

is a reciprocal lattice vector given by Equation (9). A maximum value of p in Equation (9) determines
the number of the Fourier coefficients. It is automatically set by WIEN2k and amounts to several tens
to a thousand. The FLAPW-Fourier program can be executed by using the “case.output1” data.

The squared sum of the real- and imaginary-parts of the Fourier coefficient in Equation (9) is
calculated, when it is complex. We hereafter call it simply the Fourier coefficient. The Fourier coefficient∣∣∣Cj

ki+Gp

∣∣∣2 is positioned at j-th energy eigen-value Ej(ki) in row and p-th electronic state
∣∣2(ki + Gp

)∣∣2
in column in the form of a matrix, as shown in Figure 8. Totally, Nk matrices are produced for all
available wave vector kis.

Crystals 2017, 7, 9  13 of 117 

 

the FLAPW wave function with respect to the reciprocal lattice vector Gp . It should be emphasized 

that Equation (9) is dependent on the wave function inside the atomic sphere, since they are smoothly 
connected across its boundary. 

Information about the atomic structure for any element as well as compound is first entered into 
WIEN2k. Then, various band parameters such as Nk  and RMTKmax  are initialized. Once this is 
done, we can run SCF (Self-Consistent Field) calculation cycles until the energy eigenvalue converges 
into a level of 0.0001 Ry (See Note 6). In order to carry out the FLAPW-Fourier analysis, one has to 
rewrite a default command “WFFIL” by “WFPRI” during the process “initialization of the 
calculation”. By doing so, WIEN2k generates “case.output1” file after the completion of the SCF 
cycles. It lists the Fourier coefficient Cki+Gp

j  of the FLAPW wave function at selected wave vector 

ki  inside the first Brillouin zone and energy eigen-value E j ki( )  as a function of the wave vector 
K = ki + Gp , where Gp  is a reciprocal lattice vector given by Equation (9). A maximum value of p 

in Equation (9) determines the number of the Fourier coefficients. It is automatically set by WIEN2k 
and amounts to several tens to a thousand. The FLAPW-Fourier program can be executed by using 
the “case.output1” data. 

The squared sum of the real- and imaginary-parts of the Fourier coefficient in Equation (9) is 
calculated, when it is complex. We hereafter call it simply the Fourier coefficient. The Fourier 

coefficient Cki+Gp
j

2
 is positioned at j -th energy eigen-value E j ki( )  in row and p -th electronic 

state 2 ki + Gp( ) 2
 in column in the form of a matrix, as shown in Figure 8. Totally, Nk  matrices are 

produced for all available wave vector ki s. 

 

Figure 8. Matrix of the Fourier coefficient, Cki+Gp
j

2
, at the wave vector ki  as functions of the 

energy eigen-value E j  in column and the reciprocal lattice vector Gp  in the electronic state 

2 ki + Gp( ) 2  in row. 

Let us first direct our attention to the wave function at E j ki( )  in Figure 8. If the free electron 
model holds, only a single Fourier coefficient remains with the value nearly equal to unity (See Note 7). If 
the maximum of the Fourier coefficients in the j-th row is higher than 0.2, then we say that electrons 
of E j ki( )  are fairly itinerant in space. Instead, if many Fourier coefficients appear and even the 
maximum one would be less than 0.1, then we say that electrons are highly localized in space. 

2.4. FLAPW-Fourier Spectra 

We retain the largest L Fourier coefficients and set the rest to be zero in the j-th row in the matrix 

shown in Figure 8. In most cases, L = 1, i.e., only the largest Fourier coefficient, Cki+Gp
j

max

2
, is retained 

Figure 8. Matrix of the Fourier coefficient,
∣∣∣Cj

ki+Gp

∣∣∣2, at the wave vector ki as functions of the energy

eigen-value Ej in column and the reciprocal lattice vector Gp in the electronic state
∣∣2(ki + Gp

)∣∣2
in row.

Let us first direct our attention to the wave function at Ej(ki) in Figure 8. If the free electron model
holds, only a single Fourier coefficient remains with the value nearly equal to unity (See Note 7). If the
maximum of the Fourier coefficients in the j-th row is higher than 0.2, then we say that electrons of
Ej(ki) are fairly itinerant in space. Instead, if many Fourier coefficients appear and even the maximum
one would be less than 0.1, then we say that electrons are highly localized in space.

2.4. FLAPW-Fourier Spectra

We retain the largest L Fourier coefficients and set the rest to be zero in the j-th row in the matrix

shown in Figure 8. In most cases, L = 1, i.e., only the largest Fourier coefficient,
∣∣∣Cj

ki+Gp

∣∣∣2
max

, is retained
and the rest is set to be zero. In this way, Nk matrices are prepared. Even when L = 1, there may be
Fourier coefficients at more than two energy eigenvalues Ej(ki) corresponding to different rows in
the column specified by the electronic state

∣∣2(ki + Gp
)∣∣2. This gives rise to the energy spectra of the

Fourier coefficients ∑
∣∣∣Cj

ki+Gp

∣∣∣2 at the electronic state
∣∣2(ki + Gp

)∣∣2. We construct it by choosing ki at
the symmetry points of the Brillouin zone. By this selection, we need to address another important
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remark. The wave vector 2
(
ki + Gp

)
is reduced to another reciprocal lattice vector G, whenever the

wave vector ki is positioned at symmetry points of the Brillouin zone (See Note 8).
The replacement of the electronic state 2

(
ki + Gp

)
by a new reciprocal lattice vector G means

that the set of lattice planes appearing in the right-hand side of Equation (1) and the electronic states
appearing in its left-hand side become identical at symmetry points. Therefore, it is important to note
that the interference condition is perfectly fulfilled as both vector and scalar quantities, as long as ki is
set at symmetry points of the Brillouin zone. The spectra thus constructed are called the FLAPW-Fourier
spectra or briefly FF-spectra. We can, therefore, say that a pseudogap can be formed across the Fermi
level, provided that Fourier coefficients are distributed in its neighborhood in the FF-spectra.

Here we must address another key issue concerning how strongly each Fourier coefficient
contributes to the formation of a pseudogap. A magnitude of a gap opening across the zone planes is
known to be proportional to the magnitude of the Fourier component of a potential in the framework
of the NFE band calculations [19]. We have wondered whether similar information may be obtained
by generating the file “case.vtotal” upon executing WIEN2k. The file lists the Fourier component of
the “total potential”, VG, as a function of |G|2 in the interstitial region. However, we found that the
resulting VG for Na (cI2) exceeds 15 eV at |G|2=2 corresponding to {110} zone planes. This is too
high to accept it as its energy gap. Thus, the use of the file “case.vtotal” generated from WIEN2k has
been suspended.

We discuss below what information can be extracted from the FF-spectra by presenting them
for eight elements, starting from the best free electron-like element Na (cI2), through Al (cF4),
semiconducting Si (cF8), semi-metallic P (oC8), insulating S (mP28) versus metallic S (hR1), up to the
best insulating Cl (oC8), all of which belong to Period 3 of the Periodic Table. In addition, we will
also deal with metallic Br (oI2) synthesized under high pressures of 83 GPa and α-Mn (cI58) as a
representative of the transition metal (TM) elements. The data for other elements have been reported
elsewhere [11].

2.4.1. Na (cI2)

We start our discussion with the best free electron-like element Na (cI2). Figure 9a,b show the
E-k dispersion relations and the total-DOS (hereafter abbreviated as tDOS) and Na-3s, Na-3p, Na-3d
and Na-4f partial DOSs (pDOS) for Na (cI2), respectively. The free electron-like parabolic dispersion
relations hold well below the Fermi level in (a). As can be judged from (b), Na-3s and Na-3p states are
so highly mixed that a free electron-like band is formed below the Fermi level. It can be also seen that
the Na-3d states set in but form a widely spread band above the Fermi level.

Keeping the above features of Na (cI2) in mind, we are now ready to discuss its FLAPW-Fourier
spectra. As shown in Figure 9c, the FF-spectra for Na (cI2) are constructed at three symmetry points Γ,
N and H of the bcc-Brillouin zone planes. The ordinate |2(k + G)|2ZSPs with subscript “ZSPs” refers to
the electronic state at “Zone Symmetry Points” and can be replaced by another reciprocal lattice vector
|G|2 ≡ |2(k + G)|2ZSPs. As emphasized in Section 2.4 above, the quantity, |2(k + G)|2ZSPs, refers to the
electronic states at the symmetry points and, at the same time, the set of lattice planes with |G|2. In the
case of bcc structure, it takes only integers starting from 0, 8, 16, ... at symmetry point Γ, 2, 6, 10, 14, 18,
... at symmetry points N and 4, 12, 20, ... at symmetry points H.
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Figure 9. (a) Dispersion relations; (b) total- and partial-DOSs and (c) Full potential Linearized
Augmented Plane Wave (FLAPW)-Fourier spectra at symmetry points Γ, N and H of the bcc Brillouin
zone for Na (cI2) [11]. An energy gap across {110} zone planes is marked with red color in (a). Its
total-DOS is incorporated in (c).

The Fourier coefficient ∑
∣∣∣Cj

k+G

∣∣∣2 for a given electronic state |2(k + G)|2ZSPs is plotted as a function
of the corresponding energy eigen-values. The magnitude of each Fourier coefficient is expressed
with a bar, the length of which is drawn in proportion to its magnitude on an arbitrary scale, as
indicated on the right-hand side ordinate. A line connecting the feet of bars indicates the extent, over
which the Fourier coefficients are distributed for the given state |2(k + G)|2ZSPs. The total-DOS is
reproduced from Figure 9b and shown on the top of Figure 9c. It is clearly seen from Figure 9c that the
spectrum of Fourier coefficients for a given |2(k + G)|2ZSPs is distributed over a finite energy range
even under the condition L = 1. The center of gravity energy for Na (cI2) is plotted in Figure 9c with
colored solid circles (Γ: red, N: blue, H: green). This can be regarded as the Nearly Free Electron (NFE)
approximation, since the square of the wave-vector |2(k + G)|2ZSPs has one-to-one correspondence
with its center of gravity energy and the data set falls on an almost straight line (red line) in accordance
with the free electron model in the case of Na (cI2).

Among |G|2-indexed center of gravity energies, we focus on the one closest to the Fermi level. The
|G|2 thus extracted is called critical and is denoted as |G|2c . This is nothing but the set of Brillouin zone
planes interacting most critically with electrons at the Fermi level. From Figure 9c, |G|2c = 2 or the set of
{110} zone planes is extracted as the one closest to the Fermi surface in Na (cI2). The total-DOS exhibits a
peak with a subsequent decline at about E = +2 eV, where |G|2c = 2 is positioned. Thus, one can say that
the van-Hove singularity at E = +2 eV in the tDOS is obviously caused by the Fermi surface-Brillouin
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zone interactions involving {110} zone planes. The two Fourier coefficients for |G|2 = 2-specified plane
waves shown as blue lines in Figure 9c obviously correspond to bonding and anti-bonding levels.
Their energy difference is read off as 0.43 eV in a perfect agreement with the energy gap of 0.43 eV
across the {110} zone planes at symmetry points N (see Figure 9a).

2.4.2. Al (cF4)

The dispersion relations and tDOS plus Al-3s, -3p and -3d pDOSs for Al (cF4) are shown in
Figure 10a,b, respectively. There are a few van-Hove singularities immediately below the Fermi level.
Its FLAPW-Fourier spectra are displayed in Figure 10c. The van-Hove singularities mentioned above
can be ascribed to the Fermi surface-Brillouin zone interactions involving {111} and {200} zone planes
with |G|2 = 3 and 4, respectively.
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Figure 10. (a) Dispersion relations; (b) total- and partial-DOSs and (c) FLAPW-Fourier spectra at
symmetry points Γ, L and X of the fcc Brillouin zone for Al (cF4) [11]. Its total-DOS is incorporated
in (c).

2.4.3. Si (cF8)

Both E-k relations and the tDOS plus pDOSs for Si (cF8) are depicted in Figure 11a,b, respectively.
We can see the opening of an energy gap of the magnitude of 1 eV at the Fermi level, taking this as an
evidence for Si (cF8) to be typical of a semi-conductor. In contrast to Na (cI2), the Si-3s pDOS is located
at energies lower than that of Si-3p pDOS. Thus, a clear difference obviously arises, when the center of
gravity energy is calculated for electrons in Si-3s and Si-3p pDOSs below the Fermi level. As will be
discussed later, this is due to an increase in electronegativity in Si relative to more electropositive Na.

The FF (FLAPW-Fourier) spectra for Si (cF8) are calculated at symmetry points Γ, L and X of the
fcc-Brillouin zone and is shown in Figure 11c. Each |G|2-specified spectrum is again distributed over a
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finite energy range. Hence, the center of gravity energy is calculated and plotted with three different
symbols. Both |G|2c = 8, 11 and 12 are found to be the closest to the Fermi level. They correspond to the
sets of {220}, {311} and {222} zone planes, respectively. We can say that the energy gap across the Fermi
level is caused by the Fermi surface-Brillouin zone interactions involving these zone planes.
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symmetry points Γ, L and X of the fcc Brillouin zone for Si (cF8) [11]. The total-DOS is incorporated
in (c).

2.4.4. P (oC8)

Elemental phosphorous can exist in several allotropes, most commonly white and black.
White phosphorous is made up of P4 tetrahedral molecules and takes the α-phase (bcc) under standard
conditions, and transforms into the β-phase (triclinic) at 195 K. It is toxic and highly flammable
upon contact with air. Black phosphorous is thermodynamically stable at room temperature and
ambient pressure and takes a base-centered orthorhombic structure (oC8). It can be synthesized under
pressures of 1.2 GPa. We have investigated the electronic structure of black phosphorous, since its
atomic structure is available in Pearson’s handbook [29].

The E-k relations and pDOSs for P (oC8) are depicted in Figure 12a,b, respectively. Both valence
and conduction bands are slightly overlapped at the Fermi level, resulting in the electronic structure
typical of semimetals. It can be seen that the P-3s and P-3p pDOSs are further separated from each
other than those in Si (cF8) (see Figure 11b), indicating that the electronegativity in P is more increased
than that in Si.
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The FF-spectra are calculated at three symmetry points Γ, Z and R in the base-centered
orthorhombic Brillouin zone shown in Figure 7f. As shown in Figure 12c, the critical |G|2c value
turned out to be a non-integer value of 10.56, as is clear from Equation (7).
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Figure 12. (a) Dispersion relations; (b) partial DOSs and (c) FLAPW-Fourier spectra at symmetry points Γ,
Z and R of the Brillouin zone for the base-centered orthorhombic lattice for P (oC8) [11]. The total-DOS
is incorporated in (c).

2.4.5. Insulating S (mP28) versus High-Pressure Metallic S (hR1)

More than 30 allotropes exist in sulfur. It has been experimentally confirmed that it transforms
into β-Po S (hR1) above 162 GPa [31]. We have made the FLAPW-Fourier analysis for β-Po S (hR1) in
comparison with insulating phase S (mP28). As shown in Figure 13a,b, the pDOS in S (mP28) consists
of many sharp peaks characteristic of an insulating phase, whereas that in S (hR1) exhibits a typical
metallic continuous valence band.

The FF-spectra for these two phases are compared in Figure 13c,d. The FF-spectra in S (mP28)
are obviously complex, since its symmetry is low and the unit cell is large. Instead, the FF-spectra
in metallic S (hR1) are quite simple and the critical |G|2c value turned out to be 2.89, resulting in a
non-integer value (see Equation (5)). The determination of critical |G|2c value can be made without
difficulty for metallic S (hR1). On the other hand, we consider its determination to be less accurate for
the insulating S (mP28) but yet to be manageable with some increased uncertainties.
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respectively. The valence band no longer forms a continuous band but is dissociated into completely 
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Figure 13. Partial DOSs for (a) insulating S (mP28) at ambient conditions and (b) metallic S (hR1)
synthesized under high pressures P = 206.5 GPa [11]. FLAPW-Fourier spectra at symmetry points Γ, X
and M of the Brillouin zone for the monoclinic lattice for (c) insulating S (mP28) and those at symmetry
points Γ, L, F and Z of the Brillouin zone for the rhombohedral lattice for metallic S (hR1).

2.4.6. Insulating Solid Cl (oC8)

We present the results calculated for Cl (oC8), which is known to crystallize into a base-centered
orthorhombic structure below 171.6 K. Its E-k relations and pDOS are shown in Figure 14a,b,
respectively. The valence band no longer forms a continuous band but is dissociated into completely
separated Cl-3s (yellow) and Cl-3p (green) level-like states. A separation of the center of gravity
energies between Cl-3s and Cl-3p states below the Fermi level in Cl (oC8) is the most significant among
those in Si, P and S discussed above. A continuous band appears only above +8 eV. We can safely say
that Cl (oC8) is an insulator with an energy gap of approximately 2.5 eV at the Fermi level.
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Figure 14. (a) Dispersion relations; (b) partial DOSs and (c) FLAPW-Fourier spectra at symmetry points
Γ, Z and R of the Brillouin zone for the base-centered orthorhombic lattice for insulating solid Cl
(oC8) [11]. The total-DOS is incorporated in (c).

Figure 14c shows the FF-spectra calculated at symmetry points Γ, Z and R of the base-centered
orthorhombic Brillouin zone (see Figure 7f) for Cl (oC8). It can be seen that the center of gravity energies
at three symmetry points are vertically in random in the vicinity of the Fermi level. The situation is,
therefore, more difficult than that in S (mP28) shown in Figure 13c. A critical |G|2c is hardly determined
for Cl (oC8). From this, we have judged the application of the FLAPW-Fourier theory to elements like
Cl (oC8) in Group 17 in the Periodic Table to go beyond our level.

2.4.7. High-Pressure Metallic solid Br (oI2)

The elemental Br belonging to the Group 17 in the Periodic Table is obviously an insulator
like Cl (oC8). So working on insulating solid Br (oC4) is not encouraging. However, we realized
that Br undergoes a molecular-to-monatomic phase transition near 80 GPa [32]. Unfortunately,
however, there is no atomic structure data reported in literature. Fujihisa, one of the coauthors
in [32], kindly provided us the structure data to allow us to perform the FLAPW-Fourier analysis [33].
As shown in Figure 15a, Br-4s and Br-4p states form continuous bands but are separated from each
other by an energy gap of 2.2 eV. It is metallic in character, since the Fermi level falls in the widely
spread continuous Br-4p band. The FF-spectra for metallic Br (oI2) is displayed in Figure 15b. One can
easily deduce its critical |G|2c to be 4.79 from the intersection of the center of gravity energy with the
Fermi level. The origin of its pseudogap near the Fermi level will be discussed in Section 2.8.7.
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Figure 15. (a) Partial DOSs; (b) FLAPW-Fourier spectra at symmetry points Γ, R and T of the Brillouin
zone for the body-centered orthorhombic lattice for metallic Br (oI2) [11]. The total-DOS is incorporated
in (a).

2.4.8. α-Mn (cI58)

We have so far studied non-TM elements starting from Na up to Cl in Period 3 of the Periodic
Table and learned how the electronic structure gradually changes from almost pure metallic through
semi-conducting to insulating ones. We could point out that the construction of the FF-spectra is
validated up to the Group 16 elements like S. Another key issue to be emphasized was the introduction
of a method to take a center of gravity energy for the energy distribution of each electronic state
|2(k + G)|2ZSPs in the FF-spectra. Its details were explained upon the construction of the FF-spectra for
Na (cI2) in Section 2.4.1. Indeed, the method was applied for all non-TM elements so far discussed to
extract a critical |G|2c . We will learn in this Section that taking the center of gravity energy for each
electronic state |2(k + G)|2ZSPs in the FF-spectra becomes mandatory in dealing with TM elements
having a d-band across the Fermi level. In this section, we select α-Mn (cI58) as a representative among
the 3d-, 4d- and 5d-TM elements for this purpose.

The elemental Mn has four allotropes, depending on the temperature range: α-Mn
(cI58: T ≤ 727 ◦C), β-Mn (cP20: 727 < T ≤ 1100 ◦C), γ-Mn (cF4: 1100 < T ≤ 1138 ◦C), δ-Mn (cI2:
1138 < T ≤ 1246 ◦C). We focus on α-Mn stable over ambient temperatures.

The E-k relations and Mn-pDOSs for α-Mn (cI58) are shown in Figure 16a,b, respectively.
The dispersion relations in the range over −4 to +2 eV, where the Mn-3d band extends, are highly
congested and dispersion-less. This is a feature characteristic of a CMA like α-Mn (cI58) as a result of
more frequent zone foldings, since the lattice constant a is large enough to accommodate 58 atoms in

its unit cell and, hence, the reciprocal lattice vector
2π

a
becomes short (See Note 9). The Mn-3d pDOS

is found to dominate across the Fermi level, while both Mn-4s and Mn-4p pDOSs form a pseudogap at
the Fermi level, as if the Mn-3d band pushes them out.

Figure 16c shows the FF-spectra along with its tDOS and Mn-4p pDOS for α-Mn (cI58). The energy
spectra of Fourier coefficients were calculated at three symmetry points Γ, N and H of its bcc Brillouin
zone. The most characteristic feature in the spectra is that Fourier coefficients for electronic states
|2(k + G)|2ZSPs ≥ 8 are clearly separated into two energy regions, as highlighted by two yellow
zones. This is apparently caused by splitting of sp-states in the interstitial region into bonding and
anti-bonding states through their interactions with Mn-3d states. We consider it to originate from a
repulsive interaction due to the orthogonality between sp- and d-like wave functions and have called
it the “d-states-mediated splitting” [11–18].
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Figure 16. (a) Dispersion relations; (b) Mn-partial DOSs and (c) FLAPW-Fourier spectra at symmetry
points Γ, N and H of the bcc Brillouin zone for α-Mn (cI58) [11]. The total-DOS (blue) and Mn-4p
partial DOS (green) are incorporated in (c). Formation of bonding and anti-bonding states due to the
Mn-3d-states-mediated splitting is highlighted by yellow color in (c).

The center of gravity energy for each electronic state |2(k + G)|2ZSPs was calculated and plotted
in Figure 16c, using three colored circles at symmetry points Γ, N and H. Now, the complicated
behavior of the energy dependent Fourier coefficients is straightened and the square of the wave-vector,
|2(k + G)|2ZSPs, has one-to-one correspondence with its center of gravity energy. More surprisingly,
the data set falls on an almost straight line (red line) in accordance with the NFE model. Therefore,
we can say that the center of gravity energy is well regarded as an energy, at which the most
intense Fourier coefficient eventually converges upon reducing the intensity of Mn-3d states to zero.
Thus, taking the center of gravity energy in the FF-spectra is viewed as the process toward the NFE
approximation, regardless of whether TM or non-TM elements or their compounds are concerned.

As is clear from Figure 16c, there is no Fourier coefficient exactly at the Fermi level as a result
of d-states-mediated splitting. However, many Fourier coefficients exist slightly below and above it.
As emphasized earlier, the interference phenomenon is occurring at energies, wherever the Fourier
coefficient appears in the FF-spectra and contributes to the formation of a pseudogap. The critical |G|2c
is deduced to be 16 for α-Mn (cI58), as shown in (c). From this, we interpret it by saying that the set
of lattice planes with |G|2c = 16 or the set of {400} lattice planes is extracted as the one most critically
interacting with electrons at the Fermi level in α-Mn (cI58) in the framework of the NFE approximation.
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2.5. Hume-Rothery Plot

In Section 2.4, we have discussed how to extract from the FLAPW-Fourier spectra the set of lattice
planes interacting most critically with electrons at the Fermi level. This is a quantity appearing in the
right-hand side of Equation (1). We still need to determine another key parameter involved in the
left-hand side of the interference condition. This is the square of the Fermi diameter (2kF)

2 and also
the number of itinerant electrons per atom e/a. Its value can be roughly determined from the electronic
state |2(k + G)|2ZSPs in the FF-spectra, whose center of gravity energy comes closest to the Fermi level,
since |2(k + G)|2ZSPs approximates (2kF)

2. To determine more accurately the value of (2kF)
2, we have

constructed so-called the Hume-Rothery plot, as will be described below.
Let us once again move back to Figure 8, in which a series of Fourier coefficients at energy

eigen-value Ej(ki) in the j-th row are listed as a function of electronic states
∣∣2(ki + Gp

)∣∣2 with

variable p. Now we retain the FLAPW state
{

2
∣∣ki + Gp

∣∣}2
j having the largest Fourier coefficient for a

given Ej and ki and set the rest to be zero. This is done for all ki values over the range 1 ≤ i ≤ Nk in
the first Brillouin zone in an energy interval E ≤ Ej < E + ∆E, where E runs from the bottom of the
valence band up to +30 eV above the Fermi level with an increment ∆E generally set to be 0.05 eV for
all systems studied. An average of

{
2
∣∣ki + Gp0

∣∣}2
Ej

over i = 1 to Nk is calculated by using the relation:

〈
{2|k + G|}2

〉
E
=

∑
j

Nk
∑

i=1
ωi
{

2
∣∣ki + Gp0

∣∣}2
Ej

Nk
∑

i=1
ωi

, (10)

where ωi represents degeneracies, including possibly zero, of the selected electronic state{
2
∣∣ki + Gp0

∣∣}2
E, along the column of which even more than two maximum Fourier coefficients may

exist in a given energy interval. It is also noted that the subscript “0” is added to the parameter
p to emphasize that the Fourier coefficient becomes the largest when Gp = Gp0 . The plot of〈
{2|k + G|}2

〉
E

versus E is called the Hume-Rothery plot and represents the energy dispersion relation
of electrons [11–20].

The tetrahedron (TH) method was introduced to substantially reduce the scatter of data points in
the Hume-Rothery plot [15]. In addition, the NFE method of taking a center-of-gravity (CG) energy for
the states

∣∣2(ki + Gp
)∣∣ over all energy eigenvalues Ej was introduced to circumvent anomalies due to

the formation of an energy gap and also due to the growth of a d-band having a strongly localized
tendency near the Fermi level in the Hume-Rothery plot. Its essence may be briefly reviewed below.

Similarly to the construction of the FF-spectra, we retain the maximum L Fourier coefficients

∑
∣∣∣Cj

ki+Gp

∣∣∣2 for the j-th wave function and the rest is set to zero. Now the CG energy Ecg
ki+Gp

is calculated

from the energy dependence of Fourier coefficients in each column specified by
{

2
∣∣ki + Gp

∣∣}2 over all
variables j in the matrix in Figure 8:

Ecg
ki+Gp

=
∑j Ej(ki)

∣∣∣Cj
ki+Gp

∣∣∣2
∑j

∣∣∣Cj
ki+Gp

∣∣∣2 , (11)

where Ecg
ki+Gp

is calculated for each variable i and p. An integer L is increased one by one until an
anomaly due to either the d-band or the gap formation across the Fermi level is suppressed. In the
present studies, it is selected in the range from unity corresponding to the maximum Fourier coefficient,
up to 20. In this way, the set of

{
2
∣∣ki + Gp

∣∣}2 and Ecg
ki+Gp

data is produced and is plotted as the NFE

curve with a given L on the Hume-Rothery plot. Both (2kF)
2 and the number of itinerant electrons per
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atom e/a will be determined by reading off the ordinate at the intersection of this NFE curve with the
Fermi level.

2.6. Criterion to Judge Itinerancy of Electrons at the Fermi Level

In order to determine both (2kF)
2 and e/a from the Hume-Rothery plot, we must discuss a criterion

to judge when the NFE curve has to be constructed. Obviously, we need the NFE approximation for a
system, where electrons at the Fermi level deviate heavily from the free electron behavior due to either
the presence of a d-band or the formation of an energy gap. This can be judged in three ways [11–17].
Among them, the most convenient criterion is to construct the energy spectrum of an average of the

square of the maximum Fourier coefficients,

〈
∑

ki , j

∣∣∣Cj
ki+Gp

∣∣∣2
max

〉
E

≡
〈
|C|2max

〉
E

over all states ki in the

irreducible wedge of the Brillouin zone (See Note 10).
If the value of

〈
|C|2max

〉
E

is close to unity, electrons at energy E may well be regarded as free
electron-like. Instead, if it is lower than, say, 0.1, one would immediately realize that the wave function
outside the MT spheres consists of many Fourier coefficients lower than 0.1 and judge that electrons
at energy E must be well localized in space. We judge electrons at the Fermi level to be itinerant,
if
〈
|C|2max

〉
EF
≥ 0.2. Otherwise, the NFE curve has to be constructed.

As the second criterion, we plot all the individual data
{

2
∣∣ki + Gp

∣∣}2
E versus E satisfying the

condition ∑
∣∣∣Cj

ki+Gp

∣∣∣2 ≥ 0.2 with green dots in the Hume-Rothery plot (See Note 7). If green dots are
densely and narrowly distributed around the Hume-Rothery data points across the Fermi level, we can
take it as a criterion that electrons at the Fermi level are well itinerant. Instead, we judge electrons to be
well localized in space, if there exist no green dots or if they are scattered widely in a vertical direction
across the Fermi level. A wide scatter of

{
2
∣∣ki + Gp

∣∣}2
E at a given energy will be caused when the

electronic structure is highly anisotropic like in the d-band. Here the construction of the NFE curve
becomes needed.

As the third criterion, we assess the reliability of
{

2
∣∣ki + Gp

∣∣}2
E by calculating the variance, which

is defined as the mean of the square of the variable xi or
〈

x2
i
〉

minus the square of its mean or 〈xi〉2:

σ2 =
〈

x2
i
〉
− 〈xi〉2 =

∑ ωix2
i

∑ ωi
− 2〈xi〉

∑ ωixi

∑ ωi
+ 〈xi〉2

=
∑ ωi

(
x2

i − 2xi〈xi〉+ 〈xi〉2
)

∑ ωi

=
∑ ωi(xi − 〈xi〉)2

∑ ωi

, (12)

where ωi represents degeneracies. In the present case, the variance is explicitly expressed as

σ2(E) =

Nk
∑

i=1
ωi

(
{2|ki + G|}2

E −
〈
{2|k + G|}2

〉
E

)2

Nk
∑

i=1
ωi

. (13)

Note that Equation (13) is in units of (2π/a)4. In order to make the variance in Equation (13) to
be independent of the unit cell size, we take its square root to reduce the units to (2π/a)2 and divide
it by

〈
{2|k + G|}2

〉
EF

or (2kF)
2. The resulting dimensionless variance or the standard deviation is

expressed as
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F(E) ≡
√

σ2(E)

(2kF)
2 , (14)

which is distributed over the range from zero to above unity.
If
〈
{2|k + G|}2

〉
E

versus E data points fall on a straight line passing through the bottom of the
valence band, it can be taken as the confirmation for the validity of the free electron model. In this
case, the standard deviation F(E) defined by Equation (14) would be extremely small. Instead, if the
electronic structure is quite anisotropic like in the d-band, the value of {2|ki + G|}2 is significantly
scattered, depending on the choice of ki in the Brillouin zone. This will lead to a large value of F(E)
in Equation (14). Indeed, the resulting

〈
{2|k + G|}2

〉
E

versus E curve heavily deviates from the free

electron-like straight line and the value of
〈
{2|k + G|}2

〉
E

at the Fermi level loses its physical meaning.
Here the construction of the NFE curve is indispensable.

As discussed above, we have three criteria to judge whether the value of (2kF)
2 can be determined

directly from
〈
{2|k + G|}2

〉
E

versus E data points at the Fermi level or the NFE curve should be
constructed. The former has been referred to as the “local reading” method. If this is not the case,
we ought to construct the NFE curve with an optimal L by taking the CG energy as described above.
The latter becomes inevitable when the Fermi level enters deeply into the d-band and when a deep
true (or pseudo) gap opens at the Fermi level.

Once the value of (2kF)
2 is determined either from the local reading method or the NFE curve,

one can then easily calculate the number of itinerant electrons per atom e/a from Equation (2). It must
be kept in mind that a quantity e/a thus calculated represents the concentration of itinerant electrons
obtained under the condition that they are uniformly distributed over a crystal or unit cell. In order to
link e/a thus obtained with valence of constituent elements in a compound, we do need to calculate
a realistic charge distribution in the unit cell, which certainly deviates from a uniform one due to a
possible charge transfer among unlike atoms.

2.7. Why Can the Hume-Rothery Plot Generate Dispersion Relations in the Extended Zone Scheme?

We consider the adoption of the extended zone scheme to be essential to deepen our understanding
of the Hume-Rothery electron concentration rule, in particular, for systems with e/a values that are
too high to accommodate electrons within the first Brillouin zone. As a matter of fact, Mott and Jones
in 1936 [3] implicitly pointed out its need to discuss the e/a issue in Cu5Zn8 gamma-brass. In order
to explain why the Hume-Rothery plot provides the dispersion relations in the extended zone scheme,
we show in Figure 17 the cross section of the first (grey), second (yellow) and third (pink) Brillouin
zone planes of simple cubic lattice, into which an energy shell sandwiched by two constant energy
surfaces E and E + ∆E is incorporated. It is drawn so as to span both the first and second zones.
Because of the Bloch theorem, the electronic state ki near the boundary of the first zone is equivalent to
the state ki + G100, which is found in the shell between E and E + ∆E. As is clear from the argument
above, the state ki with the energy E in the reduced zone scheme is transferred to the state ki + G100 in
the second zone through the assistance of the reciprocal lattice vector G100. Note that ki in the first
zone takes multi-valued energies including E in the reduced zone scheme (see for example, Figure 9a)
but ki + G100 in the second zone uniquely takes this energy E in the extended zone scheme.
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Figure 17. Cross-section of the Fermi surface-Brillouin zone interactions in the extended zone scheme 
for simple cubic lattice. Some parts of the Fermi sphere enter into the second zone in yellow color but 
the rest remains in the first zone in grey color. The circular shell sandwiched by double circles 
represents the cross section of two constant energy surfaces with E and E + ΔE. The electronic state of wave 
vector ki  in the first zone is transferred to its equivalent state ki + G100  in the second zone with 

the assistance of the reciprocal lattice vector G100 . Note that multiple energies including E  are 

Figure 17. Cross-section of the Fermi surface-Brillouin zone interactions in the extended zone scheme
for simple cubic lattice. Some parts of the Fermi sphere enter into the second zone in yellow color
but the rest remains in the first zone in grey color. The circular shell sandwiched by double circles
represents the cross section of two constant energy surfaces with E and E + ∆E. The electronic state of
wave vector ki in the first zone is transferred to its equivalent state ki + G100 in the second zone with
the assistance of the reciprocal lattice vector G100. Note that multiple energies including E are assigned
in the state ki in the framework of the reduced zone scheme, but the energy E is solely assigned to the
state ki + G100 in the second zone in the framework of the extended zone scheme.

To show the situation above in a more concrete way, we construct the Hume-Rothery plot for
trivalent Al (cF4), whose Fermi surface is large enough to overlap into the second and third Brillouin
zones of fcc lattice. The Hume-Rothery plot for Al (cF4) is displayed in Figure 18a, in which contributions
from electronic states in the first, second and third zones can be distinguished by red, blue and green
color, respectively. Red dots are generated without any assistance of the reciprocal lattice vector and
distributed from the bottom of the valence band up to E = −0.77 eV. Blue dots obtained through the
assistance of G111 start from E = −4.4 eV and coexist with red dots, i.e., states in the first zone over
−4.4 and 0.77 eV. Finally, green dots obtained through the assistance of G200 start to appear above
from −1.36 eV. Thus, contributions from the three zones coexist in the energy range from −1.36 to
−0.077 eV. As can be seen in Figure 18a, there is a slight discrepancy between blue and green dot data
points in this overlapped region. This certainly reflects a difference in the energy gaps across the two
different zone planes.

The Fermi surface of Al (cF4) in the extended zone scheme can be constructed by using the
data ki + Gp created during the course of the Hume-Rothery plot. To enhance the accuracy, we have
plotted vertices of either rectangles or triangles in the reciprocal space, whose coordinates k + G
are obtained as the intersection cutting through relevant tetrahedron with a constant energy surface
E = EF. The results are depicted in Figure 18b. The spherical Fermi surface overlapped into the second
zone across the {111} and {200} zone planes is shown in blue so as to match the colored data points
in (a). The Fermi surface overlapped into the third zone is colored with green and is formed along
intersecting lines between {111} and {200} zone planes. The circular white regions can be seen around
the squared {200} planes. They represent the area, where the {111} Brillouin zone planes are exposed
without overlapped electrons. As a whole, we could confirm the formation of an almost spherical
Fermi surface in Al (cF4). Both

〈
|C|2max

〉
E

and the Hume-Rothery plot for Al (cF4) in a completed form
will be shown in comparison with other elements in Section 2.8 (see Figure 20a,b).
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exposed without overlapped electrons. As a whole, we could confirm the formation of an almost 

spherical Fermi surface in Al (cF4). Both C max
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E
 and the Hume-Rothery plot for Al (cF4) in a 
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Figure 18. (a) The Hume-Rothery plot for tri-valent Al (cF4). The data points in red color are contributed
from electronic states in the first zone, those in blue from the second zone and those in green from the
third zone in the extended zone scheme. Contributions from all three zones coexist over the energy
range from −4.4 to −0.5 eV. They are summed up to constitute the Hume-Rothery plot, as shown
in Figure 20b in its complete form; (b) The resulting Fermi surface of Al (cF4) in the extended zone
scheme. The blue and green colors are chosen to represent the Fermi surfaces overlapped into the
second and third zones so as to meet with colors in (a), respectively.

2.8. Determination of (2kF)
2 and e/a for Representative Elements in the Periodic Table

2.8.1. Na (cI2)

Both
〈
|C|2max

〉
E

and Hume-Rothery plot for Na (cI2) are shown in Figure 19a,b, respectively.
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Figure 19. (a)
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∣∣∣2 ≥ 0.2
(green dots).

Electrons at the Fermi level are highly free electron-like, as judged from
〈
|C|2max

〉
EF

= 0.99 in (a).

In spite of the growth of Na-3d states above E = +10 eV (see Figure 9b), they can be judged to be still
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well itinerant, since
〈
|C|2max

〉
E

> 0.6. The data points
〈
{2|k + G|}2

〉
E

versus E (black dots) in (b) are
almost hidden behind the NFE (L = 1) curve (red line) but surely fall on a straight line from the bottom
of the valence band up to energies +30 eV. This confirms the validity of the free electron model for

Na (cI2). Green dots representing
〈{

2
∣∣ki + Gp

∣∣}2
〉

E
versus E data points with ∑

∣∣∣Cj
ki+Gp

∣∣∣2 ≥ 0.2 are
also hidden behind the NFE curve but become slightly visible with increasing energy above E = +10 eV.
This is taken as a gradual growth of anisotropic electronic structure, as reflected in scatters of green dots
in vertical direction. Another curve consisting of grey dots in (b) represents the energy dependence
of the standard deviation F(E). This is plotted, using the logarithmic scale on the right-hand side
ordinate. It maintains the value less than 0.3 over a whole energy range studied.

As is clear from the arguments above, the local reading method is justified for Na (cI2). The values
of (2kF)

2 = 1.55 ± 0.01 and e/a = 1.01 are deduced by reading off the ordinate at the intersection of the
black dots with the Fermi level. This is in a perfect agreement with the possession of mono-valency for
Na (cI2).

2.8.2. Al (cF4)

We have described in Section 2.7 how dispersion relations in the extended zone scheme for Al
(cF4) can be constructed by extracting each contribution from the respective zones, ending up with its
Hume-Rothery plot. Figure 20a,b represent both

〈
|C|2max

〉
E

and the Hume-Rothery plot for Al (cF4) in a

final form. The value of
〈
|C|2max

〉
EF

is almost unity, green dots are well confined in the very vicinity of

the NFE (L = 1) curve over a wide energy range including the Fermi level and the standard deviation
is well suppressed. Thus, we can safely judge the local reading method to be applicable for Al (cF4).
Indeed, the value of e/a is found in a good agreement with the possession of tri-valency for pure Al.
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Figure 20. (a)
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|C|2max
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E

and (b) Hume-Rothery plot for Al (cF4) [11]. See captions of Figure 19b for
symbols in (b).

2.8.3. Si (cF8)

Both
〈
|C|2max

〉
E

and the Hume-Rothery plot for Si (cF8) are shown in Figure 21a,b, respectively.
An opening of an energy gap of the order of 1 eV at the Fermi level is reflected in them.
Electrons immediately below and above the energy gap are quite itinerant, since

〈
|C|2max

〉
EF

is higher

than 0.5 below and above the energy gap, as indicated in (a). The data points
〈
{2|k + G|}2

〉
E

versus E
(black dots) in (b) are again almost hidden behind the NFE (L = 1) curve (red line) except for the region
across the Fermi level, where an energy gap opens. Indeed, one can see that black dots are well fitted
to the NFE (L = 1) curve from the bottom of the valence band up to energies +20 eV. The green dots are
more widely spread in vertical direction than those in Na (cI2), indicating the growth of the anisotropy
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in its electronic structure. Because of the presence of an energy gap at the Fermi level, we ought to rely
on the NFE method. As indicated in (b), the value of (2kF)

2 is determined to be 9.78 ± 0.05 from the
intersection of the NFE (L = 1) curve with the Fermi level. It is concluded that the energy gap across the
Fermi level in Si (cF8) can be interpreted in terms of the interference phenomenon involving the sets of
lattice planes with |G|2c = 8, 11 and 12, as derived from the FF-spectra shown in Figure 10c. The value
of e/a turned out to be 4.0 in a good agreement with the fact that Si (cF8) is tetra-valent.Crystals 2017, 7, 9  30 of 117 
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2.8.4. P (oC8)

Both
〈
|C|2max

〉
E

and Hume-Rothery plot for P (oC8) are shown in Figure 22a,b, respectively.

The value of
〈
|C|2max

〉
EF

= 0.49 is still high enough to regard electrons at the Fermi level to be itinerant

in spite of the presence of a deep pseudogap. Though this allows us to rely on the local reading method,
the construction of the NFE curve (L = 1) is needed to avoid effects due to anomalies associated with
the deep pseudogap. The value of (2kF)

2 was determined to be 11.30 ± 0.33 from the intercept of
the NFE (L = 1) curve with the Fermi level in a reasonable agreement with the critical |G|2c = 10.56 in
Figure 12c. This lends a support to the fulfillment of the interference condition. The value of e/a is
deduced to be 4.97, being well consistent with the fact that P (oC8) is penta-valent. In conclusion,
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the FLAPW-Fourier theory has proved that the origin of a deep pseudogap at the Fermi level can be
well discussed in terms of the interference phenomenon even for an element with 70% covalency in
the van Arkel-Ketelaar triangle map (see Figure 29).

2.8.5. Insulating Phase S (mP28) versus High-Pressure Metallic Phase S (hR1)

Both
〈
|C|2max

〉
E

and the Hume-Rothery plot for insulating S (mP28) are shown in Figure 23a,b,

respectively. The value of
〈
|C|2max

〉
EF

is essentially zero, being taken as the evidence for an insulator.

One also realizes that a relatively smooth NFE (L = 1) curve is still drawn despite the fact that the
valence band consists of δ-function-like discrete levels. The resulting e/a = 6.1 is in a reasonable
agreement with the fact that S is hexa-valent.
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As mentioned in Section 2.4.4, the β-Po-type S (hR1) is a metallic phase synthesized under
high pressures above 162 GPa. Both

〈
|C|2max

〉
E

and Hume-Rothery plot are shown in Figure 23c,d,

respectively. Reflecting its metallic character, the value of
〈
|C|2max

〉
EF

is very high, reaching 0.71.

In the Hume-Rothery plot shown in (d), black dots representing
〈
{2|k + G|}2

〉
E

versus E data fall on
a free electron-like straight line from the bottom of the valence band up to +25 eV above the Fermi
level. The local reading method can be safely applied to get e/a = 6.04 in a perfect agreement with the
possession of hexa-valence for S (hR1) as a Group 16 metal.

2.8.6. Insulating Solid Cl (oC8)

Both
〈
|C|2max

〉
E

and the Hume-Rothery plot for Cl (oC8) are shown in Figure 24a,b, respectively.
As discussed in Section 2.4.5, it is identified to be an insulator with an energy gap of 2.6 eV.
No continuous band is formed in its valence band. We attempted to construct the NFE curve by
varying the parameter L without any success. As an example, the NFE curve with L = 1 is shown in
(b). It remains unstable, in spite of our efforts to find an appropriate parameter L by increasing it
up to 20. We judge the determination of both (2kF)

2 and e/a not only for insulating solid Cl (oC8)
but also for other elements in Group 17 in the Periodic Table to go beyond the level of the present
FLAPW-Fourier theory.

2.8.7. High-Pressure Metallic Br (oI2)

As discussed in Section 2.4.7, high-pressure phase Br (oI2) is identified as a metal. Both〈
|C|2max

〉
E

and the Hume-Rothery plot for Br (oI2) are shown in Figure 25a,b, respectively. The value of〈
|C|2max

〉
EF

= 0.46 is high enough to allow us to rely on the local reading method. However, an energy

gap at E = −12 eV and a deep pseudogap at about E = +5 eV (see Figure 15a) may encourage us to
choose the NFE approximation. As indicated in Figure 25b, both the local reading method and NFE
(L = 1) curve are consistent with e/a = 7.0 within tolerable uncertainties: the former deviating by +6%
and the latter by −2%. We consider the origin of a pseudogap centered at E = +3.9 eV in Figure 15a can
be explained in terms of the interference phenomenon, since the value of (2kF)

2
NFE = 5.56 in Figure 25b

is in a reasonable agreement with |G|2c = 4.79 and 5.39 at symmetry points R and T shown in Figure 15b.
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2.8.8. α-Mn (cI58)

Both
〈
|C|2max

〉
E

and Hume-Rothery plot for α-Mn (cI58) are shown in Figure 26a,b, respectively.

The value of
〈
|C|2max

〉
EF

in (a) is merely 0.015 because of the occupation of heavily localized Mn-3d

states across the Fermi level. This is a characteristic feature of 3d-, 4d- and 5d-TM elements and
their alloys. A standard deviation F(E) in (b) becomes extremely high and exceeds unity over the
energy range, where Mn-3d states dominate. This is consistent with the fact that Mn-3d states are
quite anisotropic and localized in space. All these evidences require us to construct the NFE curve
to determine both (2kF)

2 and e/a for α-Mn (cI58). The use of L = 1 or retaining only the maximum
Fourier coefficient is effective enough to suppress the Mn-3d anomaly in the Hume-Rothery plot for a
compound with a giant unit cell like α-Mn (cI58). The value of (2kF)

2 turns out to be 15.00 ± 0.20 and
e/a to be 1.05.
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The value of (2kF)
2 = 15.00 agrees well with |G|2c = 16 or the set of {400} lattice planes deduced

from the FF-spectra shown in Figure 6c in Section 2.4.8. A pseudogap observed in Mn-4s and Mn-4p
pDOSs in Figure 16b can be, therefore, interpreted in terms of the interference condition (2kF)

2 = |G|2c
centered at 16.

As will be discussed in Section 3, we will evaluate the degree of bonding-types, metallic, covalent
or ionic, by locating pure elements and equiatomic compounds on the van Arkel-Ketelaar triangle
map [34,35]. For this purpose, use of the electronegativity data defined by Allen et al. [36] will be
shown to be useful. Judging from the electronegativity data for α-Mn listed in Table 2, we consider it
to be positioned in between Al and Si, or about 45% covalency on the side MC of the map shown in
Figure 29. This is far away from the corner “M” or 100% metallic, at which the free electron model
employed by Mott and Jones in 1936 [3] is valid (See Section 1.1). It is of great importance to point out
that the e/a value can be still well defined and that the Hume-Rothery-type stabilization mechanism
based on the interference condition, or Equation (1) can work for α-Mn with about 45%-covalency and
even phosphorus with 70%-covalency, as discussed in Section 2.8.4.

2.9. e/a Determination for 54 Elements in the Periodic Table

We have so far reported the value of e/a for 54 elements in the Periodic Table by making full use of
the Hume-Rothery plot method described in Section 2.5 [11,37]. The value of e/a thus determined for the
element can be used to estimate e/a in a compound simply by taking a composition average of those of
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constituent elements. Its validity can be easily confirmed by performing the WIEN2k-FLAPW-Fourier
analysis for that compound and then testing whether it falls on a linear interpolation line connecting
the end data points for pure elements. When the linear interpolation rule holds, we can say that the
value of e/a for relevant elements is free from alloying environment effects such as the crystal structure,
the unit cell size and the atomic species of the partner element.

Exceptions to this simple rule have been revealed in three elements Ca, Sc and Y in the Periodic
Table. One has to select a proper one from the two distinct e/a values for these three elements,
depending on whether their partner element is selected from either TM or non-TM elements (See more
details in Section 7). Table 1 lists the value of e/a for 54 elements in the Periodic Table, including the
two distinct e/a values for Ca, Sc and Y [37].

Table 1. e/a for 54 elements in the periodic table.
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3. Bond-Type Classification of Compounds on Van Arkel-Ketelaar Triangle Map

In the preceding Section, we have confirmed that the Hume-Rothery-type stabilization mechanism,
i.e., the interpretation of a pseudogap across the Fermi level in terms of the interference phenomenon,
works not only for almost free-electron-like elements but also for elements like Phosphorus and α-Mn,
which had been regarded in the past as being remote from any hope to make its successful application.
We consider mapping of bond-type dependences for various compounds onto the van Arkel-Ketelaar
triangle to be of crucial importance to elucidate the Hume-Rothery-type stabilization mechanism for
compounds characterized by different degrees of bond-types, i.e., metallic, covalent and ionic. In the
present Section, we will try to classify various equiatomic compounds with respect to bond-types by
locating them on the van Arkel-Ketelaar triangle, using the electronegativity data of elements defined
by Allen.

3.1. Scaling of Van Arkel-Ketelaar Triangle in Terms of Allen’s Electronegativity

Allen et al. [36,38] proposed that the degrees of covalency and ionicity for an equiatomic binary
compound AB can be scaled in terms of electronegativities they defined on the basis of spectroscopic
data for free atoms. An equilateral triangle with vertices designated as metallic (M), ionic (I),
and covalent (C), which has been known as the van Arkel-Ketelaar triangle [34,35], can be scaled in
terms of Allen’s electronegativity data to allow us to locate any binary equiatomic compound at an
explicit position inside the triangle.
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According to Allen et al. [36,38], the electronegativity for any element is defined as
multiplet-averaged energy of the outermost s- and p-electrons in its free atom:

χspec =
ns Is + np Ip

ns + np
, (15)

where ns and np represent the number of s and p electrons in the outermost shell of the free atom
and Is and Ip are the corresponding ionization energies, respectively. The Allen electronegativity
χspec for elements in the Periodic Table [38,39] can be reproduced by inserting first and second
ionization energies in units of eV, which are available from atomic spectroscopic data [40], together
with appropriate ns and np into Equation (15) with subsequent multiplication of a scale factor 2.35. The
resulting value of χspec, say, in elements in Period 3 of the Periodic Table, starts from the lowest value
of 0.869 for Na and increases step by step with increasing the atomic number up to 2.869 for Cl. This
means that the Allen electronegativity, i.e., the multiplet-averaged energy of free atoms almost linearly
increases with increasing the atomic number within a given Period of the Periodic Table. Its atomic
number dependence is reproduced in Figure 27 for elements over Na to Ar in Period 3.

Energy bands will be formed when a given atom is surrounded by others in a solid. To gain a
deeper insight into the similarity in the s- and p-states between a free atom and its elemental solid,
we have calculated the 3s- and 3p-partial DOSs for expanded elements from Na, through Mg, Al, Si, P,
S up to Cl, whose lattice constant is set twice as large as that of the existing phase at ambient conditions.
As a result of the expansion of interatomic distances, both 3s- and 3p-states are sharply converged
into a narrow energy range and positioned across the Fermi level. An energy difference

∣∣E3s − E3p
∣∣

is easily evaluated for expanded elements and is incorporated into Figure 27 (see symbols with light
blue squares).
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We can also evaluate a similar quantity
∣∣∣EA

s − EA
p

∣∣∣ for an elemental solid stable under ambient
conditions, in which s- and p-states are broadened to form a valence band. For this purpose, we need
to define the center of gravity energies of the s- and p-partial DOSs by using the relation:

EA
s =

EFr

EB

E× (pDOS)A
s dE

EFr

EB

(pDOS)A
s dE

, (16)

where (pDOS)A
s is the s-pDOS of an element A, EA

s (or EA
p ) is the center of gravity energy of s- (or p-)

electrons in the valence band, and EB is the energy at the bottom of the valence band. In the case
of elements in Period 3, E3s and E3p obviously represent the center of gravity energies of 3s- and
3p-electrons in the valence band, respectively.

The 3s- and 3p-partial DOSs were calculated by performing the FLAPW band calculations for
bcc Na and orthorhombic Cl situated at the extreme left and right, respectively, in Period 3 of the
Periodic Table. As shown in Figure 28a,b, both 3s- and 3p-partial DOSs almost fully overlap in Na,
taking this as evidence for a typical metallic bond. Instead, the 3s-partial DOS is almost perfectly
separated from the 3p-partial one in solid Cl. Its DOS characterized by a series of δ-function-like
peaks is typical of covalently bonded solids with directional bonds. The FLAPW separation energy∣∣E3s − E3p

∣∣ or the energy difference between the center of gravity energies of s- and p-partial DOSs is
included in Figure 28. It amounts to only 0.48 eV for Na (cI2), whereas it is increased to 11.35 eV for Cl
(oS8) [11,12].
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The data of
∣∣E3s − E3p

∣∣ for elemental solids in Period 3 in normal conditions are also incorporated
into Figure 27 (see symbols with red circles). It is clear that the energy difference

∣∣E3s − E3p
∣∣ for

both expanded and normal elements well reproduces the atomic number dependence of Allen’s
electronegativity, though the line fitted to the respective data points is the highest in free atoms,
intermediate in expanded elements and the lowest in normal elements.

The data in Figure 27 indicate that Allen’s electronegativity would be used as a convenient
substitute for

∣∣E3s − E3p
∣∣ in the valence band of normal elements. The latter obviously reflects an

increase in covalency at the expense of metallicity with increasing the atomic number, as indicated
in Figure 28. Indeed, Allen et al. [36] proposed that the degrees of covalency and ionicity for an
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equiatomic binary compound AB can be scaled in terms of an average of electronegativities χA
spec and

χB
spec and its difference, respectively:

χAB =
(

χA
spec + χB

spec

)
/2 (17)

and
∆χAB =

∣∣∣χA
spec − χB

spec

∣∣∣. (18)

We are aware that Na (cI2) and Cl (oS8) possess the smallest and largest electronegativities,
respectively, among elements in Period 3 of the Periodic Table because the inert gas element Ar,
for which the van der Waals force is responsible for its bonding, is excluded. A core assumption in the
Allen approach to locate each equiatomic compound on the van Arkel-Ketelaar triangle is to treat Na,
Cl, and NaCl as ideal substances and to force them to be positioned at coordinates (X, Y, Z) = (0, 0, 100),
(100, 0, 0), and (0, 100, 0) on the vertices M, C, and I of the triangle, where X, Y, and Z are variables
representing the degree of covalency, ionicity, and metallicity, respectively. Once this is assumed,
almost all data for equiatomic compounds can be located in the van Arkel-Ketelaar triangle by using
Equations (17) and (18).

The electronegativity data for pure elements from Na to Cl in Period 3 must fall on the side MC
of the triangle because of the absence of ionicity originating from charge transfer between unlike
constituent elements. Using the relation X = aχA + b (%), we can transfer the Allen data to an explicit
position on the side MC of the triangle. The coefficients a and b are determined to be 50 and −43.45,
respectively, under the constraints (χNa, X) = (0.869, 0) and (χCl , X) = (2.869, 100). The positions of
all remaining elements Mg, Al, Si, P, and S in Period 3 are immediately fixed on the side MC, as shown
in Figure 29 (see open circles).
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Figure 29. Van Arkel-Ketelaar triangle map constructed by inserting the Allen electronegativity data
(Table 2) into Equations (17) and (18) for 28 equiatomic compounds and seven elements (#) in period
3 of the Periodic Table [11,12]. The equiatomic Zintl compounds AX (A = Li and Na and X =Al, Ga, In,
and Tl) (•) and Al-, Zn- and Cd-TM compounds (•) and P-based compounds (•).

The data for equiatomic compounds of our interest are added to Figure 29 by inserting the Allen
electronegativity data into Equations (17) and (18). For consistency, the relationship X = 50χAB− 43.45
discussed above for pure elements is used for equiatomic compounds as well. A finite ionicity sets in
from Equation (18) when χA 6= χB, specifying the variable Y orthogonal to the side MC of the triangle.
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The relationship Y = c∆χAB (%) is employed to transfer ∆χAB to the variable Y. The metallicity variable
Z cannot be independently determined but is constrained by Z = 100 − X − Y (%). Because NaCl
should be located at the vertex I, the condition (Y, ∆χAB) = (100, 2.0) immediately leads to the
coefficient c = 50. We realized that c = 50 cannot be assumed for all kinds of equiatomic compounds
because Z becomes negative in some compounds, in which X + Y happens to exceed 100. Thus,
we have to reduce the coefficient c so as to confine all the data points inside the triangle. In the present
work, c is fixed at 40 for all equiatomic compounds except for NaCl. The results thus obtained are
incorporated in Figure 29.

As can be seen from Figure 29, data points for a series of Phosphorus-based equiatomic compounds
fall on an almost vertical strip, with the highest ionicity of 64% for CsP. If c = 35 is used, the strip is
shifted a few percentage points as a whole to a higher metallicity side at the expense of ionicity and
the highest ionicity for CsP is lowered to 56%. In spite of such ambiguity, we judge Figure 29 to be
safely used to assess the degree of ionicity of a given compound relative to others in the family of
Phosphorus-based compounds because their relative positions remain unchanged, regardless of the
choice of the value of the coefficient c.

At this stage, it may be worth mentioning the location of insulators in Figure 29. Metallicity
emerges, as soon as we depart from the side CI of the triangle. This does not mean that all insulators
are confined on the side CI. For example, the semiconductor Si, which has a finite energy gap at the
Fermi level, is situated at the position (52, 0, 48) on the side MC. As is well known, Si-3s and -3p
electrons form a continuous valence band of 11.9 eV in width (see Figure 11). A broad band itself is
taken as the manifestation of its metallicity. As we go further to the right on the side MC, three more
elements, P, S, and Cl appear, where the valence band begins to split into many peaks associated with
their s and p states. This is taken as an indication for the growth of covalent bonding accompanying
strong bond orientations in them.

As is clear from the argument above, one cannot uniquely separate the metallicity from the other
two quantities on the van Arkel-Ketelaar triangle map. There is definitely some arbitrariness in the
argument. For example, pure elements K and Br and compound KBr belonging to Period 4 are also
implicitly placed at vertices M, C, and I in Figure 29, respectively, without differentiating the Allen
electronegativities between K (χK

spec = 0.734) and Na (χNa
spec = 0.869). Thus, the triangle map should be

used at a qualitative level. Moreover, we are encouraged from studies above to investigate to what
extent Allen’s electronegativity can be used to assess the degree of bonds in solids because it is derived
purely from the spectroscopic data of free atoms. In Section 3.2, we will try to replace χAB and ∆χAB
by quantities derived directly from first-principles FLAPW band calculations for pure elements and
compounds with the hope that some deeper insight into the character of interatomic bonds in alloys
and compounds is gained.

3.2. The Physics behind the Allen Electronegativity

Positioning equiatomic binary compounds on the van Arkel-Ketelaar triangle can be made
possible by using Equations (17) and (18), into which χA or B

spec directly derived from the spectroscopic
data for free atoms [40] is inserted. Encouraged by the data in Figures 27 and 29, we consider it to be
worthwhile to examine if a difference between the center of gravity energies of s- and p-partial DOSs
in the valence band of elemental solids can be equally used in place of Equations (17) and (18) for free
atoms. If it works, the physics behind the Allen electronegativity would become more transparent.

A difference between EA
s and EA

p defined in Equation (16) for an element A is abbreviated as

EA
sp ≡

∣∣∣EA
s − EA

p

∣∣∣. Now the atomic number dependence of EA
sp for elements in Periods 3 and 4 is

shown in Figure 30a in comparison with that of the Allen electronegativity χA
spec in Figure 30b [11,12].

The overall behavior is quite similar for the two, and the data for elements in both Periods 3 and
4 fall on a master curve. It is emphasized that the FLAPW separation energy EA

sp remains more or
less constant at about 2 eV for TM 3d-elements except for the early ones such as Sc and Ti. A careful
inspection of changes in the valence band structure with increasing the atomic number reveals that
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the DOS below the Fermi level forms a continuous free-electron-like band from Na up to Al but tends
to be separated into s and p components while still maintaining a continuous band through Si to P.
However, it is split into many peaks separated by energy gaps in S and insulating solid Cl. This is
indeed taken as a reflection of the gradual shift from metallicity to covalency across the Periodic Table.
As is clear from the argument above, the value of χA

spec proposed by Allen can be conveniently used as
a covalency indicator at the expense of metallicity [11,12].

Crystals 2017, 7, 9  39 of 117 

 

shown in Figure 30a in comparison with that of the Allen electronegativity χspec
A  in Figure 30b 

[11,12]. The overall behavior is quite similar for the two, and the data for elements in both Periods 3 

and 4 fall on a master curve. It is emphasized that the FLAPW separation energy Esp
A  remains more 

or less constant at about 2 eV for TM 3d-elements except for the early ones such as Sc and Ti. A careful 
inspection of changes in the valence band structure with increasing the atomic number reveals that 
the DOS below the Fermi level forms a continuous free-electron-like band from Na up to Al but tends 
to be separated into s and p components while still maintaining a continuous band through Si to P. 
However, it is split into many peaks separated by energy gaps in S and insulating solid Cl. This is 
indeed taken as a reflection of the gradual shift from metallicity to covalency across the Periodic 

Table. As is clear from the argument above, the value of χspec
A  proposed by Allen can be conveniently 

used as a covalency indicator at the expense of metallicity [11,12]. 

Let us now discuss whether ΔχAB  given by Equation (18) can be used as a proper ionicity 
indicator upon dealing with solids. We consider both metallicity and covalency to be equally treated 
in quantum mechanics because the extent of electron wave functions around a given constituent atom 
determines the respective contributions. In contrast, we are aware that the cohesive energy in an 
ideally ionic crystal can be calculated by summing up an electrostatic Madelung energy for an 
assembly of ions with unlike charges within the framework of classical electrodynamics. In this sense, 
the Allen electronegativity may be more favorable in the evaluation of ionicity than the data for 
elemental solids because it is free from band-structure effects such as local atomic arrangements, 
crystal structure, and unit cell size [11,12]. 

 
Figure 30. Atomic number dependence of (a) FLAPW separation energy A A A

sp s pE E E≡ −  and (b) Allen 

electronegativity χspec  for elements in periods 3 and 4 of the Periodic Table [11,12]. 

We believe that Equations (17) and (18), into which the Allen electronegativity for free atoms is 
inserted, can be used as both covalency and ionicity indicators for binary equiatomic compounds and 
allow us to locate its proper position inside the van Arkel-Ketelaar triangle. It is noted that the data 
for a series of Phosphorus-based compounds commonly fall on an almost vertical narrow strip and 
are clearly separated from a series of Zintl and Al-TM compounds, as can be seen in Figure 29. In the 
rest of our discussions, we will exclusively use Figure 29 as a guide to evaluate the degree of 
covalency and ionicity relative to metallicity for binary compounds. In particular, one can rely on 
Figure 29 even when an equiatomic compound is not present under ambient conditions. The van 
Arkel-Ketelaar map will be constructed for hypothetical equiatomic compounds AB to use it as a 
rough guide to estimate the bonding character of a realistic non-equiatomic compound. 

In the following Chapters, we will make full use of the van-Arkel-Ketelaar triangle map shown 
in Figure 29 and discuss how seriously the Fermi surface–Brillouin zone interactions are affected by 

Figure 30. Atomic number dependence of (a) FLAPW separation energy EA
sp ≡

∣∣∣EA
s − EA

p

∣∣∣ and
(b) Allen electronegativity χspec for elements in periods 3 and 4 of the Periodic Table [11,12].

Let us now discuss whether ∆χAB given by Equation (18) can be used as a proper ionicity indicator
upon dealing with solids. We consider both metallicity and covalency to be equally treated in quantum
mechanics because the extent of electron wave functions around a given constituent atom determines
the respective contributions. In contrast, we are aware that the cohesive energy in an ideally ionic
crystal can be calculated by summing up an electrostatic Madelung energy for an assembly of ions
with unlike charges within the framework of classical electrodynamics. In this sense, the Allen
electronegativity may be more favorable in the evaluation of ionicity than the data for elemental solids
because it is free from band-structure effects such as local atomic arrangements, crystal structure,
and unit cell size [11,12].

We believe that Equations (17) and (18), into which the Allen electronegativity for free atoms is
inserted, can be used as both covalency and ionicity indicators for binary equiatomic compounds and
allow us to locate its proper position inside the van Arkel-Ketelaar triangle. It is noted that the data for
a series of Phosphorus-based compounds commonly fall on an almost vertical narrow strip and are
clearly separated from a series of Zintl and Al-TM compounds, as can be seen in Figure 29. In the rest
of our discussions, we will exclusively use Figure 29 as a guide to evaluate the degree of covalency
and ionicity relative to metallicity for binary compounds. In particular, one can rely on Figure 29 even
when an equiatomic compound is not present under ambient conditions. The van Arkel-Ketelaar map
will be constructed for hypothetical equiatomic compounds AB to use it as a rough guide to estimate
the bonding character of a realistic non-equiatomic compound.

In the following Chapters, we will make full use of the van-Arkel-Ketelaar triangle map shown
in Figure 29 and discuss how seriously the Fermi surface–Brillouin zone interactions are affected by
bond-types involved and whether the value of e/a can be safely determined, as the covalency and/or
ionicity is increased. Finally, the Allen electronegativity data for elements in the Periodic Table are
listed in Table 2 [39].
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4.1. How to Explore Systems Obeying a New Hume-Rothery Electron Concentration Rule?

We have recently proposed procedures regarding how to discover a family of systems obeying a
new Hume-Rothery electron concentration rule [11–13,41]. A strategy to theoretically discover new
Hume-Rothery electron phases is to find first a group of pseudogap-bearing compounds characterized
by the common Pearson symbol. This assures us that a common network of Brillouin zone planes
is created in the reciprocal space. Then the FLAPW-Fourier spectra are constructed for each of
isostructural compounds, enabling us to extract the square of the critical reciprocal lattice vector
|G|2c . All isostructural compounds are then classified into subgroups with respect to |G|2c thus derived.
Now the presence of a pseudogap across the Fermi level guarantees us to rely on the interference
condition given by Equation (1), i.e., (2kF)

2 = |G|2, as long as a lattice periodicity is assured.
This means that a subgroup of isostructural compounds characterized by a common |G|2c would
naturally possess a common (2kF)

2 and hence, a common e/a value within the accuracy determined
by how closely the interference condition is fulfilled. Indeed, the family of skutterudite compounds
(cI32), represented by chemical formula (TM)M3 (TM = Co, Rh, Ir, Ni, M = P, As, Sb), is found to obey
the Hume-Rothery electron concentration rule with e/a = 4.34 [11–13,41] (see Section 6.4.1). We are
now ready to apply this procedure to gamma-brasses, cubic approximants and the Samson compound
Al3Mg2, all of which are characterized by a giant unit cell.

4.2. Gamma-Brasses (cI52 or cP52)

As mentioned in the Introduction, Mott and Jones (1936) [3] attempted for the first time
to pursue the physics behind the Hume-Rothery electron concentration rule on the basis of the
Fermi surface-Brillouin zone interaction within the framework of empty lattice free electron model.
Their finding of both Cu5Zn8 (cI52) and Al4Cu9 (cP52) gamma-brasses to have a common e/a value
of 1.538 was certainly one of their most epoch-making achievements. But its value is a bit too
small in comparison with that expected from the stoichiometric ratio for the respective compounds,

which obviously results in a common e/a value of
5× 1 + 8× 2

13
and

4× 3 + 9× 1
13

or
21
13

= 1.615.
People at that time naively thought that the difference in e/a between the Mott and Jones theory and
experimental evidences is caused by the adoption of the free electron model.

Pearson and his co-workers (1977) [42] revealed that both Al8V5 (cI52) and Al8Cr5 (cI52) crystallize
into the same structure as the prototype Cu5Zn8 and wondered if they also obey the Hume-Rothery
electron concentration rule with e/a = 1.615. The compound Ag5Li8 (cI52) was also identified to be
isostructural to Cu5Zn8. Hume-Rothery himself [43] wondered if Ag5Li8 obeys the e/a = 1.615 rule in
spite of the combination of the two mono-valent elements. We consider it to be timely to resolve the
long-standing controversial e/a issue and to elucidate the stabilization mechanism by determining key
parameters (2kF)

2, e/a and |G|2c by performing the FLAPW-Fourier analysis for these gamma-brasses.
Figure 32a,b depict the pDOSs for gamma-brasses Cu5Zn8 (cI52) and Figure 32c,d those for Al4Cu9

(cP52), respectively. A sharp pseudogap is clearly observed at the Fermi level in both Cu5Zn8 (cI52)
and Al4Cu9 (cP52). Similarly, the pDOSs for Al8V5 (cI52) and Ag5Li8 (cI52), both being isostructural to
Cu5Zn8 (cI52), are shown in Figure 33a–d, respectively. A deep pseudogap is again seen at the Fermi
level in the Al-3s, Al-3p and V-4s and V-4p partial DOSs but is apparently missing in the V-3d pDOS in
Al8V5 (cI52). More surprisingly, a pseudogap is absent at the Fermi level but is apparently shifted to
E = +4 eV above it in Ag5Li8 gamma-brass, as can be seen in Figure 33c,d.
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The energy dependence of
〈
|C|2max

〉
E

and the Hume-Rothery plot for Cu5Zn8 (cI52) and Al4Cu9

(cP52) are shown in Figure 34a–d, respectively. The value of
〈
|C|2max

〉
EF

for Cu5Zn8 and Al4Cu9 is

much higher than the threshold value of 0.2, thereby allowing us to employ the local reading method.
The values of (2kF)

2 = 18.50 ± 0.55 and e/a = 1.61 ± 0.05 are commonly obtained for Cu5Zn8 (cI52) and
Al4Cu9 (cP52). Furthermore, the value of e/a thus obtained is in a perfect agreement with the nominal
e/a = 1.615 obtained from the composition average of (e/a)Cu = 1.0 and (e/a)Zn = 2.0. This demonstrates
the success in the FLAPW-Fourier theory based on first-principles electronic structure calculations and
could completely overcome the shortcoming that Mott and Jones encountered in 1936.Crystals 2017, 7, 9  44 of 117 
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Figure 34. (a)
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〉
E

and (b) Hume-Rothery plot for Cu5Zn8 (cI52) [11]. Respective data in (c,d) for
Al4Cu9 (cP52). Symbols in (b,d) refer to the TH-HR (Tetrahedron-Hume-Rothery) data points (black),
dimensionless variance F(E) (grey), NFE curve (L = 1) (dotted grey), and data points satisfying the

condition ∑
∣∣∣Cj

ki+Gp

∣∣∣2 ≥ 0.2 (green dots). The NFE curve in (b,d) is intentionally shown with less visible
grey dots, since the local reading method is used.

Similarly, the data for gamma-brasses Al8V5 (cI52) and Ag5Li8 (cI52) are displayed in Figure 35a–d,
respectively. The value of

〈
|C|2max

〉
EF

for Al8V5 is only 0.05 because of the presence of highly localized

V-3d band across the Fermi level. Thus, the use of the NFE method is inevitable. As indicated in (b),
we obtained (2kF)

2 = 22.7 ± 1.1 and e/a = 2.18 from the intersection of the NFE curve with the Fermi
level, the latter being in a good agreement with the nominal e/a = 2.19 obtained from the composition
average of (e/a)V = 0.9 and (e/a)Al = 3.0 (see Table 1). Instead, the value of

〈
|C|2max

〉
EF

= 0.43 for Ag5Li8
is high enough to use the local reading method. The data points in the Hume-Rothery plot in (d) are found
to fall almost on a straight line except the region near the bottom of the valence band, where the Ag-4d
band exists. This lends support to the validity of the nearly free electron model. Indeed, the local reading
method has provided (2kF)

2 = 13.51 ± 0.27 and e/a = 1.00, the latter being in a perfect agreement with
the nominal e/a = 1.0.
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and (b) Hume-Rothery plot for Al8V5 (cI52). Respective data in (c,d) for Ag5Li8
(cP52). See captions of Figure 34b,d for symbols. The NFE curve in (b) is drawn with red color, since the
NFE method is used.

The FLAPW-Fourier spectra for both Cu5Zn8 (cI52) and Al4Cu9 (cP52) gamma-brasses are shown
in Figure 36a–b, respectively. Both spectra were constructed only at symmetry points N and M of
the Brillouin zone for bcc and simple cubic lattices to avoid congestion of data points, respectively.
The center of gravity energy meets the Fermi level at |G|2c = 18 in an excellent agreement with the value
of (2kF)

2 = 18.50 ± 0.55 mentioned above in both cases. This is taken as a demonstration for the valid
interpretation for the origin of a pseudogap at the Fermi level in terms of the interference condition
given by Equation (1) and as a theoretical proof for the Hume-Rothery electron concentration rule
with e/a = 1.615 for these two gamma-brasses. We classify them into the subgroup 1, since they are
characterized by a common value of |G|2c = 18.

At this stage, we will examine how strongly each interference phenomenon specified in
terms of |G|2c in the FF-spectra contributes to the formation of a pseudogap near the Fermi level.
The Fourier-transformed potential, VG, or alternatively called the form factor was calculated within
the NFE band calculations with the use of empty-core potential for Cu5Zn8 (cI52) [19]. As shown in
Figure 37a, the |G|2-dependence of VG reaches its maximum at |G|2 = 18 corresponding to the set of
{330} and {411} zone planes. It means that the interference phenomenon involving plane waves of |G|2

= 18 most significantly contributes to the formation of a pseudogap in the gamma-brasses. As a matter
of fact, the derivation of |G|2c = 18 is consistent with the conclusion led by Mott and Jones [3] that these
gamma-brasses are stabilized through the Fermi surface-Brillouin zone interaction involving the set of
{330} and {411} zone planes.
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total DOS for Cu5Zn8 (cI52) and (b) those at symmetry points M of the simple cubic (sc) lattice Brillouin
zone for Al4Cu9 (cP52) [11].
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level in the reciprocal space. The Brillouin zone for the gamma-brass is made up of 24 {411} and 12 
{330} zone planes. The highest energy is met at the intersection of {411} and {330} zone planes and is 
marked with the letter “A”, as indicated in (b). The star-shaped Fermi surface with pink color is 
clearly formed underneath the point “A” inside the Brillouin zone network. The circular white 
regions are formed around centers of both {330} and {411} zone planes. They can be taken as the 
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for the formation of a pseudogap across the Fermi level in the gamma-brass by showing the Fermi 
surface in the extended zone scheme. 

Figure 37. (a) The |G|2-dependence of the Fourier-transformed empty-core potential or the form
factor, VG, calculated in the context of NFE band calculations for Cu5Zn8 (cI52) gamma-brass [19];
(b) The Fermi surface in the extended zone scheme for Cu5Zn8 (cI52) gamma-brass. Blue dots represent
the center of {330} and {411} zone planes. The highest energy is attained at the point “A” on the Brillouin
zone. Star-shape pink areas with their centers underneath the point “A” represent spherical Fermi
surface inside the Brillouin zone, while white areas the necks formed around centers of the respective
zone planes.

Figure 37b illustrates the Fermi surface for Cu5Zn8 (cI52) in the extended zone scheme. As already
mentioned in connection with the construction of the Fermi surface for Al (cF4) in Figure 18b, we can
construct it simply by applying the tetrahedron method to the data ki + Gp at the Fermi level in the
reciprocal space. The Brillouin zone for the gamma-brass is made up of 24 {411} and 12 {330} zone
planes. The highest energy is met at the intersection of {411} and {330} zone planes and is marked with
the letter “A”, as indicated in (b). The star-shaped Fermi surface with pink color is clearly formed
underneath the point “A” inside the Brillouin zone network. The circular white regions are formed
around centers of both {330} and {411} zone planes. They can be taken as the formation of necks
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against these zone planes. In this way, one can clearly envisage the mechanism for the formation of a
pseudogap across the Fermi level in the gamma-brass by showing the Fermi surface in the extended
zone scheme.

As mentioned above, both Cu5Zn8 (cI52) and Al4Cu9 (cP52) gamma brasses are equally classified
into subgroup 1 with |G|2c = 18. As listed in Table 3, Ag5Zn8 (cI52) and In4Ag9 (cP52) gamma-brasses
also belong to the subgroup 1. The FLAPW-Fourier spectra for Al8V5 (cI52) and Ag5Li8 (cI52)
gamma-brasses are shown in Figure 38a,b, respectively. The bonding and anti-bonding states caused
by the V-3d-states-mediated-splitting is highlighted by yellow color. The center of gravity energy is
found to pass the Fermi level at |G|2c = 22 corresponding to symmetry points N in a good agreement
with (2kF)

2 = 22.7 ± 1.1 shown in Figure 35b. Thus, we consider the pseudogap in Al-3sp and V-4sp
states (see Figure 33a,b) to be interpreted in terms of the interference phenomenon involving Al-3sp
and V-4sp electrons with the set of {332} lattice planes with |G|2c = 22. As listed in Table 3, both Al8V5

and Al8Cr5 (cI52) gamma-brasses are classified into the subgroup 2 with |G|2c = 22, being one order
higher than |G|2c = 18 for the Cu5Zn8 (cI52) and Al4Cu9 (cP52) in the subgroup 1.
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Figure 38. FLAPW-Fourier spectra at symmetry points Γ, N and H of the bcc Brillouin zone along with
the total DOS for (a) Al8V5 (cI52) and (b) Ag5Li8 (cI52). A green curve in (a) represents the Al-3p pDOS.
Formation of bonding and anti-bonding states due to V-3d-states-mediated splitting is highlighted by
yellow color in (a). An orange vertical line in (b) is drawn so as to pass the energy corresponding to the
center of gravity energy state with |G|2 = 18. It meets the pseudogap in the total DOS in Ag5Li8 (cI52).
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Table 3. Hume-Rothery electron concentration rule for gamma-brasses (cI52 or cP52).

Subgroup System N
(2kF)2 e/a e/uc |G|2

c
× (2π/a)2 × (2π/a)2

gamma-brasses

1

Cu5Zn8
(cI52) 52 18.5 ± 0.1

1.60 ± 0.02 83 18

Ag5Zn8
(cI52) 52 18.5 ± 0.1

Al4Cu9
(cP52) 52 18.5 ± 0.1

In4Ag9
(cP52) 52 18.5 ± 0.1

2

Al8V5
(cI52) 52 22.7 ± 1.1

2.1 ± 0.1 109 22
Al8Cr5
(cI52) 52 22.1 ± 1.1

3 Ag5Li8
(cI52) 52 13.51 ± 0.27 1.00 ± 0.02 52 14

Finally, we discuss the FLAPW-Fourier spectra for Al5Li8 gamma-brass shown in Figure 38b.
Reflecting the free-electron-like behavior in Figure 35d, the center of gravity energy is found to fall on
a straight line passing through the bottom of the valence band and to cross the Fermi level at |G|2c = 14
again at symmetry points N. Hence, the Al5Li8 gamma-brass can be classified into the subgroup 3
with |G|2c = 14 or one order lower than |G|2c = 18 in the subgroup 1. The interference condition is also
satisfied, since it agrees well with (2kF)

2 = 13.51 ± 0.27. However, we must admit that the Fermi
level falls on a peak rather than a pseudogap in the DOS, as indicated in Figure 33c,d. The value
of e/a is deduced to be 1.00, being well consistent with the fact that the compound is made up of
two mono-valent elements Ag and Li. The possession of e/a = 1.6 for this compound, as was once
wondered by Hume-Rothery himself, is completely ruled out.

Another interesting remark is addressed to the Al5Li8 gamma-brass. An orange color vertical
line is drawn in Figure 38b so as to pass the energy, at which the center of gravity energy with |G|2

= 18 is located. It can be seen that the line meets a pseudogap at about E = +4 eV in the total DOS
shown in Figure 38b. It is interesting to remind that e/a = 1.615 for gamma-brasses in the subgroup 1 is
linked with |G|2 = 18 through the interference condition, i.e., Equation (1). It means that the electron
concentration will become 1.6, if the Fermi level is to be raised to E = +4 eV in Al5Li8 gamma-brass.
In other words, the electron concentration e/a = 1.0 in the Al5Li8 gamma-brass is too low to reach
a pseudogap characteristic of the gamma-brass in subgroup 1. Hence, a mechanism other than
the pseudogap formation at the Fermi level must be searched for. A possible mechanism for the
stabilization of the Al5Li8 gamma-brass has been proposed elsewhere [19].

Numerical data playing key roles in the Hume-Rothery electron concentration rule for a series of
gamma-brasses are summarized in Table 3.

4.3. RT-Type 1/1-1/1-1/1 Approximants (cI160 or cI162)

In this family of compounds, atom clusters consisting of either 80 or 81 atoms are arranged to
form a bcc lattice with space group Im3. Thus, the number of atoms per unit cell is either 160 or 162,
depending on whether the center of the atom cluster is filled with an atom or vacant [19]. However,
the pseudogap structure is found to be insensitive to the presence or absence of the center atom.
Thus, the network of Brillouin zone planes in the reciprocal space is common to all approximants
in this family and the classification into subgroups with respect to |G|2c is essential to study the
Hume-Rothery-type stabilization mechanism for this family of compounds.
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The total DOSs, Hume-Rothery plots and FLAPW-Fourier spectra for the RT-type 1/1-1/1-1/1
approximants Al3Mg4Zn3 (cI160) and Al9Mg8Ag3 (cI160) are displayed in Figure 39a–c,
respectively [11,13]. Although the Zn-3d and Ag-4d states form prominent peaks in the respective
DOSs, their effects can be well neglected when we focus on the interference condition at the Fermi level.
A shallow pseudogap is observed in otherwise monotonic and free-electron-like DOSs at the Fermi
level, as shown in (a). The dispersion relations in the Hume-Rothery plot can be well fitted to straight
lines except the regions, where the Zn-3d and Ag-4d band exist for the two compounds. This certainly
validates the use of the local reading method. The value of (2kF)

2 turned out to be 49.8 ± 1.0 and
49.4 ± 1.0 for Al3Mg4Zn3 (cI160) and Al9Mg8Ag3 (cI160), respectively. Remember that a common e/a is
expected for these two compounds, since a simple manipulation of composition average of valences of

constituent atoms results in e/a =
3× 3 + 2× 4 + 2× 3

10
=

23
10

and
3× 9 + 2× 8 + 1× 3

20
=

46
20

=
23
10

,
respectively. The resulting e/a values of 2.30 and 2.27, as listed in Figure 39b, lend support to the
validity of the linear interpolation rule with (e/a)Al = 3.0, (e/a)Mg = 2.0, (e/a)Zn = 2.0 and (e/a)Ag = 1.0.
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that constituent elements with different valences, i.e., two and unity for Zn and Ag, respectively, are 

Figure 39. (a) Total-DOSs; (b) Hume-Rothery plots and (c) FLAPW-Fourier spectra at symmetry points N
of the bcc Brillouin zone for Al3Mg4Zn3 (cI160) (red) and Al9Mg8Ag3 (cI160) (blue) [11,13].

The FLAPW-Fourier spectra at symmetry points N for the two RT-type 1/1-1/1-1/1 approximants
Al3Mg4Zn3 (cI160) and Al9Mg8Ag3 (cI160) are depicted in Figure 39c. The center of gravity energies
are found to be almost superimposed onto one another and to commonly meet the Fermi level at |G|2c
= 50. This confirms that a shallow pseudogap can be interpreted in terms of the interference condition
(2kF)

2 = |G|2 = 50. We conclude that the Hume-Rothery rule with e/a = 23/10 holds in spite of the
fact that constituent elements with different valences, i.e., two and unity for Zn and Ag, respectively,
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are involved with different stoichiometric ratios to form the compounds. Thus, we claim that both
Al3Mg4Zn3 (cI160) and Al9Mg8Ag3 (cI160) obey a “genuine” Hume-Rothery electron concentration rule
in the same spirit as the e/a = 21/13 rule for Cu5Zn8 and Al4Cu9 gamma-brasses discussed in Section 4.2.
The |G|/2kF-dependence of the Fourier-transformed potential for RT-type 1/1-1/1-1/1 approximants
Al3Mg4Zn3 (cI160) was reported elsewhere [19]. Not only |G|2 = 50 but also its neighboring zones
are found to possess sizable VG, indicating the presence of multi-zone effects characteristic of such
compounds with a giant unit cell (see more details in Section 4.4).

The total DOSs, the Hume-Rothery plots and FLAPW-Fourier spectra for the RT-type 1/1-1/1-1/1
approximants Al21Li13Cu6 (cI160) and Ga21Li13Cu6 (cI160) are shown in Figure 40a–c, respectively.
A huge peak in the total DOS is due to the Cu-3d band in both cases. A deep pseudogap is commonly
formed at the Fermi level. The NFE method was employed in (b) to smooth out small anomalies
caused by the deep pseudogap across the Fermi level. The resulting NFE-derived e/a values of 2.15
and 2.08 for these two compounds are in a reasonable agreement with the nominal e/a given by
3× 21 + 1× 13 + 1× 6

40
=

82
40

=
41
20

= 2.05.
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Figure 40. (a) Total DOSs; (b) Hume-Rothery plots and (c) FLAPW-Fourier spectra at symmetry points N
of the bcc Brillouin zone for Al21Li13Cu6 (cI160) (red) and Ga21Li13Cu6 (cI160) (blue) [11,13].

The FLAPW-Fourier spectra were constructed only at symmetry points N for Al21Li13Cu6 (cI160)
and Ga21Li13Cu6 (cI160), as shown in Figure 40c. From the spectra, we can commonly deduce
|G|2c = 46, which is lower by four than |G|2c = 50 for the aforementioned compounds Al3Mg4Zn3

(cI160) and Al9Mg8Ag3 (cI160) belonging to the sub-group 1. The value of |G|2c = 46 agrees well with
(2kF)

2 = 47.6 ± 1.0 and 46.6 ± 1.0 for the respective compounds. Thus, we say that both RT-type
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1/1-1/1-1/1 approximants Al21Li13Cu6 (cI160) and Ga21Li13Cu6 (cI160) obey the Hume-Rothery
electron concentration rule with e/a = 2.05 and belong to the subgroup 2 with |G|2c = 46.

There exist further RT-type 1/1-1/1-1/1 approximants Na26Au24Ga30 (cI160), Na26Au37Ge18

(cI162), Na26Au37Sn18 (cI162) and Na26Cd40Pb6 (cI160), all of which were identified to belong to the
subgroup 3 with |G|2c = 42 [13]. Their nominal e/a values are calculated to be 1.75, 1.67, 1.67, and 1.81,
respectively, by taking composition average of (e/a)Na = (e/a)Au = 1.0, (e/a)Cd = 2.0, (e/a)Ga = 3.0 and
(e/a)Ge = (e/a)Sn = (e/a)Pb = 4.0 and agree with e/a = 1.74 ± 0.07 or an average of e/a deduced from the
Hume-Rothery plots for these four compounds within the accuracy of ±4%. Thus, we can say that the
RT-type 1/1-1/1-1/1 approximants in the subgroup 3 obey the Hume-Rothery electron concentration
rule with e/a = 1.74 ± 0.07 with |G|2c = 42, which again refers to the symmetry points N of the bcc
Brillouin zone planes and is one order lower than |G|2c = 46 in the subgroup 2.

4.4. RT-Type 2/1-2/1-2/1 Approximants (cP680)

Both Al13Mg27Zn45 (cP680) and Na27Au27Ga31 (cP680) have been identified to contain 680 atoms
per unit cell with space group Pa3 [13]. The number of atoms per unit cell is so high that the FLAPW
first-principles band calculations had to be made by reducing the band parameters RMTKmax to 5.5–6.2
and Nk to 4 × 4 × 4 = 64. We show the total DOS, Hume-Rothery plots and FLAPW-Fourier spectra for
Al13Mg27Zn45 (cP680) and Na27Au27Ga31 (cP680) in Figure 41a–c, respectively. It is clear that the total
DOS is dominated by Zn-3d band centered at E = −7.5 eV and by Au-5d band centered at E = −4 eV
in the respective compounds. Fortunately, however, the DOS across the Fermi level is the least affected
by these d-states. A pseudogap across the Fermi level is apparently shallower than those observed in
the 1/1-1/1-1/1 approximants in the subgroup 1 (see Figures 39a and 40a).
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The NFE method was employed in Figure 41b to smooth out small anomalies across the Fermi
level for both compounds. As indicated in (b), we obtained (2kF)

2 = 127.0 ± 1.0 and e/a = 2.20
for Al13Mg27Zn45 (cP680), while (2kF)

2 = 114.1 ± 1.0 and e/a = 1.88 for Na27Au27Ga31 (cP680).
To avoid congestion, we show the FLAPW-Fourier spectra only for Al13Mg27Zn45 (cP680) in Figure 41c,
from which |G|2c = 126 (M) is extracted. Similarly, we obtained |G|2c = 114 (M) for Na27Au27Ga31

(cP680). A comparison with (2kF)
2 = 127.0 ± 1.0 and 114.1 ± 1.0 confirms the interference condition

(2kF)
2 = |G|2 to hold well in the respective compounds. As is clear from the arguments above, the two

RT-type 2/1-2/1-2/1 approximants Al13Mg27Zn45 (cP680) and Na27Au27Ga31 (cP680) belong to the
different subgroups: the former with |G|2c = 126 and e/a = 2.20, while the latter with |G|2c = 114

and e/a = 1.88. The nominal e/a value for the former is calculated to be
3× 13 + 2× 27 + 2× 45

85
=

183
85

= 2.15, while that for the latter to be
1× 27 + 1× 27 + 3× 31

75
=

147
85

= 1.73. An agreement is
reasonably good.

It must be recalled that the interference phenomenon occurs at energies, wherever the Fourier
coefficient appears in the FLAPW-Fourier spectra (see Section 2.4). As can be seen from Figure 41c,
we find so many Fourier coefficients distributed over the energy range, say, −1 to +1 eV across the
Fermi level. All of them would jointly contribute to the formation of a pseudogap, even though each
contribution is small. This will explain why a pseudogap across the Fermi level becomes smeared and
shallow, as the number of atoms per unit cell increases. As briefly mentioned in the preceding Section,
we call it multi-zone effects unique to structurally complex compounds like 2/1-2/1-2/1 approximants
with 680 atoms in the unit cell and 1/1-1/1-1/1 approximants as well.
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Relevant numerical data for RT-type 1/1-1/1-1/1 and 2/1-2/1-2/1 approximants are summarized
in Table 4.

Table 4. Hume-Rothery electron concentration rule for RT-type 1/1-1/1-1/1 and
2/1-2/1-2/1 approximants.

Subgroup Approximants Space
Group N |G|2

c
× (2π/a)2

a
Å

2d
Å

(2kF)2

× (2π/a)2 e/a e/uc

1/1

1
Al3Mg4Zn3 Im-3 160 50 14.355 4.06 49.8 2.30 368

Al9Mg8Ag3 Im-3 160 50 14.4799 4.09 49.4 2.27 363

2
Al21Li13Cu6 Im-3 160 46 13.89 4.09 47.1 2.10 336

Ga21Li13Cu6 Im-3 160 46 13.568 4.00 47.6 2.15 344

3

Na26Au24Ga30 Im-3 160 42 14.512 4.48 41.8 1.77 283

Na26Au37Ge18 Im-3 162 42 14.581 4.50 41.4 1.72 278

Na26Au37Sn18 Im-3 162 42 15.009 4.63 41.1 1.70 275

Na26Cd40Pb6 Im-3 160 42 15.992 4.94 42.3 1.80 288

2/1
1 Al13Mg27Zn45 Pa-3 680 126 23.0349 4.10 124.0 2.13 1448

2 Na27Au27Ga31 Pa-3 680 110 23.446 4.47 109.2 1.76 1197

4.5. MI-Type 1/1-1/1-1/1 Approximants (cP138, cP144)

The Al-3sp and Mn-3d partial DOSs,
〈
|C|2max

〉
E

and the Hume-Rothery plot for the MI-type
1/1-1/1-1/1 approximant Al114Mn24 (cP138) are depicted in Figure 42a–c, respectively. A deep
pseudogap is clearly observed in Al-3s and Al-3p partial DOSs. As shown in (b),

〈
|C|2max

〉
E

reaches its

minimum immediately below the Fermi level, leading to an extremely small value of
〈
|C|2max

〉
EF

= 0.05.

The lack of itinerancy of electrons at the Fermi level is also reflected in the absence of green dots across
the Fermi level in (c). The NFE (L = 1) curve is drawn in (c) in red color. The resulting (2kF)

2 and e/a
turn out to be 48.3 ± 2.4 and 2.55, respectively. The latter is in a good agreement with the nominal e/a
= 2.66 obtained from a composition average of (e/a)Mn = 1.05 and (e/a)Al = 3.0 (see Table 1).
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Al114Mn24 (cP138) [11,18]. Formation of bonding and anti-bonding states due to Mn-3d-states-mediated
splitting is highlighted by yellow color.
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The FLAPW-Fourier spectra for the MI-type 1/1-1/1-1/1 approximant Al114Mn24 (cP138) are shown
in Figure 43. Similarly to the FF-spectra for α-Mn (cI58) shown in Figure 16c, the energy distribution
of the Fourier coefficients is split into bonding and anti-bonding bands, as highlighted with yellow
color. This has been referred to as the Mn-3d-states-mediated splitting [11–13], as was mentioned in
connection with α-Mn in Section 2.4.8. Though the center of gravity energy passes the Fermi level
at |G|2c = 49, its neighboring spectra also possess Fourier coefficients in the range −2 eV < E < +3 eV,
leading to the presence of prominent multi-zone effects.

As another example, we show in Figure 44a–c the total DOS plus Al-partial DOSs,
the Hume-Rothery plot and FLAPW-Fourier spectra for the MI-type 1/1-1/1-1/1 approximant
Al108Cu6Fe24Si6 (cP144) [11]. A deep pseudogap is again observed in both total DOS and Al-3s
and Al-3p partial DOSs. The NFE (L = 1) curve is constructed to obtain (2kF)

2 = 49.96 ± 1.00 and
e/a = 2.57 for this compound. The latter is in a good agreement with nominal e/a = 2.63 obtained
from a composition average of (e/a)Al = 3.0, (e/a)Cu = 1.0, (e/a)Fe = 1.05 and (e/a)Si = 4.0 (see Table 1).
The value of |G|2c = 50 is deduced from (c) and is found to be essentially the same as that for Al114Mn24

(cP138). Again, multi-zone effects are found to be significant: many neighboring zones across the Fermi
level are contributing to the formation of a deep pseudogap across it.Crystals 2017, 7, 9  55 of 117 
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[46], which would correspond to its low temperature phase. 
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Figure 44. (a) Total DOSs and Al-3spd pDOSs; (b) Hume-Rothery plot and (c) FLAPW-Fourier spectra at
symmetry points Γ, M, X of simple cubic Brillouin zone for Al108Cu9Fe24Si6 (cP144) [11].

Relevant numerical data for MI-type 1/1-1/1-1/1 approximants are summarized in Table 5.
Briefly, all MI-type 1/1-1/1-1/1 approximants obey the Hume-Rothery electron concentration rule
with e/a = 2.64 on average and |G|2c = 50.
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Table 5. Hume-Rothery electron concentration rule for MI-type 1/1-1/1-1/1 approximants.

Subgroup Approximants Space
Group N |G|2

c
× (2π/a)2

a
Å

2d
Å

(2kF)2

× (2π/a)2 e/a e/uc

1/1 1

Al114Mn24 Pm-3 138 50 12.68 3.59 48.9 2.59 357

Al114Re24 Pm-3 138 50 12.86 3.64 48.6 2.57 355

Al102Re24Si12 Pm-3 138 50 12.8603 3.64 51.0 2.76 381

Al108Cu6Fe24Si6 Pm-3 144 50 12.48 3.53 50.0 2.57 370

Al108Cu6Ru24Si6 Pm-3 144 50 12.6832 3.59 51.7 2.70 389

4.6. Tsai-Type 1/1-1/1-1/1 Approximants (cP168, mC336)

Gomez and Lidin [44] studied the atomic structure of the Tsai-type 1/1-1/1-1/1 approximant
Cd6Ca by means of their X-ray diffraction studies and revealed the random orientation of tetrahedral
clusters in the first shell of its atomic cluster. Such randomness in the atomic structure has to be
eliminated for first-principles band calculations. The FLAPW-Fourier analysis [45] was carried out
after eliminating the randomness in orientations of tetrahedral clusters, resulting in the structure
(cP168) [46], which would correspond to its low temperature phase.

The total DOS along with Cd- and Ca-partial DOSs, the Hume-Rothery plot and the FLAPW-Fourier
spectra for Cd6Ca (cP168) are shown in Figure 45a–d, respectively. A deep pseudogap is formed at the
Fermi level [45]. Though

〈
|C|2max

〉
EF

= 0.21 is very close to the threshold value of 0.2, we constructed

the NFE (L = 1) curve to smooth out small anomalies caused by the pseudogap at the Fermi level,
as shown in (c). The resulting (2kF)

2 and e/a turn out to be 47.1 ± 1.0 and 2.01, respectively. The latter
is in a good agreement with a composition average of (e/a)Cd = 2.0 and (e/a)Ca = 2.0, lending strong
support to the fact that it is made up of two di-valent elements Ca and Cd. From the FLAPW-Fourier
spectra in (d), one can easily extract |G|2c = 46 at symmetry points M of simple cubic Brillouin zone.
Here again the multi-zone effects are remarkable. We can judge |G|2c = 46 or the set of {631} zone
planes and its neighbors to jointly participate in the interference phenomenon to yield a pseudogap in
this compound.

Among Cd-based 1/1-1/1-1/1 approximants, there exists Cd6Yb (cI168), which is unique in
the sense that it involves the rare earth element Yb as a major constituent element. Two doublets
have been observed at E = −2 and −0.7 eV in the photoemission He-I valence band spectrum [47].
Its origin has been interpreted as arising from the splitting of the 4f-level into 4f5/2 and 4f7/2 states
due to spin-orbit interactions. The spin-orbit interaction has to be taken into account in order to
reproduce such splitting of the 4f-level in WIEN2k. It is in principle made possible by introducing
the Local Spin-Density Approximation (LSDA) for the exchange and correlation potential. However,
we have not yet succeeded in achieving split-4f levels consistent with the photoemission spectrum.
Alternatively, we have employed the atomic structure with space group I23 and Pearson symbol
(cI168), as proposed by Palenzona (1971) [48]. The FLAPW-Fourier analysis was performed within the
GGA-PBE (Generalized Gradient Approximation-Perdew, Burke and Ernzerhof) approximation for
the exchange-correlation potential under the assumption that Cd6Yb (cI168) is non-magnetic.
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Figure 45. (a) Cd- and (b) Ca-pDOSs; (c) Hume-Rothery plot and (d) FLAPW-Fourier spectra at symmetry 
points Γ, M, X of simple cubic Brillouin zone for Cd6Ca (cP168) [11]. A blue curve in (d) indicates the 
total-DOS. 

Figure 46a–d show the Cd- and Yb-partial DOSs, the Hume-Rothery plot and FLAPW-Fourier 
spectra for Cd6Yb (cI168). As can be seen from Figure 46a,b, the Cd-4d states are located at about E = 
−9 eV near the bottom of the valence band, while the Yb-4f states form a sharp peak immediately 
below the Fermi level. There is no splitting of 4f-states because of the neglect of spin-orbit interactions. 

Figure 45. (a) Cd- and (b) Ca-pDOSs; (c) Hume-Rothery plot and (d) FLAPW-Fourier spectra at symmetry
points Γ, M, X of simple cubic Brillouin zone for Cd6Ca (cP168) [11,45]. A blue curve in (d) indicates
the total-DOS.

Figure 46a–d show the Cd- and Yb-partial DOSs, the Hume-Rothery plot and FLAPW-Fourier spectra
for Cd6Yb (cI168). As can be seen from Figure 46a,b, the Cd-4d states are located at about E = −9 eV
near the bottom of the valence band, while the Yb-4f states form a sharp peak immediately below the
Fermi level. There is no splitting of 4f-states because of the neglect of spin-orbit interactions. From〈
|C|2max

〉
E

, we obtained
〈
|C|2max

〉
EF

= 0.14. This is marginal to decide whether either the local reading

or NFE method is adopted. As can be seen from (c), a few data points immediately below the Fermi
level in the Hume-Rothery plot sharply jump up and down relative to the otherwise free-electron-like
straight line behavior. This is certainly caused by the presence of delta-function-like 4f-states. But
we learned that its effects on the Hume-Rothery plot are restricted within a very narrow energy range,
where the sharp 4f-states exist. Indeed, the NFE (L = 1) curve was found to pass through the data
points without being affected by the 4f-states. The resulting (2kF)

2 and e/a turn out to be 47.5± 1.0 and
2.04, respectively, as listed in (c). The latter is well consistent with the fact that (e/a)Cd = 2.0 and (e/a)Yb
= 2.0. We consider the present analysis to be fairly reasonable, even though the spin-orbit interactions
are neglected. This is because the 4f-doublet structures would be still sharp enough not to affect the
e/a determination.

We can safely deduce |G|2c = 46 at symmetry points N of the bcc Brillouin zone from the
FLAPW-Fourier spectra in (d), which is in a good agreement with (2kF)

2 = 47.5 mentioned above.
Here again the multi-zone effects are substantial. Therefore, an origin of the pseudogap can be well
interpreted in terms of the interference phenomenon. We conclude that both Cd6Ca (cP168) and Cd6Yb
(cI168) obey the Hume-Rothery electron concentration rule with e/a = 2 and |G|2c = 46.
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As the final example belonging to the Tsai-type approximants, we discuss the data obtained for 
Zn6Sc (mC336). Ishimasa et al. [49] revealed that the 1/1-1/1-1/1 approximant Zn6Sc (cP168) 
transforms into an ordered phase at low temperatures and crystallizes into monoclinic structure or 
distorted orthorhombic with space group C2 / c  and the unit cell twice as large as that of the high 
temperature phase. We performed the FLAPW-Fourier analysis by using the atomic structure of the 
low temperature phase of the 1/1-1/1-1/1 approximant Zn6Sc [50]. Its Zn- and Sc-partial DOSs are 
presented in Figure 47a,b, respectively. A deep pseudogap at the Fermi level is found to originate 
from Sc-3d and Zn-4sp hybridization effects. The Zn-3d states are located near the bottom of the 
valence band, whereas the Sc-3d band is centered at about E = +1.5 eV. 

Figure 46. (a) Cd- and (b) Yb-pDOSs; (c) Hume-Rothery plot and (d) FLAPW-Fourier spectra at symmetry
points Γ, N, H of the bcc Brillouin zone for Cd6Yb (cI168) [11]. A blue curve in (d) indicates
the total-DOS.

As the final example belonging to the Tsai-type approximants, we discuss the data obtained
for Zn6Sc (mC336). Ishimasa et al. [49] revealed that the 1/1-1/1-1/1 approximant Zn6Sc (cP168)
transforms into an ordered phase at low temperatures and crystallizes into monoclinic structure or
distorted orthorhombic with space group C2/c and the unit cell twice as large as that of the high
temperature phase. We performed the FLAPW-Fourier analysis by using the atomic structure of the
low temperature phase of the 1/1-1/1-1/1 approximant Zn6Sc [50]. Its Zn- and Sc-partial DOSs are
presented in Figure 47a,b, respectively. A deep pseudogap at the Fermi level is found to originate from
Sc-3d and Zn-4sp hybridization effects. The Zn-3d states are located near the bottom of the valence
band, whereas the Sc-3d band is centered at about E = +1.5 eV.Crystals 2017, 7, 9  58 of 117 
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Figure 47. (a) Zn- and (b) Sc-pDOSs for Zn6Sc (mC336) [11,50].

The FLAPW-Fourier spectra,
〈
|C|2max

〉
E

and the Hume-Rothery plot for Zn6Sc (mC336) are shown
in Figure 48a–c, respectively. The FF-spectra were constructed at symmetry points Γ, A and Z of the
Brillouin zone of the monoclinic lattice. The value of |G|2c = 72.74 was extracted at symmetry points Z.
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The magnitude of the Fourier coefficient is significantly reduced, since the number of atoms per unit
cell is increased to 336. This is the reason why Fourier coefficients appear like dots in the spectrum,
though they are shown in arbitrary units. The Sc-3d-states-mediated splitting takes place above the
Fermi level, as highlighted with yellow color. Though

〈
|C|2max

〉
EF

= 0.073 is much lower than the

threshold of 0.2, we see that density of green dots in (c) are high and well concentrated around the
Hume-Rothery data points (black dots) below the Fermi level. We chose the local reading method and
obtained (2kF)

2 = 74.7 ± 2.2 and e/a = 2.01. The latter is slightly lower than the nominal 2.14 obtained
from the composition average of (e/a)Zn = 2.0 and (e/a)Sc = 3.0.
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Figure 48. (a) FLAPW-Fourier spectra at symmetry points Γ, A, Z of the Brillouin zone of monoclinic

lattice; (b)
〈
|C|2max

〉
E

and (c) Hume-Rothery plot for Zn6Sc (mC336) [11,50]. Formation of bonding and
anti-bonding states due to Sc-3d-states-mediated splitting in (a) is highlighted by yellow color. A blue
curve in (a) indicates the total-DOS.

Relevant numerical data for Tsai-type 1/1-1/1-1/1 approximants are summarized in Table 6.

Table 6. Hume-Rothery electron concentration rule for Tsai-type 1/1-1/1-1/1 approximants.

Subgroup Approximants Space
Group N |G|2

c
× (2π/a)2

a
Å

2d
Å

(2kF)2

× (2π/a)2 e/a e/uc

1/1 1

Zn6Sc C2/c 336 80

a = 19.47
b = 13.79
c = 19.55

β = 89.931o

79.0 ± 0.2 2.18 732

Cd6Ca Pm-3 168 46 15.702 4.63 47.1 ± 1.0 2.01 338

Cd6Yb Im-3 168 46 15.638 4.61 47.5 ± 1.0 2.04 343

4.7. Samson Compound Al3Mg2 (cF1178) and Al12Mg17 (cI58)

According to the phase diagram [51], there are two structurally complex compounds Al3Mg2

(cF1178) and Al12Mg17 (cI58) in the Ag-Mg alloy system. The former is often referred to as the
Samson compound, since Samson determined the atomic structure of Al3Mg2 (cF1178) for the first
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time in 1965 [52]. In this Section, we study the Hume-Rothery-type stabilization mechanism of these
two compounds.

The atomic structure of Al3Mg2 was re-investigated in more detail in 2007 [53]. The structure of
Al3Mg2 annealed at 400 ◦C was identified as fcc phase with space group Fd3m, being well consistent
with Samson [52]. This has been called the β-phase (cF1178). They found that it lowers crystal
symmetry and transforms into a new phase with space group R3m by annealing at 170 ◦C. This has
been referred to as β′-phase (hR293).

According to the structure analysis for the β-phase [53], there are 11 sites among 23 independent
sites, whose fractional occupancies are less than unity. These defective sites are not caused by chemical
mixture of Al/Mg but by the coexistence of vacancy with either Al or Mg. We need to eliminate
such chemical disorder to perform WIEN2k. For the sake of simplicity, the sites, whose fractional
occupancy is higher than 0.5, is rounded off to unity or 100% occupancy of the coexisting metal atom
and otherwise neglected. As a result, its composition is shifted to Al94Mg51 (64.8 at.%Al) and the
number of atoms per unit cell is reduced to 1160. The new composition becomes slightly richer in Al
than the stoichiometric Al3Mg2 (60 at.%Al).

All sites labeled as M in their Table 4.7 for the β′-phase are occupied by a mixture of Al and Mg
without vacancies [53]. All these disordered sites are fully replaced by Mg. This operation resulted in
the new composition Al172Mg121 (58.70 at.%Al) with 293 atoms per unit cell. It is obviously slightly
richer in Mg than Al3Mg2 (60 at.%Al).

The total DOS and Al-partial DOSs for β- and β′-phases are shown in Figure 49a,b, respectively.
The total DOS is quite spiky because of the frequent foldings of the Brillouin zone planes for compounds
containing a large number of atoms in the unit cell. Nevertheless, the free-electron-like parabolic band
is observed as an overall feature. A shallow pseudogap is found at the Fermi level in both phases,
though it is more clearly visible for the β-phase. Its presence is prominent in the Al-3p partial DOS.
It may be noted that the d-partial DOS is small but monotonically increases with increasing energy
across the Fermi level. The situation in the Mg-partial DOS is similar.Crystals 2017, 7, 9  60 of 117 
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Figure 49. Total-DOS and Al-pDOSs for (a) β- and (b) β′-phase Al3Mg2 compounds [11].

The FLAPW-Fourier spectra,
〈
|C|2max

〉
E

and Hume-Rothery plots for β- and β′-phases are displayed
in Figure 50a–c, respectively. First of all, the unit cell size is so large, in particular, in the β-phase that so
many Fourier coefficients appear over a wide range of |G|2s in (a). Indeed, the Fourier coefficients in
the β-phase remain finite at the Fermi level over plane waves specified by 195 ≤ |G|2 ≤ 225. This has
been referred to as multi-zone effects unique to compounds with a giant unit cell (See Note 11). Hence,
the discussion by taking the center of gravity energy is essential. As is clear from (a), the center of
gravity energies in both phases fall on the respective straight lines, allowing us to determine two
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critical reciprocal lattice vectors: |G|2c = 204 and 80.96 for the two phases. A large difference in |G|2c
obviously reflects a significant difference in the unit cell size between the two phases.
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and (c) Hume-Rothery plots for the

β- and for β′-phase Al3Mg2 compounds, respectively [11]. Full- and dotted- blue curves in (a) indicate
the total DOSs for the respective phases.

There is, however, no difference in the behavior of
〈
|C|2max

〉
E

, as shown in (b). We have obtained〈
|C|2max

〉
EF

= 0.13 for the two phases. In the Hume-Rothery plots shown in Figure 50c, the data points

are found to fall on straight lines over a wide energy range from the bottom of the valence band up
to +15 eV. This allows us to employ the local reading method, though

〈
|C|2max

〉
EF

is slightly lower

than the threshold value of 0.2. The resulting (2kF)
2 values are sharply different between the two

phases by reflecting the difference in the unit cell sizes: (2kF)
2 = 206 ± 1 and 80.0 ± 0.8 for the β- and

β′-phases, respectively. From the FLAPW-Fourier analysis above, we could confirm the validity of the
interference condition (2kF)

2 = |G|2c in both phases. The value of e/a turns out to be 2.6 ± 0.1 for the
both phases. This is in good accord with the nominal e/a = 2.65 obtained from the composition average
of (e/a)Al = 3.0 and (e/a)Mg = 2.0.

The compound Al12Mg17 (cI58) has the same atomic structure as that of α-Mn (cI58).
Its FLAPW-Fourier analysis has been reported in 2010 [54]. The Al- and Mg-partial DOSs along with
the total DOS are shown in Figure 51a,b, respectively. The total DOS poses a quite free-electron-like
parabolic behavior except for the opening of an energy gap at about E = −7.5 eV. A pseudogap exists
at the Fermi level but is narrow and rather shallow. Its presence is clearly reflected in Al-3p and Mg-3p
partial DOSs.
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Figure 51. (a) Al- and (b) Mg-pDOSs along with the total-DOS for Al12Mg17 (cI58) [11,54].

Figure 52a–c show the FLAPW-Fourier spectra,
〈
|C|2max

〉
E

and the Hume-Rothery plot for Al12Mg17

(cI58), respectively. As can be seen from (a), |G|2c = 26 is obtained. Electrons at the Fermi level can be

regarded as being well itinerant, as judged from
〈
|C|2max

〉
EF

= 0.39 in (b). To avoid a small anomaly

at the Fermi level in (c), we have employed the NFE method and deduced (2kF)
2 = 26.2 ± 0.2 and

e/a = 2.42. The former agrees well with |G|2c = 26, while the latter with the nominal e/a = 2.41 obtained
from the composition average of (e/a)Al = 3.0 and (e/a)Mg = 2.0.

Crystals 2017, 7, 9  62 of 117 

 

 
Figure 52. (a) FLAPW-Fourier spectra at symmetry points Γ, N, H of the bcc Brillouin zone along with 
total-DOS; (b) C max

2

E
 and (c) Hume-Rothery plot for Al12Mg17 (cI58). 

Since both Al12Mg17 (cI58) and α-Mn (cI58) constitute a common Brillouin zone network in the 
reciprocal space, we consider a comparison of the FLAPW-Fourier spectra between them to be 

meaningful. As shown in Figure 16c, the center of gravity energy passes the Fermi level at G
c
2  = 16 

in the FLAPW-Fourier spectra for the α-Mn (cI58). This is much smaller than G
c
2  = 26 obtained for the 

present Al12Mg17 (cI58). Since they are isostructural to each other, we can say that they belong to a 

different subgroup upon discussing the Hume-Rothery electron concentration rule: the higher G
c
2 , 

the higher e/a is. Indeed, we obtained e/a = 2.42 with G
c
2  = 26 for Al12Mg17 (cI58), whereas e/a = 1.05 

with G
c
2  = 16 for α-Mn (cI58). 

The composition dependence of e/a derived from the FLAPW-Fourier analysis for two existing 
compounds in the Al-Mg alloy system is shown in Figure 53. One can see that the data points 
including pure Al and Mg fall on a straight line, being taken as the confirmation of the validity of the 
linear interpolation rule. 

 
Figure 53. Composition dependence of e/a for compounds in Al-Mg alloy system. 

Figure 52. (a) FLAPW-Fourier spectra at symmetry points Γ, N, H of the bcc Brillouin zone along with

total-DOS; (b)
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E

and (c) Hume-Rothery plot for Al12Mg17 (cI58) [11,54].

Since both Al12Mg17 (cI58) and α-Mn (cI58) constitute a common Brillouin zone network in
the reciprocal space, we consider a comparison of the FLAPW-Fourier spectra between them to be
meaningful. As shown in Figure 16c, the center of gravity energy passes the Fermi level at |G|2c = 16 in
the FLAPW-Fourier spectra for the α-Mn (cI58). This is much smaller than |G|2c = 26 obtained for the
present Al12Mg17 (cI58). Since they are isostructural to each other, we can say that they belong to a
different subgroup upon discussing the Hume-Rothery electron concentration rule: the higher |G|2c ,
the higher e/a is. Indeed, we obtained e/a = 2.42 with |G|2c = 26 for Al12Mg17 (cI58), whereas e/a = 1.05
with |G|2c = 16 for α-Mn (cI58).
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The composition dependence of e/a derived from the FLAPW-Fourier analysis for two existing
compounds in the Al-Mg alloy system is shown in Figure 53. One can see that the data points
including pure Al and Mg fall on a straight line, being taken as the confirmation of the validity of the
linear interpolation rule.
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4.8. e/a Determination for TM-Al Binary Compounds

The FLAPW-Fourier analysis had been carried out not only for structurally complex compounds in
Al-, Zn- and Cd-based alloy systems discussed in the present article, but also for many TM-Al binary
compounds [11,15–17,41]. Without going into details in individual TM-Al compounds, we simply
discuss the Al concentration dependence of e/a for TM-Al binary compounds so far studied. As
shown in Figure 54, values of e/a can be well fitted to a line connecting (e/a)Al = 3.0 and (e/a)TM.
The reason why the linear interpolation rule holds, is because (e/a)TM for 3d-TM elements from Ti to Cu
are distributed around unity: the lowest one of 0.90 for V and the highest one of 1.16 for Ni (see Table 1).
This means that the value of e/a for compounds is the least affected by the alloying environment effects
such as a crystal structure, unit cell size and an atomic species of the partner element.
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4.9. Interference Condition for Al-, Zn- and Cd-Compounds

The square of the Fermi diameter, (2kF)
2, in Equation (1), i.e., the interference condition may be

replaced by the number of electrons per unit cell, e/uc, which is obviously given by e/uc = e/a · N,
where N is the number of atoms per unit cell, and is linked with (2kF)

2 through Equation (2) without
involving any other parameters:

e/uc = (e/a) · N =
π
{
(2kF)

2
}3/2

3
. (19)

Therefore, the following expression for the interference condition may be alternatively used:

e/uc =
π
{
|G|2c

}3/2

3
(20)
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Figure 55. e/uc versus |G|2c diagram on a log-log scale for pseudogap-bearing Al-, Zn- and
Cd-based compounds [11]. The NFE line (black) with a slope of 3/2 can be well fitted to all the
compounds, regardless of the chemical bond-types involved. The critical reciprocal lattice vector |G|2c
is expressed in units of

{
2π/Ω1/3

uc

}2
, where Ω1/3

uc represents the effective lattice constant for any
crystals. The interference condition given by Equation (20) has been referred to as the “3/2-power law”.
No correlation is found between |G|2c and e/a, which is plotted using the ordinate in the right-hand side.
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The value of e/uc is plotted in Figure 55 as a function of the critical reciprocal lattice vector
|G|2c on log-log scales for a large number of pseudo-gap bearing Al-, Zn- and Cd-based compounds
studied [11,13,15–17]. It is clear that all the data points, regardless of the degree of covalency and
ionicity involved, fall on a line with a slope of 3/2 [11,13,15–17]. This has been referred to as the
“3/2-power law”. This demonstrates that the NFE model can be successfully applied and the origin of
a pseudo- and true-gap at the Fermi level can be universally discussed in terms of the interference
phenomenon. It is also interesting to note that e/a scaled on the right-hand ordinate exhibits no
systematic behavior against |G|2c , indicating that not e/a but e/uc serves as a key role in describing the
interference phenomenon.

We have emphasized the need of classifying pseudogap-bearing isostructural compounds into
subgroups with respect to |G|2c . Figure 56 is constructed to show how the data for families of
gamma-brasses (cI52, cP52) and 1/1-1/1-1/1 approximants (cI160), all of which are classified into
different subgroups, are distributed and obey the 3/2-power law on the e/uc versus |G|2c diagram.
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5. Hume-Rothery Electron Concentration Rule in Zintl Compounds

There is a family of compounds consisting of an alkali or alkaline-earth metal as an electropositive
element and elements in Groups 13 and 14 as an electronegative one. They have been called
“Zintl phases” named after Edward Zintl who pioneered their exploration and laid out underlying
principles for their structures in the 1930s [55,56]. Zintl compounds have been recognized as being
typical of polar compounds with a high ionicity. For example, NaTl has been assumed to have complete
electron transfer from the electropositive sodium to the electronegative thallium in the same manner as
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ionic salts such as NaC1. Thus, Tl− ion in Na+Tl− behaves like an element of the Group 14, and forms
a diamond network stuffed by the Na+ cations. Such phases have been regarded as the link between
the metallic, alloy-type intermetallics on the one hand and the typical valence compounds on the other.

As will be discussed below, they are characterized by a high metallicity coupled with a relatively
high ionicity on the van Arkel-Ketelaar triangle map.

5.1. I-III-Type Zintl Compounds (cF32)

The equiatomic I-III compounds consisting of alkali metals like Li and Na and Group 13 elements
like Al, Ga, In and Tl are known to be typical of Zintl compounds and to crystallize into the fcc
phase with space group Fd3m and Pearson symbol (cF32) [29] (See Note 12). As shown in Figure 57,
they possess a relatively high ionicity of 25%–40% coupled with metallicity ranging over 40%–60% on
the van Arkel-Ketelaar triangle.
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Allen’s electronegativity data (Table 2) into Equations (17) and (18) [11].

Figure 58a,b show Li- and Al-partial DOSs for the Zintl compound LiAl (cF32), respectively [3,5].
A deep pseudogap is found at the Fermi level in both Li-2sp and Al-3sp partial DOSs. The Al-3d states
grow even below the Fermi level. The FLAPW-Fourier spectra,

〈
|C|2max

〉
E

and Hume-Rothery plot for

LiAl (cF32) are shown in Figure 59a–c, respectively. The value of |G|2c = 16 is immediately deduced

from Figure 59a. Electrons at the Fermi level can be well regarded to be itinerant from
〈
|C|2max

〉
EF

= 0.56, as shown in Figure 59b. This indicates that metallic bonding plays a dominant role rather
than ionic bonding. We employed the NFE method to get rid of the effect of small anomalies at the
Fermi level in Figure 59c and obtained (2kF)

2 = 16.29 ± 0.20 and e/a = 2.15 for LiAl (cF32). This is
consistent with nominal e/a = 2.0 obtained from composition average of (e/a)Li = 1.0 and (e/a)Al = 3.0.
A pseudogap at the Fermi level can be well interpreted as arising from the interference of electrons at
the Fermi level with set of {400} lattice planes associated with |G|2c = 16.
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for symbols in (c).

Figure 60a,b show the Na- and Tl-partial DOSs for NaTl (cF32), respectively [11,41]. The spiky
structure in the DOS is apparently stronger than that in LiAl discussed above, indicating an increase
in ionicity in NaTl. However, a pseudogap at the Fermi level is less prominent than that in LiAl.
The FLAPW-Fourier spectra,

〈
|C|2max

〉
E

and the Hume-Rothery plot for NaTl (cF32) are shown in

Figure 61a–c, respectively [11,41]. The value of |G|2c = 16 is again confirmed from Figure 61a. Electrons
at the Fermi level are judged from Figure 61b to be well itinerant. Thus, the local reading method was
adopted and provided (2kF)

2 = 16.12 ± 0.20 and e/a = 2.12 for NaTl (cF24).
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It is worth mentioning at this stage, that the degree of ionicity may be roughly estimated from
the intensity of sp-pDOS of the electropositive constituent element. The scale of the ordinate in both
Figures 58 and 60 is intentionally set to be the same to allow a direct comparison of the pDOS intensities
between LiAl and NaTl. Now one can see that, though intensities of Al-3sp pDOS and Tl-6sp pDOS
are comparable, the Na-3s and Na-3p pDOS in NaTl (cF32) are significantly reduced relative to Li-2s
and Li-2p pDOSs in LiAl (cF32). Though the partial DOS is evaluated only inside the atomic sphere,
we may take it as evidence that a charge transfer from Na to Tl in NaTl is likely much more significant
than that from Li to Al in LiAl. We consider this feature to be consistent with the relative position of
these two compounds on the van Arkel-Ketelaar triangle map.
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The I-III-type Zintl compounds LiGa, LiIn and NaIn were similarly studied. The suppression in
the sp-pDOS of electropositive elements Li and Na relative to those of electronegative elements Ga
and In in LiGa, LiIn and NaIn is found to be intermediate between the two extreme cases of NaTl and
LiAl. All relevant data for the I-III-type Zintl compounds are summarized in Table 7 [3,5]. They are
found to obey the Hume-Rothery electron concentration rule with e/a = 2.09 ± 0.06 and to belong to
the subgroup 1 with |G|2c = 16 [11,41].

Table 7. Electronic properties for Zintl compounds (cF32).

Type Compounds Lattice Constant Å N |G|2
c

× (2π/a)2
(2kF)2

× (2π/a)2 e/a e/uc

I-III
cF32
Fd-3m

LiAl 6.3757 32 16 16.29 ± 0.20

2.09 ± 0.06 67

LiGa 6.150 32 16 15.97 ± 0.20

LiIn 6.7920 32 16 15.75 ± 0.20

NaIn 7.332 32 16 15.99 ± 0.20

NaTl 7.473 32 16 16.12 ± 0.20

I-II
cF32
Fd-3m

LiZn 6.209 32 12 13.00 ± 0.20
1.53 ± 0.02 49

LiCd 6.702 32 12 13.03 ± 0.20

5.2. I-II-Type Zintl Compounds (cF32)

The Li- and Zn-partial DOSs in LiZn (cF32) are shown in Figure 62a,b, respectively [11,41].
They are less spiky than those in the I-III type Zintl compounds discussed in Section 5.1.
The suppression in the sp-pDOSs in the electropositive element Li relative to that in the electronegative
element Zn is found to be intermediate between LiAl and NaTl discussed in the preceding Section.

Crystals 2017, 7, 9  69 of 117 

 

Table 7. Electronic properties for Zintl compounds (cF32). 

Type Compounds Lattice Constant
Å 

N |G|2c × (2π/a)2 (2kF)2 × (2π/a)2 e/a e/uc 

I-III 
cF32 
Fd-3m 

LiAl 6.3757 32 16 16.29 ± 0.20 

2.09 ± 0.06 67 
LiGa 6.150 32 16 15.97 ± 0.20 
LiIn 6.7920 32 16 15.75 ± 0.20 
NaIn 7.332 32 16 15.99 ± 0.20 
NaTl 7.473 32 16 16.12 ± 0.20 

I-II 
cF32 
Fd-3m 

LiZn 6.209 32 12 13.00 ± 0.20 
1.53 ± 0.02 49 

LiCd 6.702 32 12 13.03 ± 0.20 

5.2. I-II-Type Zintl Compounds (cF32) 

The Li- and Zn-partial DOSs in LiZn (cF32) are shown in Figure 62a,b, respectively [11,41]. They 
are less spiky than those in the I-III type Zintl compounds discussed in Section 5.1. The suppression 
in the sp-pDOSs in the electropositive element Li relative to that in the electronegative element Zn is 
found to be intermediate between LiAl and NaTl discussed in the preceding Section. 

 
Figure 62. (a) Li- and (b) Zn-pDOSs for LiZn (cF32) [11,41]. 

The FLAPW-Fourier spectra, C max
2

E
 and Hume-Rothery plot for LiZn (cF32) are shown in 

Figure 63a–c, respectively [11,41]. As is derived from Figure 63a, the value of G
c
2  = 12 is smaller than 

G
c
2  = 16 for the I-III-type Zintl compounds. The value of C max

2

EF
 = 0.52 is high enough to judge 

electrons at the Fermi level to be well itinerant, validating the use of the local reading method. A huge 
anomaly due to the Zn-3d band in Figure 63c does not affect the e/a determination at the Fermi level 

by means of the local reading method. We have obtained 2kF( )2= 13.00 ± 0.20 and e/a = 1.53 for LiZn 
(cF32). The latter is in a good agreement with the nominal e/a = 1.50 given by the composition average 
of mono- and di-valent constituent atoms Li and Zn. 
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The FLAPW-Fourier spectra,
〈
|C|2max

〉
E

and Hume-Rothery plot for LiZn (cF32) are shown in

Figure 63a–c, respectively [11,41]. As is derived from Figure 63a, the value of |G|2c = 12 is smaller than

|G|2c = 16 for the I-III-type Zintl compounds. The value of
〈
|C|2max

〉
EF

= 0.52 is high enough to judge

electrons at the Fermi level to be well itinerant, validating the use of the local reading method. A huge
anomaly due to the Zn-3d band in Figure 63c does not affect the e/a determination at the Fermi level
by means of the local reading method. We have obtained (2kF)

2 = 13.00 ± 0.20 and e/a = 1.53 for LiZn
(cF32). The latter is in a good agreement with the nominal e/a = 1.50 given by the composition average
of mono- and di-valent constituent atoms Li and Zn.
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It is interesting to note that the Fermi level for LiZn (cF32) shown in Figure 62a,b is positioned just
prior to and on the declining slope of the pseudogap in Li-2p and Zn-4p states, respectively, whereas it
falls almost in its middle in the Li-2s and Zn-4s states. The Li- and Cd-partial DOSs for LiCd (cF32) are
shown in Figure 64a,b, respectively [11,41]. The Fermi level is again found to sit at the peak of Li-2p
states (green in Figure 64a). However, we see that both Li-2s and Cd-5s partial DOSs (yellow color in
Figure 64) form a pseudogap at the Fermi level. From the arguments above, both LiZn (cF32) and LiCd
(cF32) can be regarded as belonging to a pseudogap system. The value of e/a = 1.5 in the I-II-type Zintl
compounds is so low that the Fermi level cannot surpass the Li-2p pDOS peak in both compounds.

The FLAPW-Fourier spectra,
〈
|C|2max

〉
E

and the Hume-Rothery plot for LiCd (cF32) are depicted

in Figure 65a–c, respectively [11,41]. The value of |G|2c = 12 is deduced from Figure 65a. Electrons at
the Fermi level are again regarded to be well itinerant from Figure 65b. As shown in Figure 65c,
we obtained (2kF)

2 = 13.03 ± 0.20 and e/a = 1.54 for LiCd (cF32) by relying on the local reading method.
The latter is in a good agreement with the nominal one equal to 1.5.

LiZn and LiCd are the only I-II-type equiatomic compounds listed in [29,51]. The relevant data
for I-II-type Zintl compounds are also incorporated in Table 7.
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5.3. Hume-Rothery Electron Concentration Rule

As is clear from the discussions above, both I-III- and I-II-type Zintl compounds are isostructural
to each other. Thus, they can be classified with respect to |G|2c . We conclude that the I-III-type Zintl
compounds obey the Hume-Rothery electron concentration rule with e/a = 2.09 and belong to the
subgroup 1 with |G|2c = 16, while the I-II-type Zintl compounds with e/a = 1.5 and belong to the
subgroup 2 with |G|2c = 12. We found the ionicity over the range from 25% to 40% not to affect the
FLAPW-Fourier analysis at all, though its effect is apparently reflected in the spiky DOS. As a matter of
fact, the FLAPW-Fourier analysis can be made without difficulty, since the metallicity of 40% to 60%
in the absence of any TM elements yields the free-electron-like parabolic DOS with the possession
of highly itinerant electrons at the Fermi level. It must be also stressed that, among I-III-type Zintl
compounds, the suppression of Na-sp partial DOSs below the Fermi level in NaTl (cF32) is the most
significant. This may be taken as a signal of the existence of a sizable charge transfer from Na to Tl.
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6. Hume-Rothery Electron Concentration Rule in Phosphorus Compounds

We learned from Section 5 that the ionicity in the range over 20% to 30% in Zintl compounds
causes no serious difficulties in extracting e/a and the interference condition as well, allowing us to
discuss the Hume-Rothery-type stabilization mechanism in these compounds. In the present Section,
we focus on a large number of binary phosphorus compounds, where phosphorus is chosen as a highly
electronegative element and alloyed with various elements in the Periodic Table, including all 3d-TM
elements from Sc to Ni. By this selection for the partner element M, we can systematically change the
ionicity given by Equation (18) by crossing the Periodic Table from the most electropositive element
like Na in Group 1 up to the element like Si located immediately on the left side of P in Group 15.

We will show that equiatomic compounds MP are distributed over a wide range of ionicities
from 10% to 65% coupled with a high covalency of 30% to 65% and a low metallicity of 5% to 30%.
By applying the FLAPW-Fourier theory for a series of binary M-P compounds, we will show in Section 6
to what extent the e/a determination and a test of the interference condition can be reliably made,
as the partner element M departs away from the host element P in the Periodic Table so that ionicity
and/or covalency are systematically increased.

6.1. Equiatomic Phosphorus Compounds on the Van Arkel-Ketelaar Triangle Map

The van Arkel-Ketelaar triangle is constructed by inserting the Allen electronegativity data
(see Table 2) into Equations (17) and (18) for a series of equiatomic compounds MP. The results are
shown in Figure 66 [12]. Note that some equiatomic compounds like MgP, CaP and ZnP do not exist
as a stable phase in the phase diagram [51] but the covalency and ionicity for these hypothetical
compounds can be equally calculated and plotted in Figure 66. They will be used as a guide to roughly
estimate the position of the existing non-equiatomic compounds in the van Arkel-Ketelaar triangle.
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(Table 2) into Equations (17) and (18) for equiatomic MP compounds (solid circles) and seven elements
(open circles) in period 3 of the Periodic Table.

Ionicity is distributed over the range 53%–64%, when alkali metals (A = Li, Na, K, Rb and Cs)
are chosen as a partner element to phosphorus in compounds AP. The ionicity is extremely high,
since the alkali metal A in Group 1 is located farthest from P. Among them, the maximum value of
64% is reached in CsP. Next to A-P compounds, CaP, a combination of a divalent element with P,
is positioned at about 50% in ionicity. Among equiatomic compounds with the 3d-transition metal
(TM) element as a partner, ScP possesses the largest ionicity of 43%. The value gradually decreases
with increasing the atomic number up to NiP, when the TM element is selected from the 3d-series.
Ionicity in GaP and AlP is at about 25%. The GeP compound obtained by choosing the partner element
next to P is characterized by a relatively low ionicity of 10%, which is the lowest among the phosphorus
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compounds studied. As mentioned above, the metallicity and covalency are distributed in the range of
5%–30% and 30%–65%, respectively, in all M-P binary compounds studied in the present work.

6.2. e/a Determination and Interference Condition for the Host Element P in Group 15

The P-3s, P-3p, P-3d and P-4f partial DOSs for the parent element P (oC8) were already shown in
Figure 12b [12]. The valence band is composed of several sharp peaks with a deep pseudogap across
the Fermi level, though it still forms a continuous band with its width of 16 eV. More important is
that P-3s and P-3p partial DOSs are almost separated from each other in the valence band. The DOS
in P (oC8) is, therefore, understood as being positioned in the middle between Na (cI2) with the
free-electron-like valence band and highly mixed s- and p-states (see Figure 9b) on one hand and
insulating solid Cl (oC8) with δ-function-like discrete levels of 3s- and 3p-states (see Figure 14b) on the
other hand. In other words, the electronic structure of P (oC8) is characterized by directional covalent
bonds, while still maintaining a metallic character having a continuous wide valence band.

The FLAPW-separation energy
∣∣∣EA

s − EA
p

∣∣∣ ≡ EA
sp for the element A was defined in Sections 3.1

and 3.2 as an energy difference between the center of gravity energies of s- and p-partial DOSs below
the Fermi level [12]. The value of EP

sp = 5.74 eV for P (oC8) lies in the middle of the two extremes:
ENa

sp = 0.48 eV for Na and ECl
sp = 11.35 eV for Cl, thereby resulting in its location at 70% covalency on

the MC line in Figure 66 [12].
As shown in Figure 22a,

〈
|C|2max

〉
EF

= 0.49 for P (oC8) is high enough to justify the use of the

local reading method in determining e/a. However, the Hume-Rothery data points (black dot curve) in
Figure 22b exhibit small up- and down anomalies due obviously to spiky DOS peaks in Figure 12b.
Therefore, we constructed the NFE curve (L = 1), the details of which were described in Section 2.5.
The resulting NFE curve is almost linear over the entire energy range and small anomalies in the
Hume-Rothery plot are well smoothed out. From the intersection of the NFE (L = 1) curve with the
Fermi level, we obtained (2kF)

2 = 11.30 ± 0.33 and e/a = 4.97 for P (oC8) [12]. The latter agrees well
with its nominal valency of five. Moreover, we wish to emphasize that the value of e/a can be still
well determined, though it is far from the metallic corner and positioned at 70% covalency on the
side MC in Figure 66. Similarly, the e/a values of As, Sb and Bi in the Group 15 of the Periodic Table
were determined to be close to 5, as listed in Table 8, into which relevant electronic parameters are
also incorporated.

Table 8. Electronic parameters of Group 15 elements of the Periodic Table.

System Space Group Pearson Symbol |G|2
c

× (2π/a)2
(2kF)2

× (2π/a)2 e/a e/uc

P Cmca oC8 10.56 11.30 ± 0.33 4.97 40

As R-3m hR2 4.74 4.45 ± 0.22 4.92 10

Sb R-3m hR2 4.54 4.49 ± 0.22 4.99 10

Bi R-3m hR2 4.53 4.46 ± 0.22 4.94 10

The FLAPW-Fourier spectra for P (oC8) were displayed in Figure 12c [12]. As was mentioned in
Section 2.4.4, the value of |G|2c was deduced to be 10.56, which agrees with (2kF)

2 = 11.30± 0.33 within
the accuracy of a few %. This assures us to claim that the observed deep pseudogap at the Fermi level
in P (oC8) can be interpreted in terms of the interference condition given by Equation (1).

6.3. e/a Determination and Interference Condition of M-P Binary Compounds

6.3.1. SiP and GeP Compounds

According to the phase diagram of the M-P (M = Al, Ga, Si and Ge) alloy systems [51], a stable
phase is formed only at equiatomic composition. Both AlP and GaP crystallize into a cubic phase
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with space group F43m and Pearson symbol cF8, while GeP into a tetragonal phase with space group
I4mm and Pearson symbol tI4 and SiP into an orthorhombic phase with space group Cmc21 and
Pearson symbol oC48. As can be seen from Figure 66, SiP and GeP are characterized by C = 65%,
I = 10% and M = 25%. Hence, both SiP and GeP are regarded as compounds with low ionicity but with
high covalency.

Figure 67a–d show the Si- and P- and Ge- and P-partial DOSs for SiP (oC48) and GeP (tI4),
respectively. First of all, we see that SiP is an insulator with an energy gap of about 1 eV, while GeP
belongs to a metallic system with a deep pseudogap. The s- and p-states below the Fermi level
are relatively well separated from each other in both compounds. As marked in Figure 67, all the
relevant FLAPW-separation energies Esp are high and distributed over 4.2 to 6.2 eV. This accounts
for the fact that they are highly covalent, as suggested from Equation (17). Instead, ionicity given by
Equation (18) becomes small, since we take a difference between the two large values for the constituent
elements in the respective compounds: 1.94 eV (=6.17 − 4.23) for SiP and 2.07 (=6.24 − 4.17) eV for
GeP. This explains why these two compounds are located in the low ionicity of only 10% but with high
covalency of 65% in Figure 66.
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The energy dependence of
〈
|C|2max

〉
E

and the Hume-Rothery plots for SiP (oC48) and GeP (tI4) are

shown in Figure 68a–d, respectively. The value of
〈
|C|2max

〉
EF

is only 0.20 for SiP (oC48), while it is

increased to 0.62 for GeP (tI4). This distinct features are reflected in the respective Hume-Rothery plots.
The NFE (L = 1) curve needs to be constructed to obtain (2kF)

2 = 35.18 ± 1.10 and e/a = 4.55 for
SiP (oC48). As shown in (d), however, no essential difference emerges in GeP (tI4), depending on
whether either the local reading or NFE method is chosen. We have derived (2kF)

2 = 6.66 ± 0.13 and
e/a = 4.50 from the intersection of the NFE (L = 1) curve with the Fermi level. The values of e/a for
both SiP and GeP agree well with the nominal e/a = 4.5 obtained from the composition average of
(e/a)Si = 4.0, (e/a)Ge = 4.0 and (e/a)P = 5 (see Table 1). We have obtained |G|2c = 34.08 and 6.09 from the
respective FLAPW-Fourier spectra and could confirm the validity of the interference condition in both
cases. From this, we conclude that the true and pseudogap formation at the Fermi level in both SiP
(oC48) and GeP (tI4) compounds can be interpreted in terms of the interference condition, even though
their covalency reaches 65% on the van Arkel-Ketelaar triangle map [12].

Figure 69a,b summarize the P concentration dependence of FLAPW-Fourier-derived e/a values
for both Si-P and Ge-P alloy systems, respectively. The linear interpolation rule holds well in both
alloy systems.
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6.3.2. TM-P (TM = Sc to Ni) Compounds

Only the equiatomic compound ScP (cF8) exists as a stable phase in the Sc-P alloy system.
The Sc- and P-partial DOSs are shown in Figure 70a,b, respectively. A deep pseudogap at the
Fermi level is certainly attributable to the splitting of Sc-3d band into bonding and anti-bonding
sub-bands as a result of the Sc-3d and P-3sp orbital hybridizations. As included in Figure 70,
the FLAPW-separation energy associated with the Sc-s and Sc-p states is 1.15 eV, while that associated
with the P-s and P-p states is 7.05 eV. Its difference of 5.90 eV (=7.05− 1.15) is fairly large, indicating that
the ionicity of this compound is large. An ionicity of ScP can be more conveniently estimated by
inserting Allen’s electronegativities of Sc and P (see Table 2) into Equation (18) and turns out to be
∆χScP

spec =
∣∣∣χSc

spec − χP
spec

∣∣∣ = |1.19− 2.253| = 1.063 [12]. As shown in Figure 66, ScP is characterized by a
high ionicity of 43% and high covalency of 42%. It may be also noted that the Sc-4s and Sc-4p pDOSs
are heavily suppressed in comparison with P-3s and P-3p pDOSs. This can be taken as a signal for
the occurrence of a charge transfer from electropositive Sc to electronegative P in this compound
(see Section 5.1).
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The FLAPW-Fourier spectra,
〈
|C|2max

〉
E

and the Hume-Rothery plot for ScP (cF8) are shown in

Figure 71a–c, respectively. The value of |G|2c = 8.0 is derived from (a). The value of
〈
|C|2max

〉
EF

= 0.37

is high enough to rely on the local reading method. It is also found that mobile electrons satisfying

∑
∣∣∣Cj

ki+Gp

∣∣∣2 ≥ 0.2 (green dots) are abundant at the Fermi level. The local reading method resulted in

(2kF)
2 = 10.02 ± 0.20 and e/a = 4.15 for ScP (cF8), as shown in (c). Thus, we can say that the origin of

the pseudogap at the Fermi level can be discussed in terms of the interference condition even for polar
compounds with ionicity and covalency exceeding 40%.
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for symbols in (c).

The YP (cF8) compound is isostructural to ScP (cF8) discussed above. The Y- and P-partial
DOSs are shown in Figure 72a,b, respectively. They are similar to those in Figure 70a,b for ScP (cF8).
The suppression of Y-5s and Y-5p pDOSs are found to be substantial. The origin of a deep pseudogap
at the Fermi level is again ascribed to the orbital hybridization effects between Y-4d and P-3sp states.
The FLAPW-Fourier spectra,

〈
|C|2max

〉
E

and the Hume-Rothery plot for YP (cF8) are shown in Figure 73a–c,
respectively. Essentially the same results as those for ScP (cF8) are obtained for YP (cF8). Hence, we say
that the Hume-Rothery electron concentration rule with e/a = 4.0 with |G|2c = 8.0 holds for ScP and
YP compounds.



Crystals 2017, 7, 9 76 of 112

Crystals 2017, 7, 9  77 of 117 

 

 
Figure 71. (a) FLAPW-Fourier spectra at symmetry points Γ, L, and X of the fcc Brillouin zone along 

with the total DOS, (b) Cmax
2

E
 and (c) Hume-Rothery plot for ScP (cF8). See captions of Figure 

34d for symbols in (c) [11,12]. 

The FLAPW-Fourier spectra, C max
2

E
 and the Hume-Rothery plot for ScP (cF8) are shown in 

Figure 71a–c, respectively. The value of G
c
2  = 8.0 is derived from (a). The value of C max

2

EF
= 0.37 

is high enough to rely on the local reading method. It is also found that mobile electrons satisfying 

Cki+Gp
j

2
≥0.2 (green dots) are abundant at the Fermi level. The local reading method resulted in 

2kF( )2  = 10.02 ± 0.20 and e/a = 4.15 for ScP (cF8), as shown in (c). Thus, we can say that the origin of 
the pseudogap at the Fermi level can be discussed in terms of the interference condition even for 
polar compounds with ionicity and covalency exceeding 40%. 

 

Figure 72. (a) Y- and (b) P-pDOSs for YP (cF8). Figure 72. (a) Y- and (b) P-pDOSs for YP (cF8).

Crystals 2017, 7, 9  78 of 117 

 

The YP (cF8) compound is isostructural to ScP (cF8) discussed above. The Y- and P-partial DOSs 
are shown in Figure 72a,b, respectively. They are similar to those in Figure 70a,b for ScP (cF8). The 
suppression of Y-5s and Y-5p pDOSs are found to be substantial. The origin of a deep pseudogap at 
the Fermi level is again ascribed to the orbital hybridization effects between Y-4d and P-3sp states. 
The FLAPW-Fourier spectra, C max

2

E
 and the Hume-Rothery plot for YP (cF8) are shown in Figure 

73a–c, respectively. Essentially the same results as those for ScP (cF8) are obtained for YP (cF8). 

Hence, we say that the Hume-Rothery electron concentration rule with e/a = 4.0 with G
c
2  = 8.0 holds 

for ScP and YP compounds. 

 

Figure 73. (a) FLAPW-Fourier spectra at symmetry points Γ, L, and X of the fcc Brillouin zone along 

with the total DOS, (b) Cmax
2

E
 and (c) Hume-Rothery plot for YP (cF8). See captions of Figure 19 

(b) for symbols in (c). 

We have investigated many other intermetallic compounds in TM-P (TM = Ti to Cu) alloy 
systems [11,12]. Rather than presenting all the data for individual compounds, we summarize in 
Figure 74a,b the P concentration dependences of FLAPW-Fourier-derived-e/a values by dividing the TM 
elements into two groups: Sc and Y in Group 3 and remaining 3d-TM elements from Ti to Cu. As shown 
in (a), the value of e/a for ScP (cF8) and YP (cF8) is close to four and falls on the line connecting (e/a)Sc = 3, 
(e/a)Y = 3 and (e/a)P = 5 (see Table 1). When the TM element is chosen from Ti in Group 4 to Cu in Group 
11, the linear interpolation rule also holds well, as shown in (b). Such behavior has already been pointed out 
in Section 4.8 for Al-TM alloy systems, in which a master line can be drawn with end points of (e/a)Al = 3.0 
and (e/a)TM nearly equal to unity (see Figure 54). The linear interpolation rule is confirmed to hold true in 
the TM-P alloy systems covering ionicity up to 43% in ScP. 

Figure 73. (a) FLAPW-Fourier spectra at symmetry points Γ, L, and X of the fcc Brillouin zone along

with the total DOS, (b)
〈
|C|2max

〉
E

and (c) Hume-Rothery plot for YP (cF8). See captions of Figure 19 (b)
for symbols in (c).

We have investigated many other intermetallic compounds in TM-P (TM = Ti to Cu) alloy
systems [11,12]. Rather than presenting all the data for individual compounds, we summarize in
Figure 74a,b the P concentration dependences of FLAPW-Fourier-derived-e/a values by dividing the
TM elements into two groups: Sc and Y in Group 3 and remaining 3d-TM elements from Ti to Cu.
As shown in (a), the value of e/a for ScP (cF8) and YP (cF8) is close to four and falls on the line
connecting (e/a)Sc = 3, (e/a)Y = 3 and (e/a)P = 5 (see Table 1). When the TM element is chosen from Ti in
Group 4 to Cu in Group 11, the linear interpolation rule also holds well, as shown in (b). Such behavior
has already been pointed out in Section 4.8 for Al-TM alloy systems, in which a master line can be
drawn with end points of (e/a)Al = 3.0 and (e/a)TM nearly equal to unity (see Figure 54). The linear
interpolation rule is confirmed to hold true in the TM-P alloy systems covering ionicity up to 43% in ScP.
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6.3.3. Mg-P, Ca-P, Zn-P and Cu-P Compounds

As mentioned earlier, there are no equiatomic compounds in Mg-P, Ca-P, Zn-P and Cu-P alloy
systems. Thus, Allen’s electronegativity data listed in Table 2 are used for these hypothetical equiatomic
compounds to fill their data points in Figure 66. It can be seen that ionicity of CaP is 49% and higher
than that of ScP discussed above. Instead, ionicity of MgP and ZnP is in the range of 30%–40%,
being similar to those of TiP, VP and AlP, while that of CuP is decreased to about 15%.

We show the P-partial DOSs and the Hume-Rothery plot for Mg3P2 (cI80) in Figure 75a,b in
comparison with those for CaP3 (aP8) in Figure 75c,d, respectively. The P-pDOS below the Fermi
level in Mg3P2 is split into two components mainly made up of P-3s and P-3p states. The ionicity in
Mg3P2 is almost 40%, while that in CaP3 reaches almost 50% in Figure 66. By reflecting an increase in
ionicity, the P-3s pDOS for CaP3 (aP8) splits into many peaks below the Fermi level, as shown in (c),
indicating the growth of directional bondings. The characteristic features in the DOS are well reflected
in the Hume-Rothery plot for CaP3 (aP8) in Figure 75d. A fairly smooth NFE curve can be constructed
to suppress anomalies caused by a deep pseudogap at the Fermi level and many spiky DOS peaks.
The resulting e/a value for Mg3P2 (cI80) happens to deviate a bit far from the nominal one but that for
CaP3 (aP8) reasonably agrees with its nominal one. The reason for a large deviation in the former is
likely due to the presence of two wide energy gaps in its valence band.
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An ionicity for ZnP is estimated to be slightly lower than 30%, as can be seen in Figure 66.
There are four non-equiatomic compounds in the Zn-P alloy system: Zn3P2 (tP40), ZnP2 (tP24), ZnP2

(mP24) and ZnP4 (tP20). The compounds Zn3P2 (tP40), ZnP2 (tP24) and ZnP4 (tP20) are identified to
be insulators with an energy gap of 0.5 to 1.3 eV, while ZnP2 (mP24) is metallic with a deep pseudogap
at the Fermi level. The NFE (L = 1) curves were constructed to determine values of (2kF)

2 and e/a for
all Zn-P compounds [11]. As shown in Figure 76a, the P concentration dependence of the resulting e/a
values for Zn-P compounds were found to fall on a linear interpolation line connecting (e/a)Zn = 2 and
(e/a)P = 5 (see Table 1). For comparison, the P concentration dependence of e/a values for Cu-P alloy
system is shown in Figure 76b. More details about the individual compound data for Zn-P and Cu-P
alloy systems are reported elsewhere [11].
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In summary, ionicity is approximately 15% for CuP but increases from 25 through 40 up to 50%
in Zn-P, Mg-P and Ca-P compounds, respectively. The higher the ionicity is, the more significantly
the valence band splits into spiky peaks and, thereby, the more anomalies appear in the Hume-Rothery
curve. Nevertheless, we can say that both (2kF)

2 and e/a values are still consistently determined from
the NFE curve for compounds with ionicities, at least, less than 50%.

6.3.4. A-P (A = Li, Na, K, Rb and Cs) Compounds

Among the alkali metal-phosphorus (A-P) binary alloy systems, an equiatomic compound
apparently exists only in the Na-P and K-P alloy systems [11]. Their data are incorporated into
Figure 66. In addition, the data on hypothetical equiatomic compounds LiP, RbP and CsP are added to
Figure 66 by using the Allen electronegativity data listed in Table 2. We have studied all intermetallic
compounds available from [11] in the A-P (A = Li, Na, K, Rb and Cs) alloy systems: Li3P (hP8), Li3P7

(oP40) and LiP5 (oP24), Na3P (hP8), NaP (oP16) and Na3P11 (oP56), K3P (hP8), KP (oP16), K2P3 (oF40)
and K3P11 (oP56), Rb2P3 (oF40) and Cs2P3 (oF40) and Cs3P7 (tP40). Figure 77a–d show the Li- and
P-partial DOSs,

〈
|C|2max

〉
E

and the Hume-Rothery plot for the Li3P7 (oP40) compound, respectively.
An ionicity of LiP is about 53% and is higher than that of CaP discussed above. As can be seen from
Figure 77b, the P-partial DOSs split into many isolated peaks below the Fermi level, indicating the
growth of further stronger directional bonds as a result of an increase in ionicity. We consider the
substantial suppression in the Li-pDOSs relative to the P-pDOSs to be taken as a signal of significant
charge transfer from Li to P. Note that the ordinate scale in the former is expanded to make it twice as
large as that in the latter. The separation energy in the Li-partial DOSs is only 0.65 eV, while that in
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the P-partial DOSs is 6.16 eV. A large difference between these two center of gravity energies must be
responsible for the possession of a high ionicity.

The value of
〈
|C|2max

〉
EF

for Li3P7 (oP40) is only 0.046, as shown in Figure 77c, and green dots in

(d) are absent across the Fermi level. In addition, the Hume-Rothery data points in (d) are discontinuous
owing to repeated openings of energy gaps below the Fermi level. Thus, the NFE curve has to be
constructed. Surprisingly, the NFE (L = 1) curve in (d) is fairly linear in spite of the frequently disrupted
Hume-Rothery data points below the Fermi level. The e/a value turned out to be 3.55 in a reasonable
agreement with 3.78 obtained from a composition average of (e/a)Li = 1.0 and (e/a)P = 5 (see Table 1).
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and (d) Hume-Rothery plot for Li3P7 (oP40) [11,12].
The corresponding separation energies are also indicated in (a) and (b). See captions of Figure 19 (b) for
symbols in (b) and (d) [11,12].

As another example, we show in Figure 78a,b K-3d, P-3s and P-3p partial DOSs and the
Hume-Rothery plot for the K2P3 (oF40) compound, respectively. Note that an ionicity of KP reaches
60% and is even higher than those of LiP and NaP. The δ-function-like DOS below the Fermi level
is apparently sharper than that of Li3P7 shown in Figure 77a,b. Accordingly, the Hume-Rothery data
points exist only in limited energy ranges and are more widely separated from each other by several
energy gaps in the valence band, making it more difficult to accurately determine the values of (2kF)

2

and e/a. Indeed, the resulting NFE (L = 1) curve becomes wavy. Nevertheless, the value of e/a of 3.56
happens to be in a good agreement with the nominal one of 3.4.
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The ionicity for equiatomic CsP reaches the highest of 65% in Figure 66. The data for Cs2P3 (oF40)
are shown in Figure 78c,d. As shown in (c), the δ-function-like features in partial DOSs are similar to
those in K2P3 (oF40), except for the fact that Cs-4f states emerge above +10 eV. The determination of
e/a becomes more difficult as a result of the superposition of Cs-5d and Cs-4f states above the Fermi
level. The value of e/a is deduced to be 5.58 from its NFE (L = 1) curve. We consider the test of the
Hume-Rothery electron concentration rule for the isostructural compounds K2P3 (oF40) and Cs2P3

(oF40) to reach an almost unmanageable level, where the DOS below the Fermi level is made up of
δ-function-like isolated peaks due to an increase in ionicity beyond 55%.

The P concentration dependence of e/a calculated from the NFE curve for all compounds in the
A-P (A = Li, Na, K, Rb and Cs) alloy systems is summarized in Figure 79a–e, respectively. One can
clearly see that an error bar for several compounds reaches 20% of the e/a value obtained. A large error
bar is assigned not only because the NFE curve becomes unstable, but also because the Hume-Rothery
plot becomes sensitive to the selection of WIEN2k parameters like the number of cells in the Brillouin
zone, Nk, and εmax of the energy window (See Note 13). We admit that the e/a determination becomes
unstable, when ionicity exceeds 55%. As a result, the validity of the linear interpolation rule with
(e/a)Li = 1.0, (e/a)Na = 1.0, (e/a)K = 1.0, (e/a)Rb = 1.0, (e/a)Cs = 1.0 and (e/a)P = 5 in alkali metal-P alloy
systems is less satisfactory. Indeed, a significant departure from the line is found to occur in some
particular compounds like K3P11 and Cs2P3. We learned that, when ionicity is increased beyond 55%,
the Hume-Rothery data points tend to be more sharply confined in narrow energy ranges and more
widely separated from each other by energy gaps in the valence band. Moreover, K-3p, Rb-4p and Cs-5p
core levels begin to merge into the valence band, making it more difficult to specify the bottom of the
valence band. All these sources of errors are added up and become apparently responsible for causing
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instability in the determination of e/a. The confirmation of the validity of the Hume-Rothery-type
stabilization mechanism and e/a determination must also be done with great care in polar compounds,
when its ionicity is increased above 55%.
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6.4. Hume-Rothery Electron Concentration Rule in Phosphorus-Based Compounds

We have proposed in Section 4.1 a strategy to explore systems obeying a new Hume-Rothery
electron concentration rule. As the first step, we need to construct the FLAPW-Fourier spectra and
to extract the critical reciprocal lattice vector |G|2c for a series of isostructural pseudogap-bearing
compounds [11,12]. They are then classified into subgroups with respect to |G|2c thus deduced.
From this we have claimed that compounds in each subgroup should possess a common (2kF)

2, i.e.,
a common e/a, provided that the interference condition (2kF)

2 = |G|2c holds. We have applied this
strategy to many P-M compounds and revealed families of isostructural compounds obeying the new
Hume-Rothery electron concentration rule. Three examples are described below.

6.4.1. TMP3 (TM=Co, Ni, Rh and Ir), TMAs3 (TM=Co, Rh and Ir) and TMSb3 (TM=Co, Rh and Ir)
Skutterudite Compounds (cI32)

We have recently reported on the theoretical finding of a new Hume-Rothery electron
concentration rule in the family of skutterudite compounds [11,12,41]. The two partial DOSs,
Hume-Rothery plot and FLAPW-Fourier spectra for CoP3 (cI32) are shown in Figure 80a–d, respectively.
The CoP3 is known as a typical skutterudite compound and has been extensively studied as a potential
thermoelectric material. The FLAPW-separation energies associated with Co-sp and P-sp states turned
out to be 2.66 and 6.17 eV, which is slightly different from 2.18 and 6.31 eV, respectively, for the
equiatomic compound CoP (oP8) employed in the construction of Figure 66. This certainly reflects
a difference in the electronic structure between the two compounds subjected to different alloying
environments such as crystal structure and solute concentration. However, we consider CoP3 (cI32) to
be located near CoP (oP8) in Figure 66 with about 15% ionicity.
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which is in a reasonable agreement with 4.0 obtained from a composition average of (e/a)Co = 1.03 and 
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in (c). This is nothing but the extraction of the interference condition 2kF( )2 = G
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2  for CoP3. This 
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Figure 80. (a) Co- and (b) P-pDOSs, (c) Hume-Rothery plot and (d) FLAPW-Fourier spectra at symmetry
points Γ, N, and H of the bcc Brillouin zone along with the total DOS (blue), Co-4p (green) and P-3p
(yellow) for CoP3 (cI32) [11,12]. See captions of Figure 19 (b) for symbols in (c).

The Hume-Rothery plot shown in Figure 80c reveals a series of anomalies below the Fermi level
due to multiple openings of energy gaps and a pseudogap at the Fermi level. Moreover, green dots
satisfying the condition ∑|C|2max ≥ 0.2 are very scarce at the Fermi level. Thus, we have employed the
NFE approximation, as described in Section 2.6. The NFE (L = 1) curve is drawn with red color in (c).
From its intersection with the Fermi level, we obtain (2kF)

2 = 26.24 ± 0.52 and e/a = 4.40, the latter of
which is in a reasonable agreement with 4.0 obtained from a composition average of (e/a)Co = 1.03 and
(e/a)P = 5 (see Table 1).

The center-of-gravity (CG) energy was calculated for a series of energy spectra of Fourier
coefficients of |G|2-specified plane waves at symmetry points Γ, N and H of its bcc Brillouin zone
(see Section 2.4.8). The FLAPW-Fourier spectra thus obtained are shown in (d) along with its total-,
Co-4p and P-3p partial DOSs. One can clearly see a deep pseudogap at the Fermi level in the
DOS. The CG energy meets the Fermi level at |G|2 = 26 corresponding to symmetry points N of its
Brillouin zone. The critical |G|2c = 26 is found to coincide well with (2kF)

2 = 26.24 derived from the
Hume-Rothery plot in (c). This is nothing but the extraction of the interference condition (2kF)

2 = |G|2c
for CoP3. This means that the origin of the pseudogap at the Fermi level can be interpreted in terms of
interference phenomenon. The value of e/a is deduced to be 4.40 by inserting (2kF)

2 obtained above
into Equation (2). It is of great importance to mention that |G|2c = 26 is commonly found for a family of
10 skutterudite compounds TMP3 (TM = Co, Ni, Rh and Ir), TMAs3 (TM = Co, Rh and Ir) and TMSb3

(TM = Co, Rh and Ir) (cI32). The results are summarized in Table 9. This is taken as an evidence that all
of them obey the Hume-Rothery electron concentration rule with e/a = 4.3 ± 0.2 [11,12,41] and that the
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Hume-Rothery-type stabilization mechanism holds for such pseudogap-bearing polar compounds
with covalency of 60% and ionicity of 15% on the van Arkel-Ketelaar triangle map.

Table 9. Phosphorus-based isostructural compounds obeying the Hume-Rothery electron
concentration rule

Family Subgroup System N |G|2
c

× [2π/(Ωuc)1/3]2
(2kF)2

× (2π/a)2 e/a e/uc

skutterudites
(TM)M3
(TM = Co, Rh, Ir, Ni)
(M = P, As, Sb)

1

CoAs3
(cI32) 32 26 25.2 ± 0.2

4.34 ± 0.20 139

RhAs3
(cI32) 32 26 26.3 ± 0.2

IrAs3
(cI32) 32 26 26.7 ± 0.2

CoSb3
(cI32) 32 26 26.5 ± 0.2

RhSb3
(cI32) 32 26 27.3 ± 0.2

IrSb3
(cI32) 32 26 27.8 ± 0.2

NiP3
(cI32) 32 26 25.1 ± 0.2

CoP3
(cI32) 32 26 25.0 ± 0.2

RhP3
(cI32) 32 26 25.9 ± 0.2

IrP3
(cI32) 32 26 26.7 ± 0.2

(TM)P
(TM = Cr, Mn, Fe, Co) 1

CrP
(oP8) 8 8.38 8.53 ± 0.43

3.25 ± 0.05 26

MnP
(oP8) 8 8.49 8.47 ± 0.42

FeP
(oP8) 8 8.56 8.41 ± 0.42

CoP
(oP8) 8 8.29 8.60 ± 0.83

(TM)3P
(TM = Cr, Mn, Fe, Ni) 1

Cr3P
(tI32) 32 16.3 16.67 ± 0.83

2.20 ± 0.05 70

Mn3P
(tI32) 32 16.4 16.67 ± 0.83

Fe3P
(tI32) 32 16.2 16.47 ± 0.83

Ni3P
(tI32) 32 16.2 16.56 ± 0.33

6.4.2. (TM)P (TM = Cr, Mn, Fe and Co) Compounds (oP8)

As the second example, we present the data on CrP, MnP, FeP and CoP compounds,
which crystallize into the oP8 structure and obey the Hume-Rothery electron concentration rule
with e/a = 3.25. The TM- and P-partial DOSs for four (TM)P (TM=Cr, Mn, Fe and Co) compounds are
shown in Figure 81a–d (TM=Cr and Mn) and Figure 82a–d (TM=Fe and Co), respectively. The most
characteristic feature in a series of isostructural compounds (TM)P (TM=Cr, Mn, Fe and Co) compounds
(oP8) is that 3d-TM elements are widely distributed starting from early TM element Cr to the late one
Co. Here we are well aware of the fact that the center of the TM-3d band lowers its position relative to
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the Fermi level with increasing the atomic number. Nevertheless, a deep pseudogap is always formed
at the Fermi level in TM-4s, TM-4p and P-3p partial DOSs, regardless of the selection of the TM element
over Cr to Co. This is the gist of arguments as to why we can explore the Hume-Rothery electron
concentration rule in spite of sweeping constituent elements horizontally across the Periodic Table.
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Figure 81. (a) Cr- and (b) P-pDOSs for CrP (oP8) and (c) Mn- and (d) P-pDOSs for MnP (oP8) [11].
The corresponding separation energies are also indicated in (a) to (d).

The Hume-Rothery plots and their NFE (L = 1) curves for (TM)P (TM = Cr, Mn, Fe and Co) (oP8)
compounds are superimposed onto each other and shown in Figure 83a. As is expected, a huge anomaly
due to TM-3d states in (a) tends to displace its position to a higher binding energy with increasing
the atomic number from Cr to Co. The energy dependence of

〈
|C|2max

〉
EF

for all these compounds is

plotted in Figure 83b. The value of
〈
|C|2max

〉
EF

in (b) is found to be far below the threshold value of 0.2

for all (TM)P (oP8) compounds. Hence, the NFE (L = 1) curves must be constructed. As incorporated
into Figure 83a, all four NFE curves are almost perfectly superimposed onto each other. The values of
(2kF)

2 and e/a are deduced to be 8.51 ± 0.10 and 3.25 for all of them, respectively. Numerical data are
included in Table 9. We can safely conclude that they obey the Hume-Rothery electron concentration
rule with e/a = 3.25 ± 0.05 and |G|2c = 8.50 for all these oP8 compounds.
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6.4.3. TM3P (TM = Cr, Mn, Fe and Ni) Compounds (tI32)

Among many P-based intermetallic compounds studied in the present work, we will show
below that four TM3P (TM = Cr, Mn, Fe and Ni) (tI32) compounds obey the Hume-Rothery electron
concentration rule with e/a = 2.20 ± 0.05. The TM- and P-partial DOSs for TM3P (TM = Cr, Mn, Fe



Crystals 2017, 7, 9 86 of 112

and Ni) compounds are displayed in Figure 84a–d (TM = Cr, Mn) and Figure 85a–d (TM=Fe, Ni),
respectively. First of all, the center of the Cr-3d band in Cr3P (tI32) is positioned slightly above the
Fermi level (see Figure 84a). However, as we go from Cr through Mn and Fe up to Ni, we see that
the center of the respective 3d-bands is gradually lowered relative to the Fermi level and definitely
comes below the Fermi level for Ni3P (tI32) (see Figure 85c). This has already been mentioned in
the preceding Section. Indeed, the gradual shift of the 3d-band relative to the Fermi level is brought
about by a consequence of an increase in valence electrons with increasing the atomic number of the
TM element. Nevertheless, a closer look into (a) to (d) in both Figures 84 and 85 reveals that a deep
pseudogap is formed at the Fermi level in TM-4s, TM-4p and P-3p partial DOSs, regardless of the
selection of the TM element over Cr to Ni. This does play a key role to understand the physics of the
Hume-Rothery electron concentration rule, even when a series of constituent elements serving as a
partner of phosphorus are picked up from horizontally arranged 3d-TM elements from Cr to Ni.
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It may be further noted that the FLAPW-separation energies of
∣∣∣EP

3s − EP
3p

∣∣∣ and
∣∣∣ETM

4s − ETM
4p

∣∣∣ in the
P- and TM-partial DOS remain almost unchanged over 6.55 ± 0.16 eV and 1.90 ± 0.10 eV, respectively,
as TM moves from Cr to Ni. This suggests the ionicity proportional to their difference to essentially
remain constant upon the selection of the TM element (TM=Cr to Ni). All the evidences above
encourage us to explore if the Hume-Rothery electron concentration rule holds or not, even though the
3d-TM element is selected over a wide range from Group 6 to 10 in the Periodic Table.

The Hume-Rothery plots and their NFE curves for TM3P (TM=Cr, Mn, Fe and Ni) compounds are
superimposed onto one another in Figure 86a,b, respectively [12]. Because of the presence of a huge
anomaly due to TM-3d states across the Fermi level in (a), one can hardly expect the e/a = constant rule
to hold in this family on the basis of the local reading method. The value of

〈
|C|2max

〉
EF

is confined in a

narrow range over 0.01 to 0.04 for TM3P (TM=Cr to Ni) and is definitely lower than the threshold value
of 0.2. Hence, the construction of the NFE (L = 1) curve is needed. As shown in Figure 86b, the resulting
NFE (L = 1) curves are almost superimposed onto each other. Indeed, values of (2kF)

2 and e/a are
converged into be 16.6 ± 0.2 and 2.2 for all these compounds, respectively. This is the demonstration
for the finding of the new Hume-Rothery electron concentration rule for TM-bearing systems, in which
the TM element is selected across Cr to Ni in Period 4 of the Periodic Table as a partner element to P.



Crystals 2017, 7, 9 88 of 112Crystals 2017, 7, 9  90 of 117 

 

 

Figure 86. (a) Hume-Rothery plots and (b) the NFE (L = 1) curves for TM3P (TM = Cr, Mn, Fe, and Ni) 
(tI32) compounds [12].  

Figures 87a–d show FLAPW-Fourier spectra for the TM3P (TM = Cr, Mn, Fe and Ni) compounds, 
respectively. The spectra were calculated at symmetry points Γ, N, X, Z and P in the Brillouin zone 
of the body-centered tetragonal lattice. The energy dependence of the square of the Fourier 
coefficients is shown only for Cr3P in (a). The CG energy is calculated by taking its intensity-weighted 

average and marked with colored circles. The G 2  dependence of the CG energy is plotted in Figure 
87a–d along with the total, TM-4p and P-3p partial DOSs and the NFE curves reproduced from Figures 
84 and 85. 

The critical G
c
2  is distributed at about a constant value of 16.5 at symmetry points N for all 

four compounds. Both TM-4p and P-3p states are pushed to the bottom and the top of the d-band as 
a result of d-states-mediated splitting [11,12]. As marked by a red arrow, a minimum of a pseudogap 
in the p-states is always found across the Fermi level. From the analysis above, we conclude that a 

constant e/a = 2.2 ± 0.05 rule holds with G
c
2  = 16.5 for all these tI32 compounds. Numerical data are 

incorporated into Table 9. 

6.5. Interference Phenomenon for Phosphorus Compounds 

Now we are ready to test the validity of the interference condition for a large number of 
phosphorus compounds studied in this Section. As has been discussed in Section 4.9, the number of 

itinerant electrons per unit cell, e/uc, is plotted as a function of G
c
2  in Figure 88 on a log-log scale 

for a large number of pseudo-gap bearing M-P compounds [11,12]. It is clear that all the data points, 
regardless of the degree of covalency and ionicity involved, fall on a line with a slope of 3/2 previously 
established for the data reported for Al- and Zn-based compounds (see Figures 55 and 56) [11–13]. 
Even the alkali metal-phosphorus compounds with ionicity exceeding 55%, where the e/a-
determination becomes unstable, are found almost on the line. This demonstrates that the NFE model 
can be successfully applied and the origin of a pseudo- and true-gap at the Fermi level can be 
universally discussed in terms of the interference phenomenon. 

Figure 86. (a) Hume-Rothery plots and (b) the NFE (L = 1) curves for TM3P (TM = Cr, Mn, Fe, and Ni)
(tI32) compounds [12].

Figure 87a–d show FLAPW-Fourier spectra for the TM3P (TM = Cr, Mn, Fe and Ni) compounds,
respectively. The spectra were calculated at symmetry points Γ, N, X, Z and P in the Brillouin zone of
the body-centered tetragonal lattice. The energy dependence of the square of the Fourier coefficients is
shown only for Cr3P in (a). The CG energy is calculated by taking its intensity-weighted average and
marked with colored circles. The |G|2 dependence of the CG energy is plotted in Figure 87a–d along
with the total, TM-4p and P-3p partial DOSs and the NFE curves reproduced from Figures 84 and 85.

The critical |G|2c is distributed at about a constant value of 16.5 at symmetry points N for all four
compounds. Both TM-4p and P-3p states are pushed to the bottom and the top of the d-band as a
result of d-states-mediated splitting [11,12]. As marked by a red arrow, a minimum of a pseudogap
in the p-states is always found across the Fermi level. From the analysis above, we conclude that a
constant e/a = 2.2 ± 0.05 rule holds with |G|2c = 16.5 for all these tI32 compounds. Numerical data are
incorporated into Table 9.

6.5. Interference Phenomenon for Phosphorus Compounds

Now we are ready to test the validity of the interference condition for a large number of
phosphorus compounds studied in this Section. As has been discussed in Section 4.9, the number
of itinerant electrons per unit cell, e/uc, is plotted as a function of |G|2c in Figure 88 on a log-log
scale for a large number of pseudo-gap bearing M-P compounds [11,12]. It is clear that all the data
points, regardless of the degree of covalency and ionicity involved, fall on a line with a slope of
3/2 previously established for the data reported for Al- and Zn-based compounds (see Figures 55
and 56) [11–13]. Even the alkali metal-phosphorus compounds with ionicity exceeding 55%, where the
e/a-determination becomes unstable, are found almost on the line. This demonstrates that the NFE
model can be successfully applied and the origin of a pseudo- and true-gap at the Fermi level can be
universally discussed in terms of the interference phenomenon.
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6.6. Summary

We have performed first-principles FLAPW-Fourier band calculations for four pure elements P, As,
Sb and Bi in Group 15 and as many as 59 intermetallic compounds formed by combining phosphorus
in Group 15 with elements from alkali metals Li, Na, K, Rb and Cs in Group 1 up to Si and Ge in Group
14 of the Periodic Table. We aimed at investigating the effect of increasing ionicity and covalency on the
e/a determination of compounds and to what extent the Hume-Rothery-type stabilization mechanism
is validated when ionicity is significantly increased.

All phosphorus-based intermetallic compounds fall in a narrow, vertically extended strip with
10%–64% ionicity, 30%–60% covalency and 5%–30% metallicity on the van Arkel-Ketelaar triangle map
shown in Figure 66. The values of (2kF)

2 and e/a can be safely determined and the Hume-Rothery-type
stabilization mechanism can be discussed in terms of the interference condition for all P-based
compounds. The determination of both (2kF)

2 and e/a becomes unstable in A-P (A = Li, Na, K,
Rb and Cs) compounds, where ionicity exceeds 55%. Three Hume-Rothery electron concentration
rules have been theoretically established: (1) 10 skutterudite compounds TMP3 (TM = Co, Ni, Rh
and Ir), TMAs3 (TM = Co, Rh and Ir) and TMSb3 (TM = Co, Rh and Ir) (cI32) with e/a = 4.34 and
|G|2c = 26; (2) compounds (TM)P (TM = Cr, Mn, Fe and Co) (oP8) with e/a = 3.25 and |G|2c = 8.5 and
(3) compounds TM3P (TM = Cr, Mn, Fe and Ni) with e/a = 2.20 and |G|2c = 16.5.
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circle. The critical reciprocal lattice vector |G|2c is expressed in units of ×
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, where Ω1/3

uc
represents the effective lattice constant for any crystals. Note that the interference condition is given by
Equation (20). This has been referred to as the “3/2-power law”.

The presentation of the data on compounds in Cu-P and Zn-P alloy systems is omitted in this
article. Readers who are interested in the data for individual compounds are requested to consult with
our previous work [11,12].

7. Hume-Rothery Electron Concentration Rule in Inter-Transition Metal Compounds

We have so far elucidated the physics behind the Hume-Rothery electron concentration rule in Al-,
Zn-, Cd- and P-based alloy systems as well as in Zintl compounds. In all of these alloy systems, a host
is selected from non-transition metal (non-TM) elements including noble metals, while its partner
from either non-TM or TM elements. As has been frequently emphasized in the previous Sections,
the value of e/a for compounds is in most cases in a good agreement with a composition average of e/a
values of constituent elements and the least affected by the “alloying environment effects” such as a
crystal structure, a unit cell size and an atomic species of the partner element. This has been referred
to as the linear interpolation rule. There are, however, exceptions to this simple rule. We will show
in this Section that distinct e/a values must be assigned for Ca in Group 2 and Sc and Y in Group 3,
depending on whether these elements are alloyed with non-TM elements or TM (TM=Ti to Ni) elements.
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This is a manifestation of “alloying environment effects”. We will study the Hume-Rothery electron
concentration rule for inter-TM compounds including alloying environment-sensitive elements Sc
and Y alloyed with TM (TM = Ti to Ni) elements. In particular, we focus on the AB2-type Laves
compounds with space group Fd3m and Pearson symbol cF24, since they form the largest group of
intermetallic compounds with a variety of combinations of elements such as A = TM1 and B = TM2,
A = TM and B = Al and A = non-TM1 and B = non-TM2. The present Section is largely constructed on
the basis of [11,37].

7.1. e/a Determination for Group 2 Elements Ca, Sr and Ba

From our preliminary studies, we have realized the need to apply both local reading and NFE
methods to systematically examine the e/a issue for Group 2 and 3 elements, since they are marginal in
the selection of these two methods and are expected to exhibit possible alloying environment effects,
depending on whether their partner element is selected from TM elements or non-TM elements.

Figure 89a–c show the s-, p- and d-partial DOSs,
〈
|C|2max

〉
E

and the Hume-Rothery plot for Ca (cF4)
in Group 2, respectively. As can be seen from (a), the Fermi level falls at the early stage of the Ca-3d
band. A gradual growth in the Ca-3d states towards the Fermi level certainly causes the deviation
from the free electron behavior, as is reflected in (b), where the Fermi level is positioned at a sharply
declining slope in

〈
|C|2max

〉
E

, and in (c), where it is on a rising slope of the Hume-Rothery plot. Electrons

at the Fermi level can be judged to be well itinerant, since the value of
〈
|C|2max

〉
EF

= 0.65 in (b) is much

higher than its threshold value of 0.2. Moreover, there are sharply concentrated green dots at the Fermi
level in (c). These findings certainly justify us to select the local reading method for Ca. As shown in (c),
the local reading method provides us the e/a value of 2.00 ± 0.02 in a perfect accord with its nominal
valence of two. We have also shown the NFE (L = 2) curve in (c) and obtained e/a = 1.56 ± 0.05 from
its intersection with the Fermi level. This is much smaller than the local-reading value of e/a = 2.00.
The NFE value of e/a will play a crucial role in Section 7.3.3 upon dealing with the linear interpolation
rule for Ca-TM alloy systems.Crystals 2017, 7, 9  94 of 117 
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e/a between the local reading and NFE (L = 1) methods is almost negligible, as indicated in (c). The e/a 
value of 1.96 ± 0.02 is derived from the NFE (L = 1) curve and is accepted in the present work. This 
confirms the possession of its valence equal to two. 

Figure 89. (a) Ca-partial DOSs, (b)
〈
|C|2max

〉
E

and (c) Hume-Rothery plot for Ca (cF4) [11,15,16,37].
See captions of Figure 19 (b) for symbols in (c). Two distinct e/a values are obtained for Ca (cF4),
depending on either the local reading or the NFE method.
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The data for Sr (cF4) are depicted in Figure 90a–c. Similarly to Ca (cF4), the Sr-4d states begin
to grow at about 2.4 eV below the Fermi level. However, an upward deviation from the free electron
behavior in (c) is weaker at the Fermi level than that for Ca discussed above. Indeed, a difference in e/a
between the local reading and NFE (L = 1) methods is almost negligible, as indicated in (c). The e/a value
of 1.96 ± 0.02 is derived from the NFE (L = 1) curve and is accepted in the present work. This confirms
the possession of its valence equal to two.Crystals 2017, 7, 9  95 of 117 
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the Hume-Rothery plot, as shown in (c). As a result, the local reading e/a is increased to 2.52. We consider 
the value higher than two for Ba to be physically unacceptable, since it possesses only two 6s 
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curve is accepted for Ba (cI2), regardless of whether the TM element or non-TM element is selected as 
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Figure 90. (a) Sr-partial DOSs, (b)
〈
|C|2max

〉
E

and (c) Hume-Rothery plot for Sr (cF4) [11,15,16,37].
See captions of Figure 19 (b) for symbols in (c). The same value of e/a is obtained for Sr (cF4), regardless
of whether the local reading or the NFE method is employed.

The relevant data for Ba (cI2) are shown in Figure 91a–c. In addition to the Ba-5d states emerging
from 2 eV below the Fermi level, the Ba-4f states start to grow immediately above it. The value of〈
|C|2max

〉
EF

= 0.35 is lower than those of 0.65 and 0.59 for Ca and Sr, respectively, but is still higher

than the threshold value of 0.2. This is reflected in a more sharply rising slope near the Fermi level
in the Hume-Rothery plot, as shown in (c). As a result, the local reading e/a is increased to 2.52. We
consider the value higher than two for Ba to be physically unacceptable, since it possesses only two 6s
outermost electrons in its free atom. Thus, the value of e/a = 2.03 ± 0.05 derived from the NFE (L = 1)
curve is accepted for Ba (cI2), regardless of whether the TM element or non-TM element is selected as
its partner element.
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The values of e/a for Sc (hP2) and Y (hP2) had been determined to be 2.94 ± 0.05 and 3.15 ± 0.05, 
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were newly applied for Sc and Y under the condition that band parameters are kept unchanged. The 
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are lowered to 0.29 and 0.32 for Sc and Y, respectively, 

but yet higher than the threshold value of 0.2. Hence, the local reading method was adopted earlier to 
confirm the possession of the valence of three for both Sc and Y. The NFE (L = 1) curve is added to 
Figures 92c and 93c. The corresponding e/a values are deduced to be 1.33 ± 0.05 and 1.87 ± 0.05 for Sc 
and Y, respectively. They will be discussed in Section 7.3.4 upon dealing with Sc- and Y-compounds 
with TM elements from Group 4 to 10. 

Figure 91. (a) Ba-partial DOSs, (b)
〈
|C|2max

〉
E

and (c) Hume-Rothery plot for Ba (cI2) [11,15,16,37].
See captions of Figure 19 (b) for symbols in (c). The value of e/a determined from the NFE curve (L = 1)
was exclusively employed for Ba (cI2), regardless of partner elements involved.

7.2. e/a Determination for Group 3 Elements Sc, Y and La

The values of e/a for Sc (hP2) and Y (hP2) had been determined to be 2.94 ± 0.05 and 3.15 ± 0.05,
respectively, through the local reading method [15,16]. Both the local reading and the NFE methods were
newly applied for Sc and Y under the condition that band parameters are kept unchanged. The relevant
data are shown in Figures 92 and 93a–c. We can clearly see from a comparison of partial DOSs that
the Fermi level in both Sc and Y has penetrated more deeply into the d-band than those in Ca and
Sr. Accordingly, values of

〈
|C|2max

〉
EF

are lowered to 0.29 and 0.32 for Sc and Y, respectively, but yet

higher than the threshold value of 0.2. Hence, the local reading method was adopted earlier to confirm
the possession of the valence of three for both Sc and Y. The NFE (L = 1) curve is added to Figures 92c
and 93c. The corresponding e/a values are deduced to be 1.33 ± 0.05 and 1.87 ± 0.05 for Sc and Y,
respectively. They will be discussed in Section 7.3.4 upon dealing with Sc- and Y-compounds with TM
elements from Group 4 to 10.
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Figure 92. (a) Sc-partial DOSs, (b)
〈
|C|2max

〉
E

and (c) Hume-Rothery plot for Sc (hP2) [11,15,16,37].
See captions of Figure 19 (b) for symbols in (c). Two distinct e/a values are obtained for Sc (hP2),
depending on either the local reading or the NFE method.
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As shown in Figure 94a–c, the situation in La is more complex than in Sc and Y. As can be seen
from (a), the La-5d states extend almost near the bottom of its valence band and the La-4f states
also penetrate deeply into it. The value of

〈
|C|2max

〉
EF

is lowered to 0.17. As reported earlier [16],

only the NFE-derived e/a value could reproduce e/a close to its nominal valence of three. As far as
pure elements are concerned, the e/a value derived from the FLAPW-Fourier analysis can be taken as an
electron concentration of itinerant electrons spread uniformly inside unit cell because of the absence of
charge transfer. Therefore, we consider the e/a value we obtain for La to coincide with its valence or
the number of the outermost electrons in its free atom. Though the Hume-Rothery plot in Figure 94c is
far from a linear behavior over an entire energy range studied, we could confirm the possession of the
nominal valence of three from the NFE (L = 1) method. The value of e/a = 3.0 ± 0.2 is accepted for La,
regardless of whether TM or non-TM elements are employed as its partner element.
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can clearly see that the linear interpolation rule holds well, regardless of the atomic species of 
polyvalent elements, crystal structures and the unit cell sizes involved, provided that (e/a)Ca = 2.0, 
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Figure 94. (a) La-partial DOSs, (b)
〈
|C|2max
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E

and (c) Hume-Rothery plot for La (hP4) [11,15,16,37].
See captions to Figure 19 (b) for symbols in (c). The value of e/a determined from the NFE curve (L = 1)
was exclusively employed for La (hP4), regardless of partner elements involved.

7.3. Alloying Environment Effects and the Linear Interpolation Rule

7.3.1. Ca-, Sr-, Sc- and Y-Compounds with Simple Elements

The composition dependences of the local reading e/a values are depicted in Figure 95a–d for Ca-,
Sr-, Sc- and Y-compounds formed with simple elements like Ag, Zn, Cd, and Al, respectively. One can
clearly see that the linear interpolation rule holds well, regardless of the atomic species of polyvalent
elements, crystal structures and the unit cell sizes involved, provided that (e/a)Ca = 2.0, (e/a)Sr = 2.0,
(e/a)Sc = 3.0, (e/a)Y = 3.0, (e/a)Ag = 1.0, (e/a)Zn = 2.0, (e/a)Cd = 2.0 and (e/a)Al = 3.0 are used (see Table 1).
It should be emphasized that the linear interpolation rule works within the accuracy of a few %, when
the local reading method is applicable.
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claim the linear interpolation rule to be still applicable for Ba- and La-compounds alloyed with simple 
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Figure 95. Composition dependence of e/a for intermetallic compounds and pure elements in (a) Ca–M
(M = Zn, Cd, Al), (b) Sr–M (M=Zn, Al), (c) Sc-M (M = Ag, Zn, Al) and Y-M (M = Ag, Zn, Cd, Al) alloy
systems [37]. The local reading method is exclusively employed. The linear interpolation lines are drawn
by connecting end points of pure elements in the respective alloy systems. Symbols in bracket refer to
the Pearson symbol for elements and compounds.

7.3.2. Ba- and La-Compounds with Simple Elements

As described in Sections 7.1 and 7.2, the NFE-derived e/a values are adopted for Ba and La so as to
reconcile with their respective valences of two and three, respectively. We constructed the composition
dependence of e/a for Ba- and La-compounds alloyed with simple elements by using the NFE method
except for pure simple metals located at 100 atomic % on the composition axis. The results are shown in
Figure 96a,b, respectively. The value of e/a initially tends to increase upon adding Ba and La to simple
metals, yielding slight upward deviations from the respective linear interpolation lines. The linear
interpolation rule is apparently resumed in both Ba- and La-rich regions. The reason for an upward
shift in e/a in simple metal-rich region is not clear at the moment but may be due to possible influence
of Ba-5d and Ba-4f states as well as La-5d and La-4f states across the Fermi level, as may be inferred
from Figures 91a and 94a, respectively.
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Although the scatter of data points in Figure 96a,b is certainly larger than that in Figure 95,
we claim the linear interpolation rule to be still applicable for Ba- and La-compounds alloyed with simple
elements within the accuracy of ±20%.
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7.3.3. Ca-, Sr- and Ba-Compounds with TM Elements 

Structural information about Ca-, Sr- and Ba-compounds alloyed with TM elements from Group 
4 to 10 in the Periodic Table is rather limited [29,30]: Ni and Pd can form intermetallic compounds 
with Ca only in the TM-rich region, while Rh, Pd, Ir and Pt with Sr, and Pd and Pt with Ba again only 
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The composition dependence of NFE-derived e/a values is summarized in Figure 97a–c. The data 
points in Ca-, Sr- and Ba-TM compounds can be well fitted to the respective linear interpolation lines 
with (e/a)Ca = 1.56, (e/a)Ni = 1.16, (e/a)Pd = 0.96, (e/a)Sr = 2.0, (e/a)Ba = 2.0 and (e/a)Pt = 1.63 [11,37] (see 
Table 1). A fit to the linear interpolation line is apparently far better than that in Ba- and La-simple 
metal compounds discussed in the preceding Section. This is realized only if (e/a)Ca = 1.56 is adopted 
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Figure 96. Composition dependence of e/a for intermetallic compounds and pure elements in (a) Ba–M
(M = Ag, Zn, Cd, Al, Ga) and (b) La–M (M = Cu, Ag, Mg, Zn, Cd, Al, Ga, In) alloy systems [37].
The NFE method is employed for elements Ba, La and all the compounds but the local reading method
for elements located at 100 at.%M. The linear interpolation lines are drawn by connecting end points
of pure elements in the respective alloy systems. Symbols in bracket refer to the Pearson symbol for
elements and compounds.

7.3.3. Ca-, Sr- and Ba-Compounds with TM Elements

Structural information about Ca-, Sr- and Ba-compounds alloyed with TM elements from Group
4 to 10 in the Periodic Table is rather limited [29,30]: Ni and Pd can form intermetallic compounds
with Ca only in the TM-rich region, while Rh, Pd, Ir and Pt with Sr, and Pd and Pt with Ba again only
in the TM-rich region. The NFE method was applied for all compounds including Ca-TM compounds.
The composition dependence of NFE-derived e/a values is summarized in Figure 97a–c. The data
points in Ca-, Sr- and Ba-TM compounds can be well fitted to the respective linear interpolation lines
with (e/a)Ca = 1.56, (e/a)Ni = 1.16, (e/a)Pd = 0.96, (e/a)Sr = 2.0, (e/a)Ba = 2.0 and (e/a)Pt = 1.63 [11,37]
(see Table 1). A fit to the linear interpolation line is apparently far better than that in Ba- and La-simple
metal compounds discussed in the preceding Section. This is realized only if (e/a)Ca = 1.56 is adopted
in place of (e/a)Ca = 2.00 employed in Figure 95a. Therefore, we are led to conclude the existence
of “alloying environment effects” in Ca, depending on whether it is alloyed with non-TM elements
(see Figure 95a) or TM elements (see Figure 97a).

7.3.4. Sc-, Y- and La-Compounds with TM Elements

The NFE method had to be applied to all Sc-, Y- and La-TM compounds studied in the present
work because of almost complete loss of itinerancy for electrons at the Fermi level. The composition
dependence of the NFE-derived e/a values for these compounds is shown in Figure 98a–c. It is clear
that the linear interpolation rule holds within the accuracy of a few %.
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Figure 97. Composition dependence of e/a for intermetallic compounds and pure elements in (a)
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The NFE method is exclusively employed. The linear interpolation lines are drawn by connecting end
points of pure elements in the respective alloy systems. Symbols in bracket refer to the Pearson symbol
for elements and compounds.
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The number of inter-TM binary alloy systems, where more than two intermetallic compounds 
exist in their phase diagrams, is rather limited. All e/a values in inter-TM compounds had to be 
determined by using the NFE method. As shown in Figure 99, we confirm that the linear interpolation 
rule holds well within the accuracy of a few %. Even a common linear interpolation line may be drawn 
for the data in Zr-Fe, Zr-Co and Ta-Co alloy systems, since the end values of Co and Fe and Ta and 
Zr are almost the same [11,15,16,37]. This means that the validity of the linear interpolation rule is more 
perfect than that in systems involving alloying environment-sensitive elements like Ca, Sc and Y in 
Groups 2 and 3. Now we believe all the other elements in the periodic table to be essentially free from 
the alloying environment effects. 

Figure 98. Composition dependence of e/a for intermetallic compounds and pure elements in (a) Sc–TM
(TM = Co, Ni, Ir), (b) Y–TM (TM = Mn, Fe, Co, Pd, Re, Pt) and (c) La-TM (TM = Co, Ni, Ru, Rh, Pd, Pt)
alloy systems [37]. The NFE method is exclusively employed. The linear interpolation lines are drawn
by connecting end points of pure elements in the respective alloy systems. Symbols in bracket refer to
the Pearson symbol for elements and compounds.



Crystals 2017, 7, 9 99 of 112

7.3.5. Inter-TM (Two TMs Selected from Group 4 to 10) Compounds

The number of inter-TM binary alloy systems, where more than two intermetallic compounds
exist in their phase diagrams, is rather limited. All e/a values in inter-TM compounds had to be
determined by using the NFE method. As shown in Figure 99, we confirm that the linear interpolation
rule holds well within the accuracy of a few %. Even a common linear interpolation line may be drawn
for the data in Zr-Fe, Zr-Co and Ta-Co alloy systems, since the end values of Co and Fe and Ta and Zr
are almost the same [11,15,16,37]. This means that the validity of the linear interpolation rule is more
perfect than that in systems involving alloying environment-sensitive elements like Ca, Sc and Y in
Groups 2 and 3. Now we believe all the other elements in the periodic table to be essentially free from
the alloying environment effects.Crystals 2017, 7, 9  103 of 117 
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Figure 99. Composition dependence of e/a for intermetallic compounds and pure elements in TM1–TM2
(TM1 = Ti, Mn, Zr, Ta) and (TM2 = Cr, Fe, Co, Pt) alloy systems [37]. The NFE method is exclusively
employed. The linear interpolation lines are drawn by connecting end points of pure elements in the
respective alloy systems. Symbols in bracket refer to the Pearson symbol for elements and compounds.

Before ending Section 7.3, it may be worth mentioning why only Ca in Group 2 and Sc and Y in
Group 3 exhibit prominent alloying environment effects. This is because the itinerancy of d-electrons
due to Ca, Sc and Y at the Fermi level is high enough to rely on the local reading method, when they
exist as elements and/or are alloyed with non-TM elements like Al (see Figures 89b, 92b and 93b).
In contrast, these electrons would be so highly mixed with d-states of the partner TM element in Ca-,
Sc- and Y-TM compounds that electrons at the Fermi level can no longer maintain high itinerancy
(see Figure 102a) and, hence, the use of the NFE method (see Sections 2.3 and 2.5) becomes mandatory.

7.4. Hume-Rothery Electron Concentration Rule in Laves Compounds (cF24)

According to the Pearson Handbook [29], there exist 677 binary and ternary isostructural
compounds with space group Fd3m and Pearson symbol cF24. They are known as AB2-type Laves
compounds. We have carried out the FLAPW-Fourier analysis by choosing 52 binary Laves compounds
among them [37]. A variety of constituent atoms can participate in the formation of the Laves
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compounds. Most abundant are a combination of two TM elements like ScNi2, LaPt2, ZrCo2, TiCr2

and so on, being typical of inter-TM compounds. The second largest family may be a combination
of TM (TM = Sc, Y, La) and Al in the form of TMAl2. Here CaAl2 and SrAl2 may be also included.
The Laves compounds NaAg2, NaAu2, MgCu2, PbAu2 and CsBi2 are classified into a combination of
two non-TM elements.

The van Arkel-Ketelaar triangle map is constructed for the Laves compounds (cF24) and shown
in Figure 100. The data points are distributed over a rather wide range covering 0%–55% in ionicity,
15%–50% in covalency and 25%–75% in metallicity. It is, therefore, astonishing to realize that they
crystallize into a common structure with the same space group and Pearson symbol, in spite of exposure
to a variety of alloying environments. This suggests that a common stabilization mechanism may not
be uniquely specified. Nevertheless, the network of the Brillouin zone planes must be common to all
of them in the reciprocal space. Thus, we consider it to be worthwhile to study the Laves compounds
characterized by different degrees of metallic, ionic and covalent bondings as an interesting target to
explore the physics behind the Hume-Rothery electron concentration rule.
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Figure 100. van Arkel-Ketelaar triangle map constructed by inserting the Allen electronegativity (see
Table 2) into Equations (17) and (18) for 50 equiatomic compounds AB. This may be used as a guide to
roughly envisage bond-styles of Laves compounds AB2.

As has been repeatedly emphasized, we had better choose systems, in which a pseudogap is
formed across the Fermi level. A pseudogap-bearing system allows us to discuss its stability in terms
of the interference condition given by Equation (1), i.e., (2kF)

2 = |G|2c , where (2kF)
2 represents the

square of the Fermi diameter and |G|2c the square of the reciprocal lattice vector corresponding to the
set of lattice planes interfering with electrons at the Fermi level. Fortunately, a pseudogap is formed
across the Fermi level in sp-partial DOSs in most of the Laves compounds studied [37].

We show in Figure 101a,b the Co- and Y-partial DOSs calculated for Laves compound YCo2.
The DOS near the Fermi level is dominated by Co-3d and Y-4d states. More important is the
presence of a pseudogap across the Fermi level in both Co-4sp and Y-5sp states. It is important
to note that these sp-electrons are the most responsible for the stabilization of a pseudogap-bearing
compound [11,15,16,37]. The results obtained from the FLAPW-Fourier analysis for this compound are
shown in Figure 102a–c. The value of

〈
|C|2max

〉
EF

= 0.047 in (a) is so small that the use of the NFE
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method is inevitable. Indeed, green dot data points in (b) are so scarce across the Fermi level that
electrons at the Fermi level must be highly localized in space. The value of e/a turned out to be 1.33
from the intersection of the NFE (L = 2) curve with the Fermi level. This is incorporated in Figure 98b
with an open circle.Crystals 2017, 7, 9  105 of 117 
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Figure 102. (a)
〈
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, (b) Hume-Rothery plot and FLAPW-Fourier spectra for Laves compound YCo2

(cF24) [37]. See captions to Figure 19 (b) for symbols in (c). Symbols in (c) refer to the total DOS (blue),
Co-4p (purple) and Y-5p (green) partial DOSs and the center of gravity energy for |G|2-specified plane
wave spectra at (red circle), L (blue circle) and X (green circle) symmetry points of the fcc-Brillouin
zone, the NFE (L = 2) curve (red curve).
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We are now ready to discuss the origin of a pseudogap caused by Co- and Y-sp-electrons.
The FLAPW-Fourier spectra for the YCo2 compound are calculated at symmetry points Γ, L and
X of its fcc-Brillouin zone and is shown in Figure 102c. The center of gravity energy is calculated for
each |G|2-specified spectrum and marked with red, blue and green circles corresponding to three
different symmetry points Γ, L and X, respectively. It can be seen that |G|2 = 8, 11 and 12 are identified
to be critical. It means that all these plane waves contribute in a constructive way to the formation of a
pseudogap through the interaction with the {220}, {311} and {222} zone planes. Indeed, an average of
three critical values of |G|2c = 8, 11 and 12 is found to be in a good agreement with (2kF)

2 = 9.77 ± 0.49,
leading to the fulfillment of Equation (1). Therefore, we consider them to be responsible for the
formation of a pseudogap in YCo2.

The |G|2-specified energy spectra in all Laves compounds studied are distributed over a finite
energy range across the Fermi level, as typically indicated in Figure 102c for YCo2. This means
that electrons at the Fermi level interact with more than two sets of the Brillouin zone planes.
Among them, we take the one closest to the Fermi level as the most critical |G|2c . In the case of
YCo2, the value of |G|2c = 8 is selected. In this way, both e/a and |G|2c have been deduced for a total
of 52 Laves compounds including those presented in Figures 95–99. As shown in Figure 103, |G|2c is
distributed from 8, through 11, 12, 16 up to 20, corresponding to {220}, {311}, {222}, {400}, and {420} zone
planes of the fcc-lattice, respectively for all Laves compounds studied. This is, as we stressed earlier,
the classification into subgroups with respect to |G|2c [11,37]. All compounds belonging to a given
|G|2c in pseudogap systems are taken as a theoretical justification for the validity of the Hume-Rothery
electron concentration rule, since a pseudogap at the Fermi level guarantees the effectiveness of
Equation (1) through the interference phenomenon.
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Thirty-seven compounds are classified into the subgroup 1 with |G|2c = 8. Figure 104 is specifically
prepared to allow us to distinguish individual Laves compounds in the subgroup 1. One can clearly
see that the value of e/a is distributed over a rather wide range covering from the lowest one of 0.98 for
NaAu2 to the highest one of 1.59 for LaRu2. This indicates the breakdown of the Hume-Rothery electron
concentration rule for Laves compounds in subgroup 1. A wide distribution of e/a is attributable to
the following two reasons. As discussed above, more than two sets of zones around |G|2c contribute
in a constructive way to form a pseudogap, as typically shown in Figure 102c for YCo2. Second,
the value of e/a for each compound is strongly affected by those of constituent elements, as claimed in
Section 7.3 from the linear interpolation rule. In other words, the value of e/a for a given composition
reflects those of constituent elements. For example, the value of e/a = 1.59 for LaRu2 compound is close
to (e/a)av = 1.69, a composition average of (e/a)La = 3.0 and (e/a)Ru = 1.04, while e/a = 0.98 for NaAu2

is close to unity, as expected from a combination of two mono-valent elements Na and Au [11,37].
This implies that the Hume-Rothery electron concentration rule for isostructural compounds should
hold only when the values of e/a for the constituent elements are similar to each other, as mentioned in
regard to (TM)M3 (TM=Co, Ni, Rh and Ir, M=P, As, Sb) skutterudite compounds, TM3P (TM=Cr, Mn,
Fe and Ni) and (TM)P (TM=Cr, Mn, Fe and Co) compounds in Section 6.4.
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Let us direct our attention to the data shown in Figure 103 again. The Laves compounds
TMPt2 (TM = Sr, Y, Ba, La) along with MgCu2 may be grouped into the subgroup 2 with |G|2c = 11
corresponding to the set of {311} lattice planes. The values of e/a in the subgroup 2 are distributed
over the lowest one of 1.34 for MgCu2 to the highest one of 2.13 for LaPt2. The corresponding
values of (2kF)

2 turn out to be 9.80 and 13.35 for MgCu2 and LaPt2, respectively. They are indeed
positioned around |G|2c = 11, thereby lending support to the fulfillment of the interference condition,
i.e., Equation (1) with the accuracy of ±20%. Thus, we claim that Laves compounds in the subgroup 2
obey the Hume-Rothery electron concentration rule with e/a = 1.7 ± 0.4.
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Both PbAu2 and LaMg2 compounds are characterized by |G|2c = 12. A pseudogap is found across
the Fermi level in Au-6s, Au-6p and Pb-6s pDOSs in PbAu2. Similarly, it is located at the Fermi level in
Mg-3s and La-6s pDOSs in LaMg2. Thus, the possession of a common |G|2 = 12 assures us to claim
that a common e/a value of 2.3 ± 0.1 can be assigned to both PbAu2 and LaMg2 Laves compounds in
the subgroup 3.

There are six Al-based Laves compounds YAl2, BaAl2, ScAl2, LaAl2, CaAl2 and SrAl2 with
|G|2c = 16 and e/a ranging over 2.85 to 3.36. A pseudogap is found across the Fermi level in their
sp-partial DOSs. Hence, we claim that the set of lattice planes {400} plays a central role in the
interference phenomenon with electrons at the Fermi level and that all Al-based Laves compounds in
the subgroup 4 obey the Hume-Rothery electron concentration rule with e/a = 3.0 ± 0.3.

Finally, the CsBi2 compound in the subgroup 5 is also known to crystallize into the Laves structure
(cF24). The DOS across the Fermi level is mainly composed of Bi-6p states mixed with Cs-6p states.
There is essentially no contribution from Cs-5d and Cs-4f states, since they are located well above the
Fermi level. The value of e/a is determined to be 3.71 by applying the NFE (L = 20) method and agrees
reasonably well with 3.64 derived from the composition average of (e/a)Cs = 1.0 and (e/a)Bi = 5 [37].
As shown in Figure 103, the origin of its pseudogap can be described as arising from interactions of its
Fermi surface with the set of {420} lattice planes with |G|2c = 20.

Finally, Figure 105 shows FLAPW-Fourier-derived (e/a)compound as a function of nominal (e/a)av

obtained from a composition average of those of constituent elements for all Laves compounds studied.
A deviation from the former relative to the latter is found to be within ±20%. It is emphasized that an
agreement is generally within ±5% except for those, in which alloying environment-sensitive elements
in Groups 2 and 3 are employed as partner elements. This means that the linear interpolation rule can
be well applied in binary alloy systems but with some caution needed upon dealing with not only
alloying environment-sensitive elements Ca, Sc and Y but also Sr and Ba in Group 2 and La in Group 3
as constituent elements.
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7.5. Stabilization Mechanism of Laves Compounds

The stabilization mechanism of Laves compounds exhibiting diversified bonding styles has been
discussed in the past in terms of various factors such as atomic size, electronegativity, valence electron
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concentration (VEC) [57]. Here the parameter VEC employed in [57] is defined as the number of
valence electrons per atom including 3d + 4s electrons in the case of 3d-elements. They admitted
that “none of the developed models and theoretical calculations is able to give a valid description of stability
of Laves phases”. Obviously, the definition of their VEC is entirely different from e/a employed in the
present article. We consider VEC to have little to do with the interference phenomenon. Note that
e/a, or more strictly speaking, e/uc, i.e., the number of itinerant electrons per unit cell, is a notion
different from VEC and plays a key role in the formation of a pseudogap through the interference
phenomenon (see Section 4.9). The values of e/a are distributed over a wide range from 0.98 to 3.71
for Laves compounds studied. Nevertheless, we could show that a theoretical search for compounds
obeying the e/a = constant rule, i.e., the Hume-Rothery electron concentration rule can be pursued by
classifying the family of the Laves compounds into subgroups with respect to |G|2c .

To conclude Section 7, we have described results obtained from the FLAPW-Fourier analysis for Ca,
Sr and Ba in Group 2 and Sc, Y and La in Group 3 in the periodic table and determined their e/a values
by applying both local reading and NFE methods. The e/a values of 2.00, 2.94 and 3.15 need to be used
for Ca, Sc and Y, respectively, as elements as well as when they are alloyed with non-TM elements like
Al, Zn, etc. Instead, the e/a values of 1.56, 1.33 and 1.87 need to be used for Ca, Sc and Y, respectively,
when they are alloyed with TM 3d-, 4d- and 5d-elements in the periodic table. The e/a values of 1.96,
2.03 and 3.00 can be used for Sr, Ba and La, respectively, regardless of the atomic species of partner
elements involved. Thus, the alloying environment effects have been prominently observed only for Ca-,
Sc- and Y-compounds. The e/a values for 54 elements in the periodic table are summarized in Table 1,
including two distinct values for Ca, Sc and Y.

8. The FLAPW-Fourier Theory to Develop New Functional Materials

We have so far tried to elucidate the physics behind the Hume-Rothery electron concentration
rule by applying the FLAPW-Fourier theory to many intermetallic compounds including Al-, Zn-, Cd-,
P-based and inter-transition metal (TM) binary compounds. In particular, numerical data on the
number of itinerant electrons per atom, e/a, have been established for the first time for 54 elements
in the Periodic Table including a series of 3d-, 4d- and 5d-TM elements (see Table 1). Its usefulness,
we believe, is greatly enhanced by our confirmation for the validity of the linear interpolation rule,
which states that the value of e/a for any compound can be reproduced within the accuracy of ±10%
simply by taking a composition average of those of constituent elements. This allows us to make full
use of Table 1 in the future to design a new functional material by tuning e/a to a desired value.

In this last Section, we will finish up the present work by making one possible proposal in
developing new functional materials such as thermoelectric materials and/or transparent conducting
films by tuning e/a of a material to the value close to 4.0. We consider that compounds formed
by combining TM elements with elements in Groups 15 and 16 in the Periodic Table would be
promising candidates.

8.1. III-V Compounds

Blue light-emitting diodes (LED) and lasers have now become available everywhere in the world
after pioneering research of epitaxially growing high-quality gallium nitride film through tremendous
efforts by three Japanese Professors I. Akasaki and H. Amano [58] and S. Nakamura [59], to whom
the Nobel Prize in Physics was awarded in 2014. Before their invention, the red light-emitting diode
fabricated by growing a single crystal GaAs was also developed to the industrial level mainly in Japan.
Both GaN (hP4) and GaAs (cF8) are known to be typical of III-V semiconducting compounds with
energy gaps over 1.2 to 3.5 eV.

Figure 106a,b show the Ga- and As-partial DOSs for GaAs (cF8), respectively [37]. Both Ga and As
4s- and 4p-pDOSs are well separated from each other in the valence band, being taken as the evidence
for the possession of high covalency (see Section 3). It opens an energy gap of the order of 1 eV at the
Fermi level.
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Figure 19 (b) for symbols in (c) [37].

The Hume-Rothery plot and FLAPW-Fourier spectra for GaAs (cF8) are displayed in Figure 106c,d,
respectively [37]. The values of (2kF)

2 and e/a are determined to be 9.63 ± 1.00 and 3.91, respectively,
from the intersection of the NFE (L = 1) curve with the Fermi level. This is consistent with (e/a)av = 4.0
given by a composition average of (e/a)Ga = 3.0 and (e/a)As = 5. In other words, a linear interpolation rule
holds well. From the FLAPW-Fourier spectra, we can deduce |G|2c = 8, 11 and 12 in a good agreement
with that in Si (cF8) shown in Figure 11c. Thus, the origin of a gap in GaAs (cF8) can be discussed in
terms of the interference phenomenon involving {220}, {311} and {222} zone planes.

Now the argument above can remind us of an important message from the electron theory of
metals [60]: semiconductors and/or insulators tend to be formed, when e/a falls into four, since this is
the electron concentration to completely fill the valence band and to be either slightly overlapped with
or separated from the conduction band. The III-V compounds like GaN (hP4) and GaAs (cF8) are its
typical examples, together with Group 14 elements like Si (cF8) and Ge (cF8) in the Periodic Table.

8.2. Development of New Electronic Functional Materials with e/a = 4

Figure 107 depicts (e/a)compound derived from the FLAPW-Fourier theory for Al-TM and P-TM
(TM=Sc to Cu in Period 4 in the Periodic Table) compounds as a function of nominal e/a given
by a composition average of e/a of constituent elements listed in Table 1. Open circles indicate
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FLAPW-Fourier-derived e/a values for pure elements and are located on the line (e/a)compound = (e/a)av.
Here e/a values for non-TM elements are rounded off to integers: 2 for Mg and Ca, 3 for Al, Ga and
Sc, 4 for Si and Ge and 5 for P in a perfect agreement with the respective nominal valences. Instead,
the non-integer values listed in Table 1 are employed, as they are, for TM elements.
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assures us of the validity of the linear interpolation rule, as frequently discussed throughout the present 
article. Now researchers are allowed to estimate e/a value for any compounds simply by taking a 
composition average of e/a listed in Table 1 with the accuracy of ±10% in most cases or ±20% in worse 
cases. For example, the data for Mg3P2 (cI80) are positioned at (e/a)compound = 2.45 and (e/a)av = 3.2 well 
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Figure 107. (e/a)compound versus (e/a)av for Al-TM (•) and P-TM (•) compounds studied in the present
work, where TM covers from Sc to Cu in Period 4 in the Periodic Table. The data from Figures 54
and 74 are combined. The data for pure elements marked with open circles are located on the line
(e/a)compound = (e/a)av. Numerical data in Table 1 are rounded off to the nearest integer or valence for
simple elements but are used as they are for TM elements. The yellow gradation area is centered at
e/a = 4.0.

All the data points fall onto a universal line (e/a)compound = (e/a)av with the accuracy of±20%. This
assures us of the validity of the linear interpolation rule, as frequently discussed throughout the present
article. Now researchers are allowed to estimate e/a value for any compounds simply by taking a
composition average of e/a listed in Table 1 with the accuracy of ±10% in most cases or ±20% in worse
cases. For example, the data for Mg3P2 (cI80) are positioned at (e/a)compound = 2.45 and (e/a)av = 3.2
well below the line with the deviation of approximately −20% in Figure 107. As discussed in
Section 6.3.3, a large discrepancy in e/a for Mg3P2 (cI80) was attributed to the difficulty in constructing
a reliable NFE curve due to two relatively wide energy gaps shown in Figure 75b. We consider such
situations to occur but to be rather exceptional.

As is clear from Figure 107, there are a number of P-based compounds falling into the region
highlighted by yellow gradation centered at e/a = 4.0. They are qualified as materials opening either
a deep pseudogap or a true energy gap at the Fermi level. The P-compounds alloyed with TM and
non-TM elements with e/a = 4.0 ± 0.5 are listed in Tables 10 and 11, respectively. These compounds
are mere examples, where phosphorus is chosen as a host. There are a number of candidates in
combinations of other elements like As, Sb and Bi in Group 15 and also S and Se in Group 16 in the
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Periodic Table either with TM or with non-TM elements. They must be stable under ambient conditions
and should exhibit favorable semiconducting or deep pseudogap-bearing metallic characteristics.
Moreover, they must be environmentally-friendly and easy to fabricate. The compounds with elements
in Group 15 and 16 may not be so durable in practical use. However, their durability against oxidation
and mechanical stress may be improved, if they are alloyed with TM elements. Now we are hoping
that the present article arouses interests among researchers in Materials Science and opens up a new
field to design new functional materials by playing with e/a values listed in Table 1.

Table 10. P-TM compounds with e/a = 4.0 ± 0.5.

Compounds Pearson Symbol Energy Gap (eV) (2kF)2

× (2π/a)2 e/a (e/a)av

SiP oC48 1.2 35.2 4.55 4.56

GeP tI4 pseudogap 6.66 4.50 4.56

ScP cF8 pseudogap 10.02 4.15 4.03

TiP2 oP12 pseudogap 13.19 4.18 3.72

VP2 mC12 pseudogap 13.16 4.17 3.75

CrP2 mC12 pseudogap 12.55 3.88 3.72

MnP4 aP10 0.4 12.25 4.49 4.31

CoP3 cI32 pseudogap 26.24 4.2 4.12

NiP3 cI32 pseudogap 26.17 4.2 4.13

CuP2 mP12 0.84 12.59 3.9 3.75

Cu2P7 mC72 0.61 46.15 4.56 4.20

Table 11. P-(non-TM) compounds with e/a = 4.0 ± 0.5.

Compounds Pearson Symbol Energy Gap (eV) (2kF)2

× (2π/a)2 e/a (e/a)av

ZnP2 mP24 pseudogap 21.47 4.34 4.0

ZnP2 tP24 1.63 19.28 3.69 4.0

ZnP4 tP20 0.63 18.7 4.24 4.4

Mg3P2 cI80 1.6 32.68 2.45 3.2

MgP4 mP10 0.50 11.65 4.16 4.4

Ca5P8 mC26 1.13 20.79 3.82 3.85

CaP3 aP8 pseudogap 10.7 4.58 4.25
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Appendix A

A1. Mott and Jones [3] did not provide any remarks as to why the valence of Ni was assigned to be
zero. The value of e/a for Ni is deduced to be 1.16, as listed in Table 1 in the present article.

A2. Fibonacci chain is generated by algorithm such that two different tiles L and S are inflated with
the rule that L is replaced by LS and S is replaced by L in successive generations. It starts from L in
the 0-th generation, LS in the first generation, and LSL, LSLLS, LSLLSLSL, ... by repeating the rule
infinitely. The ratio L/S forms a chain 1/0, 1/1, 2/1, 3/2, 5/3, 8/5, ... and gradually converges into the
golden ratio τ = 1.618, ... This is called the Fibonacci chain. The n-th approximant can be generated by
terminating the procedure at the n-th generation [19,24].

A3. Here the phrase “orbital hybridization” refers to the orbital hybridization effects between unlike
atoms, i.e., Al and Mn in the present case. In general, the term “orbital hybridization” is also used to
describe the mixing of, say, 3s- and 3p-orbitals in Na to form a free electron-like electronic structure.

A4. A unit cell containing only a single atom is called a primitive unit cell, whereas that containing
more than two atoms may be referred to as a non-primitive unit cell. Both bcc and fcc belong to the
latter. Extinction rule occurs in systems with a non-primitive unit cell. In fcc, diffraction occurs when
three Miller indices h, k, l are all even or odd. In other words, diffraction from sets of lattice planes with
a mixture of even and odd indices is prohibited. In bcc, diffraction is prohibited when h + k + l is odd.

A5. The value of the parameter RMTKmax determining the number of basis functions is generally taken
between 6 and 10 [27]. In the 2/1-2/1-2/1 approximants containing 680 atoms per unit cell, the values
over 5.5 to 6.2 were employed [11,13].

A6. A computing time needed to complete SCF cycles depends on not only structure information such
as atomic positions of constituent atoms in the unit cell, lattice constants, space group but also the
band parameters such as the number of meshes, Nk, the maximum energy εmax, the cut-off parameter
RMTKmax. The value of Nk is generally taken to be 20× 20× 20(=8000) for small systems like bcc or fcc
phase. On the other hand, Nk must be reduced to 6× 6× 6(=216) for systems with unit cell containing
more than 100 atoms. Note that WIEN2k performs the calculation for ki only in the irreducible wedge
of the Brillouin zone. A choice of RMTKmax is also important. The larger the parameter, the more
computing time is needed. Instead, a too small value leads to the loss of accuracy [27].

A7. Since the FLAPW wave function is normalized to unity over a whole volume, the square of the
wave function in the interstitial region is not necessarily normalized to unity. Depending on the charge

inside the atomic spheres, the value of ∑
Gp

∣∣∣Cj
ki+Gp

∣∣∣2 is either higher or lower than unity [11].

A8. In the case of bcc lattice, the vector ki is expressed as
(

1
2

1
2 0
)

when the symmetry point N is

chosen. Now the electronic state
{∣∣2(ki + Gp

)∣∣}2 is reduced to (1 + 2Gx)
2 +

(
1 + 2Gy

)2
+ (2Gz)

2,
where Gp =

(
Gx Gy Gz

)
in units of 2π

a is a set of integers or Miller indices allowed to the bcc structure.
Thus, the vector 2

(
ki + Gp

)
becomes another reciprocal lattice vector. This is why we hereafter

rewrite it simply as G. When a given ki falls on symmetry points of the Brillouin zone, multiple

counting in ∑
∣∣∣Cj

ki+Gp

∣∣∣2 occurs. For example, when
{

2
∣∣ki + Gp

∣∣}2
= |G|2=18 in the gamma-brass
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(cI52), the summation covers contributions from 12 equivalent zones associated with G = (3 3 0),
(3 0 3), (0 3 3),

(
3 3 0

)
, etc. and 24 equivalent zones with (4 1 1), (1 4 1), (1 1 4),

(
4 1 1

)
, etc.

A9. In the case of α-Mn, the lattice constant a = 8.894 Å and 2π
a = 0.706 Å−1.

A10. The maximum Fourier coefficient is picked up for each energy eigen-value Ej at each ki.
The reciprocal lattice vector Gp is automatically fixed in this procedure. A multiple counting in
the summation occurs, when Ki is selected at symmetry points of the Brillouin zone.

A11. In compounds with a giant unit cell, multi-zone effects are strong enough to extend a pseudogap
more widely across the Fermi level, often resulting in a less visible and shallow pseudogap at the
Fermi level.

A12. The atomic structure data were collected from Pearson’s Handbook [29]. The Pearson symbol
for I-III-type Zintl compounds are referred to as cF16 [29]. This is wrong and should be replaced by
cF32 [41].

A13. In compounds with ionicity less than 50%, the change in e/a is within 1 to, at most, a few %, being
well hidden under the diameter of the data points (red circle) in Figure 79.
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