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Abstract: The ligand exchange in (n-Bu4N)2OsIVCl6 (n-Bu4N = tetra-n-butylammonium) leads to
the formation of the osmium(IV) heptacyanide, the first fully inorganic homoleptic complex of
heptacoordinated osmium. The single-crystal X-ray diffraction (SC-XRD) study reveals the pentagonal
bipyramidal molecular structure of the [Os(CN)7]3− anion. The latter being a diamagnetic analogue
of the highly anisotropic paramagnetic synthon, [ReIV(CN)7]3− can be used for the synthesis of the
model heterometallic coordination compounds for the detailed study and simulation of the magnetic
properties of the low-dimensional molecular nanomagnets involving 5d metal heptacyanides.
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1. Introduction

The cyanide ligand occupies a special place in coordination chemistry. The exclusive nature of
CN− species results from its capacity to act both as a σ-donor and a π-acceptor combined with
its negative charge and ambidentate character. The ability of the cyano group to link different
transition metal ions is applied for the construction of the diverse molecular assemblies. The history
of cyanometallate chemistry began long before the creation of the coordination theory by Alfred
Werner [1,2]. At the beginning of the 18th century, the German painter Diesbach by chance
prepared a dark-blue pigment [3]. Almost 300 years later this compound, the mixed iron cyanide
FeIII

4[FeII(CN)6]3·xH2O, named Prussian Blue became a focus of one of the most developed and
extensively studied fields of coordination chemistry [4,5]. Cyanide-based compounds were found
to act as photoswitchable magnetic solids [6–10], antidotes for radioactive poisoning [11], molecular
sieves [12], hydrogen storage materials [13,14], high-temperature molecular magnets [15–17] and
low-dimensional nanomagnets [18–22].

The research in the area of cyanides has been the subject of several reviews over the
years [4,5,23–26]. However, the scarce amount of information on homoleptic osmium cyanide
complexes is astounding [23,27–32]. Only cyanometallates(II) and (III) were structurally characterized
to date despite the existence of higher oxidation states for osmium. Moreover, the homoleptic
coordination compounds of Os with purely inorganic ligands comprise mainly hexaligated complexes,
unlike its nearest neighbor of the 5d row, Re, which demonstrates coordination numbers from six
to eight [33–36]. The recent isolation of heptacyanotungstate(IV) as a salt (n-Bu4N)3[WIV(CN)7]
(n-Bu4N = tetra-n-butylammonium) [37] has widened the family of rare heptacyanometallate anions.
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Here, we present the pioneering results in osmium coordination chemistry involving the synthesis
and exhaustive structural study of the (n-Bu4N)3[OsIV(CN)7], (1)—the only homoleptic complex with
heptacoordinated osmium (Figure 1), which also represents the first example of fully characterized
cyanoosmate(IV).

2. Experimental

2.1. Materials and Physical Methods

Dry, stored over molecular sieves solvents, OsO4 (99.8%) and tetra-n-butylammonium salts were
purchased from Johnson Matthey and Sigma-Aldrich, respectively. The (n-Bu4N)2[OsCl6] was obtained
by the precipitation from aqueous solution of H2[OsCl6] [38] using (n-Bu4N)Cl. Elemental analyses
were performed by means of a Euro-Vector 3000 analyzer (Eurovector, Redavalle, Italy). IR spectra
were recorded in the solid state with a NICOLET spectrophotometer (Thermo Electron Scientific
Instruments LLC, Madison, WI, USA) in the 375–4000 cm−1 range. Mass spectra were obtained using
an ion trap mass spectrometer (LCQ, Thermo, Bremen, Germany) equipped with an electro spray (ESI)
ion source in the positive and negative ion mode. The spray voltage for the positive and negative
ion mode is respectively 4 kV and −3 kV. The capillary transfer temperature is 200 ◦C. Magnetic
susceptibility data were collected over a 2–300 K temperature range with an applied field of 5 T using
a MPMS SQUID magnetometer (Quantum Design, Inc., San Diego, CA, USA). The raw data were
corrected for the sample holder and for the diamagnetic contribution of the constituent atoms using
Pascal’s constants [39].
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2.2. Synthesis

(Bu4N)3[Os(CN)7]·0.5H2O (1). A mixture of (n-Bu4N)2[OsCl6] (1 g, 1.13 mmol) and (n-Bu4N)CN
from freshly opened bottle (2.15 g, 8 mmol) in dimethylformamide (DMF) (3 mL) was heated at
100 ◦C for 16 h. After the cooling to ambient temperature the green-bluish solution was reduced
in volume to 1 mL using rotary evaporator, and tetrahydrofuran (THF) (10 mL) was added to
the reaction mixture. The clear yellow crystalline product was formed after two days, which
was filtered off and washed with 3 × 2 mL of THF. Yield: 0.208 g (17%). (Found: C, 59.8; H,
10.0; N, 12.7. C55H109N10O0.5Os (Mw = 1108.72): requires C, 59.47; H, 9.9; N, 12.62%.) ESI-MS in
MeCN (negative): m/z 1956 {(n-Bu4N)5[Os(CN)7]2}−, 1931 {(n-Bu4N)5[Os(CN)7] [Os(CN)6]}–, 858
{(n-Bu4N)2[Os(CN)7]}–, 832 {(n-Bu4N)2 [Os(CN)6]}–, 294 {[Os(CN)4]}–. ESI-MS in CH3CN (positive):
m/z 1343 {(n-Bu4N)4[Os(CN)7]}+, 1317 {(n-Bu4N)4[Os(CN)6]}+. IR, cm–1: 418, 464, 500, 515, 603, 734, 799,
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884, 1028, 1059, 1108, 1154, 1382, 1463, 1487, 1651, 2077, 2108, 2131, 2875, 2962, 3465. Crystals suitable
for X-ray diffraction study were obtained by slow diffusion of THF vapors in MeCN solution of 1.

2.3. X-ray Crystallography

The diffraction experiment for 1 was performed on a SuperNova diffractometer equipped with
Atlas detector and a micro-source CuKα tube. The absorption corrections were applied empirically
using equivalent reflections [40]. The structure was solved and refined with SHELX-97 program [41]
using least squares method on |F|2 in anisotropic approximation for non-H atoms. More details are
presented in Table 1. Hydrogen atoms were located in idealized positions and refined in isotropic
approximation using the riding on pivot model. One of the n-butyl groups is disordered over three
close positions with 0.45, 0.35 and 0.2 occupancies. The disordered atoms were refined in isotropic
approximation, and some geometric restraints have to be applied for the disordered group. Powder
X-ray diffraction measurements were performed with Cu-Kα radiation (λ = 1.5418 Å) using an PAN
analytical X’Pro powder diffractometer (PANalytical Inc., Almelo, The Netherlands).

Table 1. Single-crystal X-ray diffraction analysis data and structure refinement parameters of 1.

Crystal Data

Chemical formula (C16H36N)3(C7N7Os)(H2O)0.5
Mr 1108.72

Crystal system, space group Monoclinic, P21/c
Temperature (K) 150

a, b, c (Å) 22.8582(3), 23.0300(4), 23.0373 (3)
β (◦) 90.840 (1)

V (Å3) 12126.1 (3)
Z 8

F(000) 4712
Radiation type Cu Kα

µ (mm−1) 4.28
Dcalcd (g·cm−1) 1.215
Crystal shape rod

Color pale yellow
Crystal size (mm) 0.11 × 0.07 × 0.02

Data Collection

Super Nova diffractometer (Atlas), Single source at offset
Absorption correction Multi-scan

Tmin, Tmax 0.900, 1.000
Number of measured, independent and observed

[I > 2σ (I)] reflections 42839, 23015, 14167

Rint 0.056
(sin θ/λ)max (Å−1) 0.619

Refinement

R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.142, 0.93
No. of reflections 23015
No. of parameters 1234
No. of restraints 15

H-atom treatment H-atom parameters constrained
∆〉max, ∆〉min (e Å−3) 4.39, −1.51

3. Results and Discussion

3.1. Synthesis and Characterization

The number of osmium homoleptic complex cyanides is limited to the hexacoordinated
coordination compounds of two metal oxidation states—two and three. If the hexacyanoosmate(II)
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was known for a long time [42], its crystal structure having been determined for the sodium salt
Na4[OsII(CN)6]·10H2O [28], the paramagnetic hexacyanoosmate(III) was only recently structurally
characterized and magnetically investigated as Ph4P+ salt [30] despite the successful synthesis of
n-Bu4N analog almost 50 years ago [43]. Both paramagnetic cyanides were prepared starting from the
diamagnetic precursor K4[OsII(CN)6]·3H2O.

As cyanide is a stronger ligand than halides, a promising route to cyanometallates is an exchange
of the halides in the corresponding [MHaln]m− complexes by the CN– anion (Scheme 1). Inspired
by a successful ligand exchange preparation of (n-Bu4N)3[ReIV(CN)7] performed by M.V. Bennett
and J.R. Long [36], we have adapted this procedure for the synthesis of osmium cyanides starting
from (n-Bu4N)2OsIVCl6. Indeed, after the addition of the cyanide agent to a cold solution of
(n-Bu4N)2OsIVCl6 in dry DMF followed by the heating of the reaction mixture at 100 ◦C for 16 h, a dark
green-bluish solution was obtained (see Experimental Section). The layering of THF on the reaction
mixture gave a batch of clear yellow crystals, which according to both elemental and SC-XRD analyses
were tetra-n-butylammonium heptacyanoosmate(IV) hemihydrate, (n-Bu4N)3[Os(CN)7]·0.5H2O (1).
In the IR spectrum of 1 (Supplementary Materials, Figure S1), the characteristics of the H2O νOH

stretch at 3465 cm−1 and a set of three cyanide stretches at 2131, 2108, 2077 cm−1 are present which are
in excellent agreement with the data for (n-Bu4N)3[Re(CN)7] [36] (2135sh, 2114 and 2074 cm−1)
(Supplementary Materials, Figure S2). Magnetic measurements at 2–300 K have confirmed the
diamagnetic character of the compound.

Km[MHal6] + mBu4N(Hal)→ (Bu4N)m[MHal6]
(Bu4N)m[MHal6] + (6+x)Bu4N(CN)→ (Bu4N)m+x[M(CN)6+x]

Scheme 1. Ligand exchange procedure.

3.2. Crystal Structure Description

X-ray analysis of a single crystal of 1 revealed that both symmetrically non-equivalent [Os(CN)7]3–

anions adopt the pentagonal bipyramidal geometry (Figure 2). Bond lengths and bond angles for the
anions are summarized in Table 2. The complexes have C1 symmetry being in general position of
the monoclinic P21/c space group. However, the geometry of the coordination polyhedra is almost
undistorted. The carbon atoms of the five equatorial cyanide ligands form a planar equilateral pentagon
(deviations of the C atoms from the equatorial plane are ~0.15◦) with angular distortion that does
not exceed 2◦ are compared with the ideal value 360◦/5 = 72◦ for C-Os-C angles. The axial atoms
are slightly tilted with respect to the equatorial plane; the maximal distortion is ~4◦. The Os-C
distances fall within the range of 2.046(7)–2.093(7) Å and the apical Os-C distances vary in the
range of 2.043(8)–2.090(8) Å. These values are comparable to those observed in related cyanide
complexes (n-Bu4N)3[Re(CN)7] (2.064(10)–2.123(11) Å) and K4[Re(CN)7]·2H2O (2.077(3)–2.099(6) [36]
and 2.077(3) Å) [44], respectively.
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Table 2. Some geometrical characteristics of [Os(Cn)7]3– in 1.

Bond Bond Length, Å Bond Bond Length, Å

Os1–C11 2.093 (7) Os2–C21 2.070 (6)
Os1–C12 2.066 (8) Os2–C22 2.079 (7)
Os1–C13 2.046 (8) Os2–C23 2.046 (7)
Os1–C14 2.054 (7) Os2–C24 2.055 (6)
Os1–C15 2.066 (8) Os2–C25 2.072 (6)
Os1–C16 2.043 (8) Os2–C26 2.060 (7)
Os1–C17 2.090 (8) Os2–C27 2.078 (7)
N11–C11 1.124 (10) N21–C21 1.155 (9)
N12–C12 1.173 (10) N22–C22 1.142 (9)
N13–C13 1.164 (10) N23–C23 1.171 (9)
N14–C14 1.161 (10) N24–C24 1.158 (8)
N15–C15 1.141 (10) N25–C25 1.153 (9)
N16–C16 1.180 (10) N26–C26 1.166 (9)
N17–C17 1.114 (10) N27–C27 1.145 (9)

Bond Angle Angle, ◦ Bond Angle Angle, ◦

C11–Os1–C12 71.6 (3) C21–Os2–C22 73.3 (3)
C12–Os1–C13 71.3 (3) C22–Os2–C23 72.9 (3)
C13–Os1–C14 73.9 (3) C23–Os2–C24 72.9 (3)
C14–Os1–C15 73.1 (3) C24–Os2–C25 72.6 (3)
C15–Os1–C11 71.9 (3) C25–Os2–C21 70.9 (3)
C16–Os1–C17 179.3 (3) C26–Os2–C27 178.7 (3)

The [Os(CN)7]3– anions are well separated from each other by a cationic surrounding involving
six n-Bu4N+, each tetra-n-butylammonium unit (Supplementary Materials, Figure S4) having two
nearest heptacyanoosmate moieties (Figure 2). Only one complex [Os(CN)7]3– anion, comprising a
Os(1) center, is involved in a hydrogen bonding with a water molecule, forming an intermolecular
N . . . O contact of 2.88(1) Å.

The powder diffractogram of the polycrystalline sample for 1 corresponds well to the
diffractogram calculated from the single-crystal data (Figure 3).
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To the best of our knowledge, it is the first structurally characterized heptacoordinated osmium
complex involving seven equivalent ligands. The coordination number of seven and more is known for
the Os central atom only in carbonyl-containing clusters as well as heteroleptic mononuclear hydrides
of the metal [45–47]. The neutral osmium heptafluoride, reported by O. Glemser et al. [48], was not
reproduced by H. Shorafa and K. Seppelt later [49]. Moreover, the theoretical calculations performed
by A. K. Srivastava and N. Misra demonstrate that [OsF7] is unstable and dissociates into OsF6 and
F fragments, unlike its hypothetical anion [OsF7]–, which should be stable with respect to loss of
fluoride [50].

3.3. Magnetic Properties

Complex 1 is diamagnetic (see Supplementary Materials, Figure S5) due to the d4 electronic
configuration of the Os4+ ion in the pentagonal bipyramidal environment (Figure 4). However,
being a diamagnetic analogue of the highly anisotropic paramagnetic complex, [ReIV(CN)7]3−

can be used for the synthesis of the model heterometallic coordination compounds for
the detail study and simulation of the magnetic properties of low-dimensional molecular
nanomagnets involving 5d metal heptacyanides. For example, in the case of the single-molecule
magnet, Et4N[MnIII(5-Br-salen)MeOH]2[RuIII(CN)6] [51–53], an isostructural complex incorporating
diamagnetic [IrIII(CN)6]3−, was used to determine the parameters of magnetic anisotropy for the
complex [MnIII(5-Br-salen)MeOH]+, which is a part of the former [54].

Crystals 2016, 6, 102 6 of 9 

 

theoretical calculations performed by A. K. Srivastava and N. Misra demonstrate that [OsF7] is 
unstable and dissociates into OsF6 and F fragments, unlike its hypothetical anion [OsF7]–, which 
should be stable with respect to loss of fluoride [50]. 

3.3. Magnetic Properties 

Complex 1 is diamagnetic (see Supplementary Materials, Figure S5) due to the d4 electronic 
configuration of the Os4+ ion in the pentagonal bipyramidal environment (Figure 4). However, 
being a diamagnetic analogue of the highly anisotropic paramagnetic complex, [ReIV(CN)7]3− can be 
used for the synthesis of the model heterometallic coordination compounds for the detail study and 
simulation of the magnetic properties of low-dimensional molecular nanomagnets involving 5d 
metal heptacyanides. For example, in the case of the single-molecule magnet, 
Et4N[MnIII(5-Br-salen)MeOH]2[RuIII(CN)6] [51–53], an isostructural complex incorporating 
diamagnetic [IrIII(CN)6]3−, was used to determine the parameters of magnetic anisotropy for the 
complex [MnIII(5-Br-salen)MeOH]+, which is a part of the former [54]. 

dz2

dxy dx2- y2

dxz dyz

pentagonal bipyramidal

En
er
gy

dz2

dxy dx2- y2

dxz dyz

pentagonal bipyramidal

En
er
gy

 
Figure 4. The qualitative d-orbital energy-splitting diagram for pentagonal bipyramidal geometry 
and the ground-state electronic configuration of 1. 

4. Conclusions and Perspectives 

The ligand exchange process in (n-Bu4N)2OsIVCl6 was used for the synthesis of the osmium(IV) 
heptacyanide. The latter, prepared as its tetra-n-butylammonium salt, is the first structurally 
characterized purely inorganic homoleptic complex anion of osmium involving seven ligands. The 
pentagonal bipyramidal structure of the anion [Os(CN)7]3− was confirmed by single-crystal XRD. 
The discovery of compound 1 is an outstanding result in the coordination chemistry of osmium. 

We are working now on the development of an improved synthetic protocol in order to obtain 
1 in higher yield which will allow us to obtain more information about their properties both in solid 
and solution. Furthermore, as [OsIV(CN)7]3− is a diamagnetic analogue of [ReIV(CN)7]3−, it therefore 
can be used for the synthesis of the model systems for [(MparaL)Re(CN)7]m−, the highly anisotropic 
heterobimetallic molecular magnetic materials, to experimentally determine the magnetic 
anisotropy contribution of their paramagnetic constituent [MparaL]n+. In the near future we have the 
intention to synthesize 1D polymer (Ph4P)2[Mn(acacen)Re(CN)7], a rhenium congener of the 
recently studied single-chain magnet (Ph4P)2[Mn(acacen)Os(CN)6] [22] and its model compound 
(Ph4P)2[Mn(acacen)Os(CN)7] for better understanding the magnetic properties of the former. 

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4352/6/9/102/s1, 
Figure S1: IR spectrum of (n-Bu4N)3[Os(CN)7]·0.5H2O (1) (reflectance), Figure S2: CN– valance stretch region in 
the IR spectra of: (n-Bu4N)3[Os(CN)7](H2O)0.5 (red) and (n-Bu4N)3[Re(CN)7] (black) (reflectance), Figure S3: 
MS-ESI spectrum of the reaction mixture of 1: (a)-cationic part; (b) and (c)-anionic part, Figure S4: The crystal 
packing in 1, Figure S5: The temperature dependence for the effective magnetic moment of the polycrystalline 
sample of 1. CCDC 1020688 (Bu4N)3[Os(CN)7]·0,5H2O contains the supplementary crystallographic data for this 
paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via 
www.ccdc.cam.ac.uk/ data_request/cif. 

Figure 4. The qualitative d-orbital energy-splitting diagram for pentagonal bipyramidal geometry and
the ground-state electronic configuration of 1.

4. Conclusions and Perspectives

The ligand exchange process in (n-Bu4N)2OsIVCl6 was used for the synthesis of the osmium(IV)
heptacyanide. The latter, prepared as its tetra-n-butylammonium salt, is the first structurally
characterized purely inorganic homoleptic complex anion of osmium involving seven ligands.
The pentagonal bipyramidal structure of the anion [Os(CN)7]3− was confirmed by single-crystal
XRD. The discovery of compound 1 is an outstanding result in the coordination chemistry of osmium.

We are working now on the development of an improved synthetic protocol in order to obtain 1
in higher yield which will allow us to obtain more information about their properties both in
solid and solution. Furthermore, as [OsIV(CN)7]3− is a diamagnetic analogue of [ReIV(CN)7]3−,
it therefore can be used for the synthesis of the model systems for [(MparaL)Re(CN)7]m−, the highly
anisotropic heterobimetallic molecular magnetic materials, to experimentally determine the magnetic
anisotropy contribution of their paramagnetic constituent [MparaL]n+. In the near future we have
the intention to synthesize 1D polymer (Ph4P)2[Mn(acacen)Re(CN)7], a rhenium congener of the
recently studied single-chain magnet (Ph4P)2[Mn(acacen)Os(CN)6] [22] and its model compound
(Ph4P)2[Mn(acacen)Os(CN)7] for better understanding the magnetic properties of the former.
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