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Abstract: A meshless approximation and local integral equation (LIE) formulation are proposed
for elastodynamic analysis of a hollow cylinder made of quasicrystal materials with decagonal
quasicrystal properties. The cylinder is assumed to be under shock loading. Therefore, the general
transient elastodynamic problem is considered for coupled phonon and phason displacements and
stresses. The equations of motion in the theory of compatible elastodynamics of wave type for
phonons and wave-telegraph type for phasons are employed and can be easily modified to the
elasto-hydro dynamic equations for quasicrystals (QCs). The angular dependence of the tensor of
phonon–phason coupling coefficients handicaps utilization of polar coordinates, when the governing
equations would be given by partial differential equations with variable coefficients. Despite the
symmetry of the geometrical shape, the local weak formulation and meshless approximation are
developed in the Cartesian coordinate system. The response of the cylinder in terms of both phonon
and phason stress fields is obtained and studied in detail.

Keywords: quasicrystals; phonon and phason fields; elastodynamic analysis; hollow cylinder; local
integral equations; meshless approximation

1. Introduction

The observation of five-fold rotational symmetry by the electron diffraction patterns with bright
diffraction spots in a rapid cooled Al–Mn alloy in April 1982 by Shechtman [1] yields surprising
discoveries on the structure of matter and its properties. Since the five-fold rotational symmetry
was in contradiction with the basic laws of the symmetry of crystals and the pattern also did not
exhibit translational periodicity, this discovery finally resulted in redefinition of the concept of crystals,
and the order is now associated not only with periodicity but also with quasi-periodicity. Soon
after that discovery, five-fold rotational symmetry and three-dimensional icosahedral quasicrystals
were found. Now, we also know about pentagonal, octagonal, decagonal and twelve-fold decagonal
quasicrystals, which are two-dimensional quasicrystals with quasi-periodic atomic arrangement along
two directions and periodic along the third direction, which is just the direction of 5-, 8-, 10-, and 12-fold
rotational symmetry axes, respectively. The planar quasicrystals are different from the two-dimensional
ones, since the former belong to a two-dimensional structure (without the third dimension) with a
quasiperiodic atomic arrangement. In one-dimensional quasicrystals, the atomic arrangement is
quasiperiodic along one axis, and periodic along the plane perpendicular to the axis. The icosahedral
and decagonal quasicrystals present the majority of observed quasicrystals. It should be stressed that
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the unusual structure of quasicrystals leads to a series of properties different from those of crystals.
The thermal as well as electrical conductivity of quasicrystals is lower than that of the conventional
metals. Due to the lack of periodicity, the Bloch theorem and Brillouin zone concept are inapplicable
and the electronic structure as well as electronic energy spectra of quasicrystals exhibit different
properties than crystals. Moreover, no conservative slip along crystallographic planes can be allowed
in quasicrystals, which causes quasicrystals to be hard and brittle. Quasicrystals are deformable
under applied external sources, and the physical basis of the elasticity of quasicrystals is substantially
different from the classical elasticity [2,3]. The Landau theory is mostly used on elementary excitations
and symmetry-breaking of condensed matter. The other approach is based on the unit cell description
based on the Penrose tiling.

The numerical simulations play an important role in the investigation of phenomena in new
materials as well as in design of structural elements. Some exact solutions have been presented for
one-dimensional cases in beams and plates made of quasicrystals [4,5]. Yang et al. [5] proposed
an exact solution for analysis of plates subjected to surface loading and made of one-dimensional
orthorhombic quasicrystal. They obtained the displacement and stress fields in a sandwich plate with
simply supported boundary conditions, which was assumed to be made of quasicrystals and crystals
with two different stacking sequences.

One of the most important analyses in engineering applications is elastodynamic analysis of
structures. The structures made of quasicrystals (QCs) may be under dynamic and transient loadings.
Thus, the general dynamic theory for QCs should be used to obtain the realistic dynamic behaviors
of QCs. There are some theories for the description of dynamic behaviors of QCs, which were
presented in previously published papers. Recently, the importance of them are addressed in a
research paper by Agiasofitou et al. [6], of which the most important of them are the elastodynamic
properties of wave types for QCs presented by Fan et al. [2], Shi [7] and Fan [3]. A minimal model of
the phonon–phason elastodynamic, which is a combination of models based on wave type and
hydrodynamics of QCs, was proposed by Rochal et al. [8]. This model was adopted by many
researchers as the elasto-hydrodynamics of QCs [9]. In another work, the icosahedral quasicrystals with
inclusion of the pinning effect is dynamically analyzed using a minimal model of the phonon–phason
dynamics considering resonant attenuation of low-frequency acoustic waves in the temperature range
corresponding to thermal activation of phasons by Kozinkina et al. [10]. Recently, an elastodynamic
model of the wave-telegraph type was proposed for the description of dynamic behaviors of QCs by
Agiasofitou et al. [6].

There are some computational methods for solving the governing equations based on various
elastodynamic models of QCs. For example, recently, the meshless local Petrov–Galerkin (MLPG) was
successfully used by Sladek et al. [11] for bending analysis in 1D orthorhombic QCs under static and
dynamic loadings. They used the Bak and elasto-hydrodynamic models for phason governing equation
in the elastodynamic case of their problem. In addition, the MLPG method was employed for analysis
of initial-boundary value crack problems in decagonal QCs by Sladek et al. [12]. There are some
analytical techniques that can be applied to elastodynamic analysis of QCs, and were successfully used
in other elastodynamic or thermoelasticity analyses. Hosseini et al. [13] proposed an analytical method
based on series expansions for solutions of elastodynamic problems in functionally graded thick
hollow cylinders under shock loading. In another work, they used the proposed analytical method for
coupled thermoelasticity analysis based on Green–Naghdi theory (without energy dissipation) [14].
Wang et al. [15] presented analytical solutions for some defect problems in 1D hexagonal and 2D
octagonal quasicrystals.

A fundamental solution was proposed for the time-dependent differential equations of anisotropic
elasticity in 3D quasicrystals using the Fourier transform with respect to the space variables and matrix
transformations by Cerdik Yaslan [16].

In this paper, we present an effective numerical method for dynamic analysis of cylinder made
of 2D decagonal QCs while assuming translational symmetry along the axis of the cylinder. The
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conventional wave propagation equation is used for description of phonon waves while the dynamics
of phasons is described by the wave–telegraph equation. Recall that the wave-telegraph equation
can be easily modified to a diffusion type equation used in the elasto-hydrodynamic model of QCs.
The governing equations of motions and constitutive equations for QCs cylinder are formulated
and the utilization of the polar coordinate system is discussed. Then, the equations of motions in
terms of momenta and stresses are considered in a local weak sense and the Local Integral Equations
(LIE) are derived. The meshless approach is used for approximation of both the phonon and phason
displacements, and the stress tensors are approximated by using the constitutive relationships and
derivatives of approximated displacements. The dynamic response of the QC cylinder is studied in
detail while presenting the comparison of results by using various formulations for QCs dynamics.
Furthermore, the influence of the quasi periodicity (quasi periodic arrangement of atoms in plane
orthogonal to the cylinder axis) on the angular dependence of the response of the QC hollow cylinder
on the angularly symmetric loading is also studied.

2. Mathematical Formulations

Similar to other aperiodic crystals, quasi-periodicity induces new degrees of freedom. The Landau
phenomenological theory on the symmetry-breaking of condensed matter [17] played the central role
in the development of elasticity theory of quasicrystals and has been widely acknowledged. In many
physical systems (classical or quantum), the motion presents the discrete spectrum (corresponding
to an eigenvalue problem of a certain operator from the mathematical point of view), the lowest
energy level state is called ground state, and that beyond the ground state is called the excited state.
According to the Debye and Born theory of crystal lattices, the propagation of the lattice vibration
under the long-wavelength approximation can be seen as continuum elastic waves. The quanta
of lattice vibration (the smallest portion of energy of the elastic wave) is phonon (elastic waves
belong to acoustic waves). Unlike the photon, the phonon is not an elementary particle, but, in the
sense of quantization, the phonon exhibits natural similarity to elementary particles (phonons are
quasi-particles emerging from the quantization of elastic waves in linearized elastic setting). It is
known that standard liquid exhibits arbitrary translational as well as arbitrary rotational symmetry,
and the periodicity of crystals breaks these symmetries of liquid. According to the Landau theory,
the phonon is elementary excitation resulting from symmetry-breaking in the transition from liquid
phase to crystal. In transition from crystals to quasicrystals, the break of periodic symmetry of
crystals results in new elementary excitation called phasons. Thus, quasi-periodicity (similar to other
aperiodic crystals) induces new degrees of freedom (phason displacements), but the phason modes
in quasicrystals present different nature, i.e., the motion of atoms exhibits discontinuous jump rather
than the long-wavelength propagation. The phason displacements describe relative atomic shifts,
which assure quasi-periodicity of the atomic distribution. Hence, the phason field is insensitive to
translations of coordinate frames in the physical space. Since we shall deal with quasicrystals within the
phenomenological theory of continuum mechanics, the adjectives phonon and phason will be utilized
just to distinguish between the displacements known in classical elasticity (phonon displacements)
and new degrees of freedom induced by the quasi-periodicity in quasicrystalline materials (phason
displacements).

Within linear elasticity, elastic free energy of quasicrystals consists of three types of quadratic
terms: phonon–phonon, phason–phason and phonon–phason coupling terms [3]. Then, the
constitutive laws are given as:

σij = cijklεkl + Rijklωkl (σ = c : ε + R : ω) , Hij = Rklijεkl + Kijklωkl (H = ε : R + K : ω) (1)
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where σij and Hij are the phonon and phason stresses, respectively, while the corresponding phonon
strains εkl and phason strainsωkl are defined in terms of gradients of the phonon displacements ui(x, t)
and phason fields wi(x, t) as:

εij(x, t) =
1
2
[
ui,j(x, t) + uj,i(x, t)

]
ε = (u∇+∇u) /2, ωij(x, t) = wi,j(x, t) ω = w∇ (2)

Recall that ωkl is not symmetric, while εkl is a symmetric tensor (the rigid body rotations have no
contribution to deformation energy). The tensors of material coefficients and coupling coefficients are
given as [3]:

cijkl = c12δijδkl + c66(δikδjl + δilδjk), c66 = (c11 − c12)/2

Kijkl = K1δikδjl + K2

(
δijδkl − δilδjk

)
Rijkl = R

[(
δi1δj2 + δi2δj1

)
ε3lk +

(
δi1δj1 − δi2δj2

)
δkl
] (3)

where c11, c12, K1, K2, and R are five constants characterizing the material properties of quasi-crystals,
and ε3lk is the permutation symbol with ε123 = 1. Remember the following symmetry relationships,
which are satisfied by the tensors of material coefficients:

cijkl = cklij = cjikl = cijlk, Kijkl = Kklij, Rijkl = Rjikl (4)

In problems for a hollow cylinder with translational symmetry along the cylinder axis, the
plane elasticity conditions are applicable and polar coordinates are appropriate for modelling of
geometry. Performing the transformation from the Cartesian to polar components of tensors of
material coefficients, we get the constitutive laws in polar coordinate system

σrr

σθθ
σrθ
σθr

 =


c11 c12 0
c12 c11 0
0 0 c66

0 0 c66


 εrr

εθθ
2εrθ

+ R


cos2θ cos2θ −sin2θ sin2θ
−cos2θ −cos2θ sin2θ −sin2θ
−sin2θ −sin2θ −cos2θ cos2θ
−sin2θ −sin2θ −cos2θ cos2θ




ωrr

ωθθ

ωrθ
ωθr

 (5)


Hrr

Hθθ

Hrθ
Hθr

 = R


cos2θ −cos2θ −sin2θ
cos2θ −cos2θ −sin2θ
−sin2θ sin2θ −cos2θ
sin2θ −sin2θ cos2θ


 εrr

εθθ
2εrθ

+


K1 K2 0 0
K2 K1 0 0
0 0 K1 −K2

0 0 −K2 K1




ωrr

ωθθ

ωrθ
ωθr

. (6)

It is seen that the tensor of coupling coefficients is position dependent in a plane perpendicular
to the periodic symmetrical axis of quasicrystals. Thus, the angular symmetry is inapplicable in
such a quasicrystal cylinder even if the loading and boundary conditions were angularly symmetric.
Moreover, the expressions for the phonon as well as phason strains and stresses are more harmful in the
polar coordinate system than in the Cartesian coordinate system, and the governing equations in polar
coordinates would be given by partial differential equations with variable coefficients. Therefore, the
utilization of the polar coordinate system seems to be inappropriate in the considered problem despite
the angular symmetry of the geometrical shape. Nevertheless, the constitutive laws are symmetric
with respect to rotations on the angle equal to π as can be seen from the representations of the tensors
of material coefficients in Equations (5) and (6) in the polar coordinate system.

The equations of motion in the theory of compatible elastodynamics of wave-telegraph type of
quasicrystals in terms of the momenta and stresses take the form [4]:

ρ
..
ui − σij,j = fi

(
ρ

..
u− σ · ∇ = f

)
(7)

ρ̃
..
wi − Hij,j − g f r

i = gi

(
ρ̃

..
w−H · ∇ − g f r = g

)
(8)

where fi, gi are the conventional (phonon) body force density and a generalized (phason) body force
density, respectively, while g f r

i = −Dij
.

wj is the frictional force (dissipative force) vector. Recall the
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principal difference between fi and gi. There are no bulk external fields acting on phason degrees
of freedom, except we presume phason inertia [18–20]. However, it is proven that bulk phason
self-action which has both the dissipative (frictional force) and conservative components with the
latter being dependent on the phason field [20]. The phason self-action is inside the material elements
in contrast to external actions. In the isotropic case, Dij = Dδij and D > 0 is the phason friction
coefficient. Introduction of the constitutive laws into Equations (7) and (8) yields the equations of
motion for phonon and phason displacements. Both of these equations of motion are hyperbolic
partial differential equation (PDE) with the phonon modes being described by a wave type equation
while the phason modes by a telegraph type PDE. The latter equation leads to waves damped in
time and finite propagation velocity. Since these two equations of motion are coupled, the phonon
dynamics are affected by phason dynamics and vice versa. Recall that this model also includes two
particular models developed before the Agiasofitou and Lazar models occur [6]: (i) the elastodynamic
model of wave type (ρ̃ = ρ, D = 0) could describe phason waves with finite velocity but without
attenuation; (ii) the hydrodynamic and/or the elasto-hydrodynamic model (ρ̃ = 0, D 6= 0) support a
diffusion type equation for the dynamics of the phason field. However, as is well known, the diffusion
equation supports exclusively an infinite velocity of propagation. The physically inadmissible velocity
of information propagation can be overcome by replacing the parabolic PDE by the hyperbolic one.
In order to model waves damped exponentially in time and propagating with finite velocity as
observed experimentally [21,22], Agiasofitou and Lazar [6] introduced a telegraph type equation for
phason displacements. As shown above, utilization of the wave-telegraph equation enables us to step
towards both the wave type and diffusion type description of phason dynamics by proper choice of
the coefficients ρ̃ and D.

Since initial-boundary value problems for the considered system of PDE are rather complicated
for finding analytical solutions, we propose combining the Laplace transformation technique (with
respect to the time variable) with a spatial discretization and approximation. Moreover, the application
of the discretization to governing equations for displacements seems to be awkward, and we apply it
directly to Equations (7) and (8) in a weak sense.

3. Weak Formulation of Local Integral Equations (LIEs)

Eliminating the time variable in governing Equations (7) and (8) by using the Laplace
transformation, the governing equations for Laplace transforms become:

ρs2u(x, s)− σ · ∇(x, s) = f(x, s) + ρ
( .
u(x, 0) + su(x, 0)

)
(9)(

ρ̃s2 + Ds
)

w(x, s)−H · ∇(x, s) = g(x, s) + ρ̃
.

w(x, 0) + (ρ̃s + D)w(x, 0) (10)

If we assumed homogeneous initial conditions for both the phonon and phason displacement
fields and vanishing body forces, the right-hand sides in Equations (9) and (10) would be equal to zero.

Let us consider the set of coupled governing Equations (9) and (10) in a weak sense on local
subdomains considered around interior points xc ∈ Ωc ⊂ Ω. Taking the weight function as the
Heaviside function supported on Ωc, we obtain the system of local integral equations (LIE):

w

∂Ωc

n(x, s) · n(x)dΓ +
w

Ωc

[
−ρs2u(x, s) + f(x, s) + ρ

( .
u(x, 0) + su(x, 0)

)]
dΩ = 0 (11)

w

∂Ωc

H(x, s) · n(x)dΓ +
w

Ωc

[
−
(
ρ̃s2 + Ds

)
w(x, s) + g(x, s) + ρ̃

.
w(x, 0) + (ρ̃s + D)w(x, 0)

]
dΩ = 0 (12)

in which we have utilized the Gauss divergence theorem and ∂Ωc is the boundary of Ωc.
The derived local integral equations (LIEs) (11) and (12) are written in general vector form, and

one can represent the vectors in an arbitrary coordinate system. The Cartesian coordinate system
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appears to be the most appropriate since the basis vectors are independent on the integration variables.
Then, the component representation is obtained directly from Equations (11) and (12) as:

r

∂Ωc
σij(x1, x2, s)nj(x1, x2)dΓ +

r

Ωc

[
−ρs2ui(x1, x2, s) + f i(x1, x2, s) + ρ

( .
ui(x1, x2, 0) + sui(x1, x2, 0)

)]
dΩ = 0 (13)

r

∂Ωc
Hij(x1, x2, s)nj(x1, x2)dΓ+

+
r

Ωc

[
−
(
ρ̃s2 + Ds

)
wi(x1, x2, s) + gi(x1, x2, s) + ρ̃

.
wi(x1, x2, 0) + (ρ̃s + D)wi(x1, x2, 0)

]
dΩ = 0

(14)

with i, j ∈ {1, 2}.
In order to facilitate the integrations, it is appropriate to choose the local subdomain as a circle

around the point (xc
1, xc

2), i.e., Ωc = {∀ (x1, x2); |x− xc|≤ r0}. Then, the integration over ∂Ωc can be
performed as the integration with respect to the angular variable. Now, in view of Equations (1)–(4),
the LIE can be rewritten as:

r

∂Ωc

[
c12ni∂k + c66

(
δiknj∂j + nk∂i

)]
uk(x1, x2, s)dΓ+

+
r

∂Ωc
R [(δi1n2 + δi2n1) ε3lk∂l + (δi1n1 − δi2n2) ∂k]wk(x1, x2, s)dΓ+

+
r

Ωc

[
−ρs2ui(x1, x2, s) + f i(x1, x2, s) + ρ

( .
ui(x1, x2, 0) + sui(x1, x2, 0)

)]
dΩ = 0

(15)

r

∂Ωc
R [(u1,2(x1, x2, s) + u2,1(x1, x2, s)) τi + (u1,1(x1, x2, s)− u2,2(x1, x2, s)) ni] dΓ+

+
r

∂Ωc

[
K1δiknj∂j + K2 (ni∂k − nk∂i)

]
wk(x1, x2, s)dΓ+

+
r

Ωc

[
−
(
ρ̃s2 + Ds

)
wi(x1, x2, s) + gi(x1, x2, s) + ρ̃

.
wi(x1, x2, 0) + (ρ̃s + D)wi(x1, x2, 0)

]
dΩ = 0

(16)

with τi being the unit tangent vector related to the unit outward normal vector as τi = ε3jinj.
Thus, what we need is to utilize certain approximation for the phonon as well as phason

displacements and their gradients.

4. Meshless Approximation for Phonon and Phason Displacements

To the spatial variations of phonon and phason displacements uk (x, s), wk (x, s), the meshless
approximation over a number of randomly located nodes xc, c = 1, 2, ..., n, is applied using the radial
basis functions (RBF). Thus, the considered approximations take the form:

uk (x, s) =
n

∑
c=1

Uc
k (s) Rc(x) (17)

wk (x, s) =
n

∑
c=1

Wc
k (s) Rc(x) (18)

where Rc(x) is the radial basis functions associated with the node xc, and Uc
k (s), Wc

k (s) are expansion
coefficients for phonon and phason displacements, respectively. The radial basis functions employed
in this article are multiquadrics

Rc (x) =
(
|x− xc|2 + c̃2

)m
2 . (19)

The shape parameter c̃ is proportional to the minimum distance between nodes, while m is chosen
to be m = −2. Taking the approximations as Equations (17) and (18) at nodal points, one obtains the
following systems of equations:

ub
k (s) =

n

∑
c=1

Uc
k (s) Rc(xb), ub

k (s) = uk

(
xb, s

)
(20)
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wb
k (s) =

n

∑
c=1

Wc
k (s) Rc(xb), wb

k (s) = wk

(
xb, s

)
(21)

which can be rewritten in the matrix notation as

n

∑
c=1

RbcUc
k = ub

k(s),
n

∑
c=1

RbcWc
k = wb

k(s) (22)

Hence, the expansion coefficients can be expressed in terms of nodal unknowns as:

Uc
k =

n

∑
b=1

[R−1]
cb

ub
k(s), Wc

k =
n

∑
b=1

[R−1]
cb

wb
k(s) (23)

Substituting Equation (23) into Equations (17) and (18), we receive

uk (x, s) =
n

∑
b=1

Ub
k (s) Rb(x) =

n

∑
b=1

n

∑
c=1

Rb(x)[R−1]
bc

uc
k (s) =

n

∑
c=1

uc
k (s)ϕ

c(x) (24)

wk (x, s) =
n

∑
b=1

Wb
k (s) Rb(x) =

n

∑
b=1

n

∑
c=1

Rb(x)[R−1]
bc

wc
k (s) =

n

∑
a=1

wc
k (s)ϕ

c(x) (25)

where

ϕc(x) =
n

∑
b=1

Rb(x)[R−1]
bc

(26)

is the shape function associated with node xc and uc
k (s), wc

k (s) are the nodal values of the Laplace
transforms of phonon and phason displacements, respectively.

Considering the problem without body forces (phonon body forces and conservative bulk phason
self-action) and with homogeneous initial conditions, the discretized local integral equations (LIEs)
(15) and (16) collocated at an interior node xc ∈ Ωc ⊂ Ω can be written as:

n
∑

a=1
ua

k(s)
r

∂Ωc

[
c12niϕ

a
,k + c66

(
δiknjϕ

a
,j + nkϕ

a
,i

)]
dΓ− ρs2

n
∑

a=1
ua

i (s)
r

Ωc
ϕadΩ+

+
n
∑

a=1
wa

k(s)
r

∂Ωc
R
[
(δi1n2 + δi2n1) ε3lkϕ

a
,l + (δi1n1 − δi2n2)ϕ

a
,k

]
dΓ = 0

(27)

n
∑

a=1
ua

k(s)
r

∂Ωc
R
[(
δk1ϕ

a
,2 + δk2ϕ

a
,1

)
τi +

(
δk1ϕ

a
,1 − δk2ϕ

a
,2

)
ni

]
dΓ+

+
n
∑

a=1
wa

k(s)
r

∂Ωc

[
K1δiknjϕ

a
,j + K2

(
niϕ

a
,k − nkϕ

a
,i

)]
dΓ−

(
ρ̃s2 + Ds

) n
∑

a=1
wa

i (s)
r

Ωc
ϕadΩ = 0

(28)

The global boundary of the analyzed domain is decomposed into two parts Γ = Γe ∪ Γn, where Γe

and Γn are parts on which essential and natural boundary conditions are prescribed, respectively.
For xb ∈ Γe, we collocate the meshless approximation of phonon and phason displacements, i.e.,

n

∑
c=1

uc
k (s)ϕ

c(xb) = ũk

(
xb, s

)
(29)

n

∑
c=1

wc
k (s)ϕ

c(xb) = w̃k

(
xb, s

)
(30)

where the tilde denotes the prescribed values by boundary conditions. If the collocation point lies on

the boundary, xb ∈ Γn, we define local subdomain as Ωb = Ω̃
b ∩Ω, where Ω̃

b
is the circular domain

centered at xb. Then, the boundary of local sub-domain consists of two parts ∂Ωb = Γb ∪ Lb, where
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Lb = ∂Ω̃
b ∩Ω, and Γb = Ω̃

b ∩ Γ =
(

Ω̃
b ∩ Γe

)
∪
(

Ω̃
b ∩ Γn

)
= Γb

e ∪ Γb
n. For xb ∈ Γn, we consider the

discretized LIEs (15) and (16) collocate at xb:

n
∑

a=1
ua

k(s)
r

Γb
e∪Lb

[
c12niϕ

a
,k + c66

(
δiknjϕ

a
,j + nkϕ

a
,i

)]
dΓ− ρs2

n
∑

a=1
ua

i (s)
r

Ωb
ϕadΩ+

+
n
∑

a=1
wa

k(s)
r

Γb
e∪Lb

R
[
(δi1n2 + δi2n1) ε3lkϕ

a
,l + (δi1n1 − δi2n2)ϕ

a
,k

]
dΓ = −

r

Γb
n

t̃i(x, s)dΓ
(31)

n
∑

a=1
wa

k(s)
r

Γb
e∪Lb

[
K1δiknjϕ

a
,j + K2

(
niϕ

a
,k − nkϕ

a
,i

)]
dΓ−

(
ρ̃s2 + Ds

) n
∑

a=1
wa

i (s)
r

Ωb
ϕadΩ+

+
n
∑

a=1
ua

k(s)
r

Γb
e∪Lb

R
[(
δk1ϕ

a
,2 + δk2ϕ

a
,1

)
τi +

(
δk1ϕ

a
,1 − δk2ϕ

a
,2

)
ni

]
dΓ = −

r

Γb
n

q̃i(x, s)dΓ
(32)

where t̃i(x, s) and q̃i(x, s) are the Laplace transforms of prescribed values of phonon and phason
tractions defined as ti(x, t) = σij(x, t)nj(x), qi(x, t) = Hij(x, t)nj(x), respectively. Equations (27)–(32)
give us the complete set of algebraic equations for computation of unknown nodal values of the
Laplace transforms of phonon and phason displacements. Having solved this system for unknowns,
one can obtain the time-dependent solutions by applying the inverse Laplace-transformation to the
transformed quantities such as the Talbot technique.

Recall that the proposed formulation and calculations are performed in the Cartesian
representation of the phonon and phason stresses and displacements. The representation in the
polar coordinate system can be obtained by using the Mohr’s circle technique.

5. Numerical Example and Discussions:

To show some numerical results of the problem, an infinite length sector of a hollow cylinder is
assumed with the following mechanical properties and inner radius ra = 1 m, outer radius rb = 1 m
and θmin ≤ θ ≤ θmax, θmin = 0, θmax = π for numerical analysis (see Figure 1).Crystals 2016, 6, 94  9 of 16 
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Figure 1. Illustration of the analyzed domain and boundary conditions.

Firstly, to verify the presented method and data, the material of cylinder is assumed to be isotropic
homogenous with the following mechanical properties:

c11 = 234.3 GPa, c22 = c11, c12 = 57.4 GPa, ρ = 4180 kg/m3 K2 = 0, K1 = 0, R = 0 (33)
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The considered boundary conditions for phonon modes are shown partially in Figure 1 and
vanishing initial conditions are assumed. Since the phonon–phason coupling is absent, there is no
phason response in the considered example and the dynamic behavior of cylinder is described as
classical elastodynamic. The obtained results by the MLPG method for phonon radial stress along the
radial direction, and θ = π

2 at several time instants are compared with those obtained by finite element
method (FEM), which are illustrated in Figure 2. The comparison shows a good agreement between
the results.
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Figure 2. Comparison of phonon radial stresses σr r distributions along the radial direction at θ = π
2

obtained by MLPG and FEM methods in standard elastic cylinder.

The following mechanical properties correspond to Al–Ni–Co quasicrystals [11,12] and are
considered for study on the transient response of QCs cylinder to Heaviside impact loading:

c11 = 234.3 GPa, c11 = c22, c12 = 57.4 GPa, K1 = 122 GPa K2 = 24 GPa,
ρ = 4180 kg/m3, R = 1.1 GPa

(34)

Since the phason friction coefficient is assumed to be zero, the employed compatible
elastodynamics of wave-telegraph type of quasicrystals degenerates to the elastodynamic model
of wave type. The boundary of the analyzed domain is composed of four parts ∂Ω = ∂Ωa ∪ ∂Ωb ∪
∂Ωm ∪ ∂ΩM as shown in Figure 1. In the shape of Cartesian components, the following boundary
conditions are considered to study the dynamic behavior of both phonon and phason stress fields
(see Figure 1):

ti (x, t)|∂Ωa
= σ0ni(x)H (t), qi (x, t)|∂Ωa

= 0 (35)

ti (x, t)|∂Ωb
= 0, qi (x, t)|∂Ωb

= 0 (36)

ui (x, t) ni (x)|∂Ωm
= 0, ti (x, t) τi (x)|∂Ωm

= 0, wi (x, t) ni (x)|∂Ωm
= 0, qi (x, t) τi (x)|∂Ωm

= 0 (37)

ui (x, t) ni (x)|∂ΩM
= 0, ti (x, t) τi (x)|∂ΩM

= 0, wi (x, t) ni (x)|∂ΩM
= 0, qi (x, t) τi (x)|∂ΩM

= 0 (38)

where H (t) is a Heaviside unit step function, ni(x) is the unit outward normal vector on the boundary,
τi (x) is the unit tangent vector on the boundary, and σ0 = −1 Pa.

The response to the shock loading by normal stresses applied on the inner cylindrical surface
of the considered sector of the hollow cylinder is illustrated via the spatial distributions at several
time instants as well as via the time evolution of phonon and phason fields at certain points of the
analyzed domain.

Figure 3 shows the distribution of phonon radial stresses σrr along the ray (r, θ = π/2) at several
time instants, with the time step being assumed to be ∆t = 0.86× 10−5 s. The propagation of phonon
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radial stress wave fronts can be tracked in Figure 3. Likewise, the wave front of phonon hoop stress
σθθ is propagated along the ray (r, θ = π/2) with a finite speed, as can be seen in Figure 4.
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Figure 4. Distribution of phonon hoop stresses σθθ in QC cylinder along the radial direction for θ = π
2 .

Owing to the coupling, the phason stress field is affected by the considered excitation in phonon
stress field. Figure 5 depicts the wave propagation of the phason radial stress field Hr r along ray
(r, θ = π/6) with a finite speed. A similar behavior can be observed also for the phason hoop stress
field Hθθ, as shown in Figure 6. Figures 5 and 6 demonstrate that the presented MLPG method has
the capability to simulate the dynamic behavior of both phonon and phason fields and the interaction
among them.
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θ = π
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Figure 6. Distribution of the phason hoop stresses Hθθ in QC cylinder along the radial direction for
θ = π

2 .

The problem is not angularly symmetric because of the phonon–phason coupling. Since the
classical (phonon) stress loading is applied on the inner surface of a half of the infinite hollow cylinder,
and the coupling coefficients are 100 times smaller than the classical elasticity coefficients, the response
of phason fields is 100 times smaller than the response of phonon fields. Therefore the response of
phonon fields is almost independent of the angular variable (see Figure 7), though such a dependence
is evident in the response of the phason fields (see Figure 8).
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Figure 8. Distribution of the phason radial stresses Hr r in QC cylinder along the radial direction for
various values of θ.

The distributions of both phonon and phason radial displacements, ur and wr, along the ray
(r, θ = π/2) can be observed in Figures 9 and 10. The wave fronts of both the phonon and phason radial
displacements can be tracked at various time instants because of a finite speed of wave propagation.
Again, the coupling between the phonon and phason fields is confirmed.
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Figure 9. Distribution of phonon radial displacements ur in QC cylinder along the radial direction for
θ = π
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Figure 10. Distribution of phason radial displacements wr in QC cylinder along the radial direction for
θ = π

2 .

The effects of the value of R on the results for the phason fields can be observed in Figures 11
and 12 in which the distributions of phason radial and hoop stresses along the radial direction are
drawn at θ = π

2 in a half of the hollow cylinder for various values of R, respectively. As it can be seen
in Figures 11 and 12, the values of phason stress fields are increased by increasing the value of R.
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cylinder even if symmetric boundary conditions are assumed. The tensor of material coefficients 
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Attention is paid to a detailed explanation of coupling between the phonon and phason fields— 
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6. Conclusions

The elastodynamic model of a wave–telegraph type is used to study the dynamic response of
decagonal quasicrystals. It is shown that angular symmetry is inapplicable in the case of a hollow
cylinder even if symmetric boundary conditions are assumed. The tensor of material coefficients
obeying coupling between the phonon and phason fields is dependent on the angular coordinate
in polar coordinate system. Since the governing equations in such a coordinate system would be
given by the PDE with variable coefficients, the utilization of the polar coordinates appears to be
inconvenient. Therefore, the formulation is presented in the Cartesian coordinate system. The local
Petrov–Galerkin (MLPG) method together with the Laplace transform technique with respect to time
variables are employed for numerical solutions of boundary value problems. For the spatial variation
of field variables, we have used the meshless approximation based on the radial basis functions, and
the Talbot technique is employed for numerical inversion of the Laplace transformation. In a numerical
example, a finite sector of an infinitely long thick hollow cylinder is considered under a shock loading
with holding angularly symmetric boundary conditions.
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Attention is paid to a detailed explanation of coupling between the phonon and phason fields—
wave propagation of both the phonon and phason stress and displacement waves with a finite speed.
Since the phason response to force loading is approximately 1000 times smaller than the phonon
response, the latter is affected negligibly by phason fields, despite the fact that phonon–phason
coupling is considered. It has been shown that the proposed method is suitable for numerical
simulations in rather complex problems. There are no restrictions on the geometry of the analyzed
domain as well as on applied loads, and arbitrary material coefficients are allowed within the
considered general elastodynamic model of the wave–telegraph type in decagonal quasicrystals.
The presented methodology can be easily extended to other kinds of quasicrystals. Mariano and
Planas [20] highlighted the role of the conservative bulk phason self-action in mechanical description
of quasicrystals. In the presented analyses, the conservative bulk self-action is omitted. The next study
will concern verification of such a role by numerical simulations.
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