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Abstract: Ge and its alloys are attractive candidates for a laser compatible with silicon integrated
circuits. Dilute germanium carbide (Ge1−xCx) offers a particularly interesting prospect. By using
a precursor gas with a Ge4C core, C can be preferentially incorporated in substitutional sites,
suppressing interstitial and C cluster defects. We present a method of reproducible and upscalable
gas synthesis of tetrakis(germyl)methane, or (H3Ge)4C, followed by the design of a hybrid gas/
solid-source molecular beam epitaxy system and subsequent growth of defect-free Ge1−xCx by
molecular beam epitaxy (MBE). Secondary ion mass spectroscopy, transmission electron microscopy
and contactless electroreflectance confirm the presence of carbon with very high crystal quality
resulting in a decrease in the direct bandgap energy. This technique has broad applicability to growth
of highly mismatched alloys by MBE.
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1. Introduction

Ge and its alloys have kindled great interest for faster field effect and tunneling transistors,
and even more interest as the possible “holy grail” CMOS-compatible laser [1–6]. Tensile Ge and
optically pumped Ge1−xSnx lasers have been demonstrated, but these showed very high thresholds
due to adverse band structures [3,4,6]. Dilute germanium carbide (Ge1−xCx) with x ≈ 0.01 has
recently been predicted to show a strongly direct bandgap and favorable band alignments, with optical
emission expected to rival that of III–V semiconductors [7]. However, past growth of Ge1−xCx using
typical crystal growth techniques produced graphitic clusters and numerous carbon–carbon point
defects [8–11].

Ge1−xCx is a highly mismatched alloy (HMA). C atoms are much smaller and more electronegative
than their Ge host, analogous to N in GaAs. This has unusual effects on the band structure of the
alloy. In particular, the virtual crystal approximation fails to predict semiconductor properties such as
bandgap and band alignment. For example, one might expect alloying Ge with diamond (or GaAs with
GaN) to increase the bandgap, but it instead decreases. This is often explained through a mechanism
known as band anticrossing, in which C (or N) introduces an uncharged (isoelectronic) but localized
impurity state above the conduction band edge [12]. The localized state hybridizes with the conduction
band states and pushes them lower into the bandgap. Remarkably, the interaction is significantly
stronger at the direct bandgap at Γ (k = 0) than in the indirect valleys in Ge, which leads to the creation
of a direct bandgap from two indirect bandgap materials.
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Highly mismatched alloys (HMA) are, by definition, far from thermodynamic equilibrium and
can be challenging to grow without segregation or other defects. For example, the bulk solubility of N
in GaAs is only 1014 cm−3, and C in Ge may be as low as 108 cm−3 [13]. However, molecular beam
epitaxy (MBE) is generally a kinetically limited process that can bypass thermodynamic limits and can
incorporate several percent of the mismatched element [9,14]. Even so, HMAs must avoid high energy
processes such as sputtering, implantation, and plasma ions to prevent segregation and formation
of point defects [15]. Furthermore, Ge1−xCx growth must avoid carbon–carbon bonds, which create
midgap traps [16]. Therefore, successful growth of Ge1−xCx must prevent C from remaining exposed
on or segregating to the growth surface, leading to C clusters. Figure 1 shows the growth process using
the chosen precursor gas method of tetrakis(germyl)methane (4GeMe).
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Figure 1. (a) 4GeMe molecule; (b) Steps of 4GeMe+Ge growth mechanism, in cross section (looking
slightly off-axis). Ge cubic unit cell drawn for reference. The 4GeMe arrives as a “brick” and does
not move; filling of the facet is done by GeHx overpressure or by new Ge atoms after hydrogenation;
(c) Parallel projection top view showing closest possible Ge4C cores on a surface. C atoms are, at nearest,
third-nearest neighbors, a stable state.

In this work, we present techniques for MBE of Ge1−xCx without detectable carbon–carbon defects.
Part 2 describes the synthesis of our carbon precursor gas source, 4GeMe, including modifications to
the previous reports of the synthesis. Undesirable carbon–carbon bonds are avoided using a carbon
precursor based on a Ge4C core, in which each carbon atom is already fully surrounded by Ge [17,18].
This is distinct from the more common methylgermanes with Ge surrounded by multiple C atoms.
Part 3 describes the hybrid gas source/solid source MBE system used for growth, and the techniques
used. Part 4 describes our growth results. The pre-engineering of the desired final crystal structure
by a priori precursor design is applicable to a range of material problems, and increases the value
of epitaxy.

2. Synthesis of 4GeMe

The choice of carbon precursor gas was motivated by the possibility of depositing carbon fully
surrounded by Ge atoms, greatly reducing the risk of forming undesirable carbon–carbon bonds
at the surface. Thermal dehydrogenation of the tetra-substituted E4C core in (H3E)4C (E = Si, Ge;
see Figure 1) precursors was reported for Si1−x−yGexCy alloys with bandgaps larger or smaller
than Si1−xGex [18–26]. The authors noted that these systems demonstrated a non-typical elongated
Si–C and Ge–C bond length of 7% (1.89 Å (β-SiC)) and 5% (2.05 Å), respectively. This resulted in
(i) the stretching of the E–C bonds to possibly reduce lattice strain and (ii) novel heteroatomic tetrels.
E4C compounds with a Ge4C core could enable growth of dilute germanium carbide semiconductors
with fully substitutional (sp3) carbon in a diamond lattice. This could yield lasers and modulators that
are compatible with conventional silicon chip fabrication [20,26–33].

The modified techniques presented here led to a high purity, reproducible, and up-scalable
synthetic route to the family of germyl methanes including (Cl2BrGe)4C, (1), (H3Ge)2CH2, (2),
(H3Ge)3CH, (3), and (H3Ge)4C, the desired precursor (4GeMe, 4). We confirm by multiple techniques
that the correct nuclear magnetic resonance (NMR) spectra are different from published reports.
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All manipulations were carried out under ultrahigh purity nitrogen or argon gas using Schlenk-line
and glovebox techniques. Toluene and diethyl ether were dried over a copper-based catalyst and 4 Å
molecular sieve columns (Innovative Technology, Newburyport, MA, USA). GeCl2•dioxane, squalene,
benzyltrimethyl ammonium chloride, C6H5CH2N(Cl)(CH3)3, and 4N grade CBr4, all anhydrous
compounds from Sigma-Aldrich, were used as received. LiAlH4 (anhydrous, Sigma-Aldrich, St. Louis,
MO, USA), was recrystallized from diethyl ether.

2.1. Synthesis Procedures

The first step of synthesis was similar to [18], producing (Cl2BrGe)4C (1) as follows. A Schlenk
flask was charged with a 0.24 g (0.73 mmol) of CBr4, 8 mL of toluene and a stir bar resulting in
a clear and colorless solution. A separate flask was charged with 0.6 g (2.8 mmol) of GeCl2.dioxane,
15–20 mL of toluene and a stir bar resulting in a colloidal white suspension. The solution of CBr4

was slowly added to the latter via a stainless steel cannula. The mixture was then stirred for 2–12 h
at room temperature resulting in a white cloudy solution. The reaction was then heated slowly to
80 ◦C, held at 80 ◦C for two hours, then filtered hot, resulting in a clear, colorless solution via a filter
cannula. (Yield: 95%, or 85% scaled up five-fold.) All volatiles were evacuated off resulting in long
thin white needles. Crystals of 1 were dissolved in dimethylformamide (DMF) and confirmed via
electrospray mass spectroscopy (ESMS) in the positive-ion mode. The following ions were observed in
positive-ion mode, (m/z): CCl11Ge4

+ (691), CBrCl10Ge4
+ (737), CBr2Cl9Ge4

+ (781), CBr3Cl8Ge4
+ (825),

and CBr4Cl7Ge4
+ (870).

The second synthesis step produced multiple germyl methane groups (H3Ge)2CH2, (2),
(H3Ge)3CH, (3), and (H3Ge)4C (4GeMe, 4). A Schlenk flask was charged with 0.412 g (0.455 mmol) of
compound 1, 0.104 g (2.735 mmol) of LiAlH4, 0.015 g (0.064 mmol) of C6H5CH2N(Cl)(CH3)3, 15–20 mL
of squalene and a large magnetic stir bar. The cloudy white mixture was stirred for 5 days at room
temperature resulting in a light cream color. The reaction was heated for 2 h at 80 ◦C and then distilled
for 12 h into a flask at −196 ◦C until a pale green color was seen (yields: 35%). This resulted in
4GeMe. A further distillation of the pale green compound at 80 ◦C for another 12 h into a separate
flask at −196 ◦C resulted in a mixture of compounds 2 and 3. To further increase the purity of 4GeMe,
a four trap-to-trap distillation apparatus connected via high vacuum tubing was used to separate
the distillates at various temperatures: (i) −45 ◦C, least volatile 4GeMe; (ii) −78 ◦C, compound 3;
(iii) −116 ◦C, compound 2; and (iv) −196 ◦C for any unidentified side products. C6D6 (δ, ppm): 2:
GeH3, t, 3.64; CH, sept, −0.20; 3: GeH3, d, 3.84; CH, quint, −0.60; 4GeMe: GeH3, s, 3.34.

2.2. Synthesis Results and Discussion

Electrospray mass spectra (ESMS) in positive ion mode were recorded on a Micromass Quattro-LC
triple quadrupole mass spectrometer with 100 ◦C source temperature, 125 ◦C desolvation temperature,
2.5 kV capillary voltage, and 20–55 V cone voltage [34]. The samples were introduced by direct infusion
with a Harvard syringe pump at 10 µL/min. Gas Phase FT-IR was carried out on a Bruker Tensor
27 (Bruker, Billerica, MA, USA) spectrometer using a Pike Tech 10 cm gas cell with KBr windows.
1D and 2D NMR were carried out for 1H, and 13C{1H} using 2D homonuclear correlation spectroscopy
(COSY) [35], and 13C-HMBC [36,37] on either a Bruker Avance III HD 400 (Bruker, Billerica, MA, USA)
400 MHz or a Varian DirectDrive 600 (Varian/Agilent, Santa Clara, CA, USA) 600 MHz spectrometer
with C6D6 (δ (ppm): 1H, 7.15; 13C, 128.0) and CDCl3 (δ (ppm): 1H, 7.26; 13C, 77.36) standards in
an airtight J-tap NMR tube.

The initial synthesis step is readily achieved as the commercially available GeCl2•dioxane
undergoes a germylene insertion when reacted with carbon tetrabromide: GeCl2•dioxane + CBr4 →
(Cl2BrGe)4C (1) in a solution of toluene [18,19]. Previous reports indicated an initial reaction time
of two hours at a 2.2 mmolar scale at room temperature with 79% yield [19]. In this work, a time
study showed that slowly stirring for 8–12 h leads to almost complete conversion with 95% yield at
a 2.2 mmolar scale, and 85% yield at a five-fold scale (see Table 1).
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Additionally, if stringent air-free conditions and freshly distilled and degassed solvents are used,
after filtering hot, pure large white needles grow immediately upon slow evacuation of all volatiles.
This procedure eliminated the need for recrystallization. The 13C spectrum showed no carbon peaks,
as expected, as no traces of the starting material CBr4 (C6D6, δ (ppm): s, −29.71) [38,39] or residual
solvent peaks (toluene, C6D6, δ (ppm): CH3, 21.10; C(i) 137.91; CH(o) 129.33; CH(m) 128.56; CH(p)
125.68) were detected [40]. We believe the increase in reaction time and slow evacuation of volatiles
promotes complete germylene insertion without decomposition.

Table 1. Yields of (Cl2BrGe)4C (1) and 4GeMe (4).

Compound Yields

(Cl2BrGe)4C 79% a 95% b 85% c

(H3Ge)4C 0 d 0 e 0 f 35% g

a Repeated literature synthesis [18]: 2.2 mmol, rt, 2 h; b 2.2 mmol, rt, 8–12 h; c Five-fold increase of [b]; d repeated
literature synthesis [18]: LiAlH4, rt, 3d, then distillation at 60 ◦C for 8 h; e LiAlH4, rt/40/50 ◦C, 2d/3d/5d, then
distillation at 40/60/80 ◦C for 6/8/12 h; f LiAlH4, rt, 3d, then distillation at 190–220 ◦C for 8–24 h; g LiAlH4, rt,
3–5d, heat for 2 h at 80 ◦C, then distillation at 80 ◦C for 8–12 h.

To examine the stability of the Ge–C core, crystals of 1 were dissolved in a solution of DMF,
and ESMS clearly showed that the sp3 hybridized carbon cluster core remained intact even after
ionization (see Figure 2). In the positive ion mode, several cluster species were characterized by
their isotope pattern [18,19,34,41,42]. The clusters retained the mass of the core Ge4C with several
halides (m/z = CCl11Ge4

+ (691), CBrCl10Ge4
+ (737), CBr2Cl9Ge4

+ (781), CBr3Cl8Ge4
+ (825), and

CBr4Cl7Ge4
+ (870)), thus supporting the stability of compound 1. Such multi metal-chalcogenide

clusters, with partial oxidation caused by the electric ESMS field, is a common phenomenon when
being ionized [41,42]. However, evidence of the intact core was unexpected as the Ge–Cl (356 kJ/mol)
and Ge–Br (276 kJ/mol) have stronger bond dissociation energies than the Ge–C (255 kJ/mol) bond.
Hence, one might expect the weaker Ge–C bonds to break apart first and fewer intact polyanions of
compound 1 to be detected in the ESMS, but this did not occur [43–45]. This is a key point for epitaxial
semiconductor growth using 4GeMe, since it suggests the C–Ge bonds can remain intact when the
molecule adsorbs onto a Ge surface, especially if the strong halide bonds are replaced by weakly
bonded hydrogen to create 4GeMe.

Crystals 2016, 6, 159  4 of 15 

 

volatiles. This procedure eliminated the need for recrystallization. The 13C spectrum showed no 
carbon peaks, as expected, as no traces of the starting material CBr4 (C6D6, δ (ppm): s, −29.71) [38,39] 
or residual solvent peaks (toluene, C6D6, δ (ppm): CH3, 21.10; C(i) 137.91; CH(o) 129.33; CH(m) 
128.56; CH(p) 125.68) were detected [40]. We believe the increase in reaction time and slow 
evacuation of volatiles promotes complete germylene insertion without decomposition. 

Table 1. Yields of (Cl2BrGe)4C (1) and 4GeMe (4). 

Compound Yields
(Cl2BrGe)4C 79% a 95% b 85% c  

(H3Ge)4C 0 d 0 e 0 f 35% g 
a Repeated literature synthesis [18]: 2.2 mmol, rt, 2 h; b 2.2 mmol, rt, 8–12 h; c Five-fold increase of [b];  
d repeated literature synthesis [18]: LiAlH4, rt, 3d, then distillation at 60 °C for 8 h; e LiAlH4, rt/40/50 °C, 
2d/3d/5d, then distillation at 40/60/80 °C for 6/8/12 h; f LiAlH4, rt, 3d, then distillation at 190–220 °C 
for 8–24 h; g LiAlH4, rt, 3–5d, heat for 2 h at 80 °C, then distillation at 80 °C for 8–12 h. 

To examine the stability of the Ge–C core, crystals of 1 were dissolved in a solution of DMF, and 
ESMS clearly showed that the sp3 hybridized carbon cluster core remained intact even after 
ionization (see Figure 2). In the positive ion mode, several cluster species were characterized by their 
isotope pattern [18,19,34,41,42]. The clusters retained the mass of the core Ge4C with several halides  
(m/z = CCl11Ge4+ (691), CBrCl10Ge4+ (737), CBr2Cl9Ge4+ (781), CBr3Cl8Ge4+ (825), and CBr4Cl7Ge4+ (870)), 
thus supporting the stability of compound 1. Such multi metal-chalcogenide clusters, with partial 
oxidation caused by the electric ESMS field, is a common phenomenon when being ionized [41,42]. 
However, evidence of the intact core was unexpected as the Ge–Cl (356 kJ/mol) and  
Ge–Br (276 kJ/mol) have stronger bond dissociation energies than the Ge–C (255 kJ/mol) bond. 
Hence, one might expect the weaker Ge–C bonds to break apart first and fewer intact polyanions of 
compound 1 to be detected in the ESMS, but this did not occur [43–45]. This is a key point for 
epitaxial semiconductor growth using 4GeMe, since it suggests the C–Ge bonds can remain intact 
when the molecule adsorbs onto a Ge surface, especially if the strong halide bonds are replaced by 
weakly bonded hydrogen to create 4GeMe. 

 

Figure 2. Electrospray mass spectra (ESMS) of synthesized 4GeMe showing the stability of the sp3 
core. Inset: 3D generated image of (H3E)4C (E = Si, Ge). Atom colors: E = green, C = cyan, H = white. 

These results confirmed that the tetrasubstituted sp3 hybridized carbon core in 1 remains intact 
and could be reduced to produce the target compound, (H3Ge)4C, containing weaker  
Ge–H (290 kJ/mol vs. Ge–Cl 356 kJ/mol) bonds. In addition, this supports our hypothesis that it may 
be feasible that upon thermal dehydrogenation of the latter compound—4GeMe—the Ge4C carbon 
core will remain intact. Moreover, the central carbon atom is also sterically protected by the bulky 

Figure 2. Electrospray mass spectra (ESMS) of synthesized 4GeMe showing the stability of the sp3 core.
Inset: 3D generated image of (H3E)4C (E = Si, Ge). Atom colors: E = green, C = cyan, H = white.
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These results confirmed that the tetrasubstituted sp3 hybridized carbon core in 1 remains intact
and could be reduced to produce the target compound, (H3Ge)4C, containing weaker Ge–H (290 kJ/mol
vs. Ge–Cl 356 kJ/mol) bonds. In addition, this supports our hypothesis that it may be feasible that
upon thermal dehydrogenation of the latter compound—4GeMe—the Ge4C carbon core will remain
intact. Moreover, the central carbon atom is also sterically protected by the bulky germanium atoms
as in compound 1 (covalent radii: C = 0.77 Å, Ge = 1.22 Å) [43] (see Figure 2) thus assisting in
driving the dissociation of the stronger Ge–H bonds [18]. Indeed, this is the case for hydrogermolysis
reactions where the stronger terminal Ge–H bond in R3Ge–H (R = Ph, Me) is cleaved at slightly
elevated temperatures in preference to the weaker Ge–C bonds forming a Ge–Ge bond (256 kJ/mol) in
R3Ge–GeR’3 (R = Ph, R’ = Et, Bu, Ph; R = Me, R’ = Bu) [34,46,47]. Hence, we proceeded in attempting to
reproduce the syntheses of (H3Ge)4C by utilizing lithium aluminium hydride to hydrogenate 4GeMe.

Several initial attempts at the reaction of 1 with anhydrous LiAlH4 at the suggested [18] ambient
temperatures for 3 days in a solvent with a high boiling point, such as squalene, followed by distillation
(60 ◦C) were unsuccessful. At low temperatures, the synthesis did not proceed, and only a grey-white
mixture was seen. Stirring for 1–10 days at higher temperatures from 60 to 220 ◦C was also not
successful. An increase in temperatures concomitantly with longer reaction times instead led to the
decomposition of the reaction mixture to unidentifiable dark brown-black solutions and precipitates
(see Table 1 for more details).

A breakthrough was reached after numerous temperature vs. time reaction conditions were
monitored over a period of five to ten days consecutively. As the reaction was stirred for a minimum
of two days to a maximum of five days (neither increasing the yield of the target compound (H3Ge)4C
(4GeMe)), the color changed from a dark grey-white suspension to a pale cream color. At this stage,
the reaction was heated over several hours to 80 ◦C and held there for 2 h. The reaction mixture was
then distilled into a −196 ◦C trap for eight to twelve hours until a mint green color was seen.

A combination of clear liquid and waxy product, as expected [18,19], was collected along with
a white precipitate. A gas phase FT-IR of the products showed positive indications of the target
compound, 4GeMe, as the spectrum clearly showed the vibrational hydride, GeH3, at 2075 cm−1

(vs., GeH str) and 839 cm−1 (m, GeH3, sym def), along with CH vibrations at 3032 cm−1 (vw,
CH str). This suggested that there were mixed products in the sample, possibly including partially
hydrogenated compounds such as (H3Ge)2CH2, (2) and (H3Ge)3CH, (3), along with the fully
hydrogenated target compound, (H3Ge)4C, (4GeMe).

Thus, a 1H NMR of the sample was taken in an airtight J-tap tube in C6D6 (see Figure 3).
This showed several unidentified products, possibly including partially hydrogenated compounds and
decomposition species. Nevertheless, the spectrum clearly shows peaks that are readily assigned to
compound 2 (GeH3, t, 3.64 ppm; CH, sept, −0.20 ppm) and compound 3 (GeH3, d, 3.84 ppm; CH, dect.,
−0.60 ppm), in good agreement with [18]. However, the 1H singlet (GeH3) reported to be 4.07 ppm for
4GeMe was instead found at 3.34 ppm. This disparity may explain why other attempts to reproduce
the synthesis technique in Ref. [18] were elusive. Extensive 2D experiments, below, were repeated to
confirm that the GeH3 shifts are at 3.34 ppm rather than the reported 4.07 ppm [18,19].

The 2D COSY spectrum in Figure 4A shows that the 1H resonance signal at 3.84 ppm (green)
correlates to the decatet at −0.60 ppm (green) and the resonance signal at 3.64 ppm (blue) correlates
to septet at −0.20 ppm (blue), confirming that, indeed, compounds 2 and 3 exist, respectively. Also,
the signal at 3.34 ppm correlates to no other signal, as expected for a singlet peak. In other words,
all H atoms are in equivalent chemical environments, which is strong evidence for the desired
target 4, (H3Ge)4C.
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Figure 3. 1H NMR from the mother liquor of the gas phase reaction collected in one trap at −196 ◦C.
Contamination at this stage can be clearly identified (unstarred peaks). Compounds (H3Ge)2CH2,
2 (blue *); (H3Ge)3CH, 3 (green *), and (H3Ge)4C (4GeMe, yellow *) are initially identified with their
splitting pattern.
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the protons two bonds away (i.e., GeH3) to the carbon core in compounds 2 (blue *); 3 (green *); and
4GeMe (yellow *). Lines are guides to the eye.

In Figure 4B, 2D HMBC correlates the resonance signal of the central carbon atom core with
the resonance of the proton through C–Ge–H bonding. This would be detected if, indeed, a proton
is two bonds away from carbon, hence confirming the hydrogenation product and stability of the
compound in C6D6 at room temperature conditions. Compounds 2 (blue *), 3 (green *), and 4GeMe
(yellow *) correlate a proton triplet at 3.63 ppm to the carbon signal at 220.55 ppm in compound 2,
(H3Ge)2CH2; a proton doublet at 3.83 ppm to the carbon signal at 211.92 ppm in compound 3,
(H3Ge)3CH; and a proton singlet at 3.342 ppm to the carbon signal at 67.37 ppm in compound
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4GeMe, (H3Ge)4C. Hence, this reaction pathway was clearly a one-pot synthesis for all three of
these compounds.

Fractional distillation was used to separate the products, keeping 2 and 3 as these have been
shown to dramatically improve the growth of germanium on silicon wafers [31,48–50]. Thus, a four
trap-to-trap distillation apparatus connected via high vacuum tubing collected the distillates from
the reaction vessel at various temperatures: (i) −45 ◦C for the least volatile 4GeMe; (ii) −78 ◦C for 3;
(iii) −116 ◦C for 2; and (iv) −196 ◦C for any unidentified side products. Compounds 2 and 3 were
isolated at said temperatures as seen via NMR, as previously discussed. However, in the first trap, we
were able to isolate 4GeMe free of contaminants (see Figure 5) except for the partially hydrogenated
(H3Ge)2CBr2 species. For this compound, 1H singlet at 2.114 ppm correlated with 13C signal at
21.4 ppm in HMBC spectrum [51]. Although not 100% pure, this is a significant improvement from
the previous sample (refer to Figure 3), and the remaining background compound is not expected to
interfere with semiconductor growth [17].
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Figure 5. 1H NMR of a sample collected at −48 ◦C showing a drastically cleaner sample of compound
(H3Ge)4C, (4GeMe, marked with yellow *); the peak at 2.114 ppm corresponds to (H3Ge)2CBr2, which
is the only remaining contaminant in the sample and benign for growth. This signal correlates with the
carbon signal at 21.4 ppm in the corresponding HMBC spectrum. Inset: HMBC spectrum for 4GeMe.

3. Growth System and Techniques

With the desired 4GeMe precursor in hand, we turned to epitaxial growth. For MBE of Ge1−xCx,
we designed a gas delivery system attached to an Intevac Mod Gen II MBE to perform hybrid
gas-source/solid-source growth, particularly of Group IV materials. The growth chamber is pumped
by a corrosive-rated Pfeiffer 1200 ◦C turbomolecular pump as well as an ion pump. A substrate
manipulator capable of reaching 1200 ◦C for desorbing suboxides from silicon wafers was installed,
although the growths presented here were performed on GaAs substrates. A Staib reflection high
energy electron diffraction (RHEED) gun with a differential pumping option allows operation at high
chamber pressures, although differential pumping has not been found to be necessary in growths
to date. The MBE has a background pressure of 6 × 10−10 Torr without liquid nitrogen (LN2), and
<1 × 10−10 Torr with LN2.

The gas delivery system in Figure 6 was designed to allow maximum flexibility in the growth of
different materials, with digermane, trisilane, and additional ports for custom precursor gases such
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as (H3Ge)4C or dopants. Gas pressures are measured using Baratron gauges (MKS, Orland Park,
IL, USA) for true gas pressure independent of species. Also, unlike thermocouple or Pirani gauges
with hot (80–120 ◦C) wires, Baratrons operate at low ambient temperatures that avoid precracking of
any delicate precursors (e.g., SnD4). The gas flow is accurately and precisely controlled to extremely
low flow rates through either Horiba Z500 (Horiba, Boulder, CO, USA) digital mass flow controllers
or computer-controlled leak valves. A residual gas analyzer (RGA) allows in situ sampling of the
precursor gases within the gas cabinet, as well as leak checking, before opening to the MBE chamber.
Four capacitive manometers provide a true measure of pressure independent of gas species [52]. Gases
are delivered to the growth chamber by either a cold injector or hot injector, allowing the freedom to
use multiple gases simultaneously, including gases that require pre-cracking prior to their arrival at the
wafer surface and those that do not. The gas delivery system was designed with minimal dead space to
reduce memory effects and increase gas switching speeds. All valves and mass flow controllers (MFCs)
are under computer control, and every gas inlet has at least two paths to each MBE gas injector line.
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Figure 6. Gas cabinet layout.

Initial gas-source growths of Ge using digermane showed that the gas utilization was very weak,
with <0.1% incorporation. We determined the original cold gas injector nozzle was too far from the
surface of the wafer, leading to significant overspray. We replaced the injector with a single 6 mm
outer diameter stainless steel tube ending 10 cm from the wafer center. In addition, the majority of the
precursor gas that failed to adhere to the wafer surface subsequently condensed on the nearby MBE
cryoshroud, which is cooled by liquid nitrogen and has a significantly larger surface area. Although
this eliminated the typical memory effect seen in gas source growths, it also prevented any opportunity
for additional adsorption attempts of gas molecules with the wafer surface. Therefore, the LN2 was
turned off for gas source growths and was found to be unnecessary due to the low background pressure
in the MBE chamber.

4. Growth Method

In order to provide carrier confinement and optical transparency at the relevant wavelengths near
the Ge band edge, growth was performed on GaAs(100) substrates. The initial III–V buffer growth
was completed on a GaAs(100) wafer in a Veeco Gen 930 III–V MBE chamber (Veeco, St. Paul, MN,
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USA), which is attached under ultrahigh vacuum (UHV) to the hybrid source MBE mentioned above.
The native oxide was desorbed under As beam equivalent pressure (BEP) of 1 × 10−5 Torr, then a
clean epitaxial surface was grown with a 100 nm GaAs buffer, a 50 nm AlAs layer as a back barrier,
and another 20 nm of GaAs. Sample flatness was confirmed by a streaky RHEED pattern. The sample
was then transferred under UHV to the hybrid source MBE chamber.

As mentioned above, carbon–carbon bonds must be prevented from forming during Ge1−xCx

growth to avoid midgap trap states [16]. Common carbon sources for epitaxial growth, such as CBr4,
metalorganics, and plasmas, all deposit bare C atoms on the Ge surface, and these atoms ride the
growth front until they meet other C atoms and incorporate as carbon clusters [10,53–55]. Worse
yet, hyperthermal C and hot graphite evaporate directly as large clusters of carbon atoms (C8 and
larger) [10], forming unavoidable defects in Ge. In contrast, by using (H3Ge)4C, the carbon atom is
fully surrounded by Ge, with no C–H bonds and no direct way for C to bond to a surface. Even if
two (H3Ge)4C molecules land side by side, the C atoms are no closer than third-nearest neighbors,
which is a known stable crystal structure [56].

When using the 4GeMe molecule, the growth temperature has to be optimized so that the Ge–H
bonds can thermally crack but the Ge–C bond does not. Solid-source Ge and digermane allow for
high quality crystal growth at lower temperatures than the commonly used germane gas. However,
if the growth is at too low of a temperature, crystal originated pits will form due to the formation of
Ge vacancies. Conversely, too high of a growth temperature will break Ge–C bonds in the 4GeMe, and
C atoms will be exposed to form undesirable C clusters.

The Group IV growth began with 10 nm of solid-source Ge grown at 400 ◦C (thermocouple) at
a growth rate of 60 nm/h. For the remainder of the growth, the Ge shutter was left open. In order to
maximize the 4GeMe incorporation efficiency, the ion pump remained off during the growth, and the
gate valve was closed to the turbomolecular pump. The 4GeMe was then injected at a foreline pressure
of 30 mTorr as measured on the capacitive manometer for 20 s, at which point the growth chamber
pressure had risen to 5 × 10−5 Torr by ion gauge. The gate valve was left closed for an additional
40 s to allow the 4GeMe additional residence time in the chamber, while solid source Ge continued
to deposit. Next, the gate valve was opened for 20 s to pump out the residual gases. This 4GeMe
deposition was repeated for a total of 15 cycles (20 min), for a total of 20 nm of solid-source Ge growth.
The substrate temperature was increased by 25 ◦C, then 50 nm of solid-source Ge was grown. This cycle
was repeated a total of six times, with successively higher substrate temperatures up to 525 ◦C.

5. Experimental Results

Figure 7 shows the cross-sectional transmission electron microscopy of the Ge:C sample. The first
several layers of Ge and Ge:C appear to have grown smoothly. The growth appears to turn rough
above 475 ◦C. It is important to note that C clusters can act as Frank-Read sources, which would
generate large dislocation networks, but analysis of the TEM shows no signs of dislocations. Figure 8
shows secondary ion mass spectroscopy (SIMS) performed on the sample by Evans Analytical Group,
showing clear C incorporation. It appears that at the lower growth temperatures there is incomplete
incorporation of the 4GeMe molecule. At 450 ◦C and above, the incorporation increases, suggesting
more complete cracking and/or adsorption (sticking coefficient) of 4GeMe. The plateaus seen in
Figure 8 are at approximately 0.03% and 0.05%. Due to the roughness of the sample and the limited
resolution of SIMS, the C content is effectively averaged over the entire Ge and Ge1−xCx superlattice
and does not directly measure the C in the quantum wells. Considering the thicknesses of the 20 nm
Ge1−xCx wells and 50 nm Ge barrier layers, the 0.05% average is equivalent to approximately 0.2% C
in the Ge1−xCx wells grown at Tsub ≥ 450 ◦C.

To look for subtle changes in the direct bandgap, contactless electroreflectance (CER)
measurements were performed. Like photoreflectance (PR), CER modulates the built-in electric field in
the sample, which changes the reflectance at energies corresponding to direct optical transitions such
as the direct bandgap [57,58]. An important advantage of CER over PR spectroscopy is the elimination
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of problems with the modulation of the refractive index inside the sample which leads to an unwanted
Fabry–Perot oscillation [59]. A strong direct bandgap transition followed by Franz–Keldysh oscillations
(FKO) is visible in the CER spectrum of the Ge:C sample shown in Figure 9. The transition energy can
be estimated from the analysis of FKO [60] as shown in the inset in Figure 9.

Despite the very small amount of C shown in SIMS, Figure 9 shows a decrease in the direct
bandgap energy from 0.80 eV (Ge) to 0.776 eV, a difference of 24 meV. To the authors’ knowledge,
this was the first demonstration of a decrease in direct bandgap in a Ge:C sample with no defects
detectable by electron-dispersive X-ray spectroscopy in scanning transmission electron microscopy
(STEM-EDX), nuclear reaction analysis Rutherford backscattering spectroscopy (NRA-RBS), or Raman
spectroscopy [17]. It is noteworthy that a significant reduction in direct bandgap was achieved
even though the carbon and defect concentrations were both below the detectable limits of these
common techniques.Crystals 2016, 6, 159  10 of 15 
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Figure 7. (a) Bright-field TEM of Ge1−xCx growth on AlAs/GaAs. Inset: HRTEM of location indicated;
(b) STEM across a Ge1−xCx layer shows high crystallinity with no apparent segregation; (c) Dark
field g = (0 0 −4) TEM shows no dislocations nucleating from any Ge1−xCx layer. Reproduced with
permission from [Stephenson], [J. Appl. Phys.]; published by [AIP], [2016].
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Ge/GaAs interface, as shown with an additional dashed curve for Ge. Reproduced with permission
from [Stephenson], [J. Appl. Phys.]; published by [AIP], [2016].
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Figure 9. Room temperature CER spectrum of the Ge:C sample: a direct bandgap transition followed by
FKO is clearly visible. Inset: FKO peak/valley positions (squares) with linear fit (dashed) extrapolated
to direct bandgap (n = 0).

6. Discussion

Bare C atoms on the surface can ride the growth front, which is a longstanding problem in this
material system. When C atoms ride the surface, they incorporate into the growth when they meet
additional C atoms and form C–C or larger carbon clusters. As shown in Figure 7, crystal quality is
very high with no stacking faults or dislocations detected. Another confirmation of the crystal quality
is the lack of detectable carbon clusters by HRTEM, Raman spectroscopy, and NRA-RBS [17]. Due to
the lack of evidence of C clusters, it is believed that the C atoms are incorporating as part of the Ge4C
structure of the original (H3Ge)4C molecule. There was a distinct change in growth kinetics above
475 ◦C, which the authors attribute to chemisorption of the (H3Ge)4C leading to a H2-passivated
surface. Further growths are required to identify growth conditions for flat layers; however, SIMS
suggests that 450 ◦C is needed for complete (H3Ge)4C incorporation while keeping below 475 ◦C for
smooth growth.

The clear CER signal observed in Figure 9 shows very good crystallinity with a strong direct
optical transition at the Γ point of the Brillouin zone. A decrease in the direct bandgap of 24 meV is
consistent with theoretical predictions and very close to the photoreflectance results [17]. Additional
growth with %C close to 1 at % should be performed to confirm the theoretical predictions for a direct
bandgap and confirm the measured decrease in bandgap is due to C and not the Franz–Keldysh effect.

A 1:100 ratio for (H3Ge)4C Ge BEP was chosen in order to grow dilute Ge1−xCx with <1 at % C.
Our initial growth assumed that the sensitivities would be similar, and choosing a BEP for (H3Ge)4C
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that was approximately one percent of Ge’s BEP would give a reasonable incorporation rate. However,
when comparing relative sensitivity factors (Rg) for different atoms and molecules, assuming it can be
approximated by the ratio of ionization cross sections at 150 eV [61], a Ge2H6 molecule is expected
to have an Rg approximately double that of GeH. The Rg for Si(CH3)4 is nearly four times that of
GeH [62]. We attribute the difference between (H3Ge)4C:Ge fluxes and C:Ge atomic mole fractions
to the difference in Rg between our Ge source and (H3Ge)4C. Although the ionization cross section
and sensitivity factor of (H3Ge)4C are unknown, a factor of 5 difference fits the trend for GeH3, GeH4,
and Ge2H6.

Mass transport calculations are as follows. Molecular flow through 1.4 m of tubing with an inner
diameter of 4.6 mm from the foreline to the delivery end of the gas injector, the gas conductivity of
the gas delivery line is Cpipe,mol = cπd3l−1/12 = 2.6 mL/s [63]. For a foreline pressure of 30 mTorr,
this corresponds to a flow of 7.8 × 10−5 Torr L·s−1.

One of the challenges to producing direct bandgap GeSn and related alloys is the strain present
in the materials. In order to turn Ge into a direct bandgap semiconductor, 1.4%–2% biaxial strain
must be applied [2,64–67]. A direct bandgap GeSn laser was recently demonstrated, but that required
>12% Sn [6]. To grow a direct bandgap, Ge1−xCx should require less than 1% C [7]. The People–Bean
model [68] predicts a critical thickness of 1250 nm for 1% C Ge1−xCx on Ge, so strain does not limit
Ge:C device design. This contrasts with GeSn, where it predicts 57 nm critical thickness. Even the
more conservative Matthews–Blakeslee model predicts a Ge1−xCx critical thickness of 36 nm, which is
more than enough thickness for quantum wells [69]. What little strain does exist in Ge:C is tensile,
which contributes favorably, if negligibly, to a direct bandgap.

7. Conclusions

Through the use of specially designed precursor gases and a custom designed gas delivery system,
molecular beam epitaxy is uniquely capable of growing HMAs like Ge1−xCx well into the miscibility
gap. Taking advantage of kinetically-limited growth regimes, C can be effectively incorporated without
defects. When incorporated substitutionally, contactless electroreflectance confirms a decrease in direct
bandgap with very dilute amounts of C in Ge.
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