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Abstract: A review on elasto-dynamics of quasicrystals (QCs) and their applications based on
mathematical elasticity is given. In this study, recent studies on elasto-dynamics of QCs are reviewed,
in which the focus of the problem lies in the role of phason variables and the coupling effect between
phonons and phasons in the dynamic deformation process. On summarizing and describing the
development of the elastic dynamics of QCs, this review mainly presents theelasto-dynamics of
QCs and their application in a variety of research areas, ranging from problems with different QCs,
including one-, two-, and three-dimensional QCs to various coupling problems. The plane elasticity
and anti-plane elasticity of quasicrystals are included in this review.
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1. Introduction

Quasicrystals are viewed as a new structure of solids, different from crystals and possess
non-crystallographic rotational symmetry and quasi-periodic long-range orientational symmetry [1].
After the discovery of quasicrystals, elasticity, dynamics of elasticity, defects and other subjects
concerning the mechanical behavior of quasicrystalline materials provide many new challenges to
researchers from a variety of areas [2–7]. Like other materials, quasicrystal is deformable under external
loads and certain thermal loads. Regarding the elasticity of quasicrystals, theoretical physicists have
provided various descriptions. Almost all of them regard the Landau density wave theory as the
physical basis of the elasticity of quasicrystals [8–15].Inessence, the description of the elasticity of
quasicrystals deemed that there are two displacement fields u and w, in which the former u called
the phonon field is similar to that in crystals; the latter w is called the phason field. They were first
discussed by Bak [12,13] and Socalar et al. [14]. So the total displacement field in a quasicrystal can be
expressed by u = u‖⊕u⊥ = u⊕w, in which u is in the parallel space, or the physical space; w is in the
complement space, or the perpendicular space; which is an internal space and⊕ denotes the direct sum.
On the basis of the above physical framework and the extended methodology in mathematical physics
from classical elasticity, the independent elastic constants for different symmetries of quasicrystals
can be determined [16–21]. Then the mathematical elasticity theory of quasicrystals has been
developed rapidly. In 2004, Fan and Mai give a review based on the static elasticity theory of various
quasicrystals [22]. A monograph is devoted to the development of a mathematical elasticity theory of
quasicrystals and its applications [23]. First, Levine and Lubensky et al. carried out extensive work in
terms of the elasticity and dislocations in pentagonal and icosahedral quasicrystals, resulting in many
solutions for the dislocations [24]. Then Li presented two solutions for a Griffith crack and a straight
dislocation embedded in a decagonal quasicrystal [25,26]. Chen provided a three-dimensional elastic
problem of one-dimensional hexagonal quasicrystal, and gave a general solution for this problem [27].
Meanwhile, Liu et al. obtained the general solutions and the governing equations for plane elasticity of
one-dimensional quasicrystals [28]. Based on the stress potential function, Li used a complex function
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method to accomplish notch problem of two-dimensional quasicrystals [29]. Wang and Gao obtained
some solutions for some defect problems of one-, two-dimensional quasicrystal [30–32]. Coddens
discussed the elasticity and dynamics of the phason in quasicrystals [33]. Wang et al. discussed the
phonon- and phason-type inclusions in icosahedral quasicrystals [34]. Guo et al. also discussed an
elliptical inclusion in hexagonal quasicrystals [35]. More recently, the phonon-phason elasticity of QCs
has attracted a lot of attention too. For example, Radi and Mariano have described linear elasticity of
QCs, and obtained some meaningful results for the straight cracks and dislocations in two-dimensional
quasicrytals [36–38]. An important reference concerning fundamental aspects of generalized elasticity
and dislocation theory deriving the generalized three-dimensional elastic Green tensor and all the
dislocation key-formulas including an application to dislocation loops for arbitrary quasicrytals is
presented by Lazar and Agiasofitou [39]. Li provided fundamental solutions for thermo-elasticity
based on half infinite plane cracks embedded in one-dimensional hexagonal QCs and some solutions
for one-dimensional hexagonal QCs [40–42]. Of course, dislocation and plate theory of QCs have been
developed by some researchers, for example, Sladek et al. [43], Li and Chai [44]. Because of the lack
of data of constitutive equations about plastic deformation of quasicrystals, the related researches
are fairly complicated. The existence of phason degrees of freedom leads to the essential difference
between crystals and quasicrystals. Wollgarten et al. used a dislocation mechanism to study plastic
deformation of quasicrystals [45]. A model of the plastic deformation of icosahedral quasicrystals
was provided by Feuerbacher et al. [46] and refined by Messerschmidt et al. [47]. A mass of studies
have been executed on the deformed Al–Pd–Mn single quasicrystals through a series of experimental
observations [48–51].

As an important subject, dynamics of elasticity of quasicrystals is inevitable. Recent studies on the
elasto-/hydro-dynamics of quasicrystals have made preliminary but significant progress. During the
development of this study we describe different points of view on the role of the phason variables
in the dynamic process of quasicrystals. We can primarily summarize the relevant viewpoints as
follows: (1) The phason field w is similar to phonon field u in quasicrystals, represents long-wavelength
propagation. This idea originated from Bak [12,13] who indicated that the phason describes particular
structure fluctuations (or structure disorders) in quasicrystals, and it can be viewed as a six-dimensional
space description; (2) The phason field w is diffusion rather than wave propagation, so phasons
play different roles to phonons in the hydrodynamics of quasicrystals. This idea can be found in
Lubensky et al. [52], Francoual et al. [53] and Socolar et al. [54], etc. They claimed that the phason field
w represents diffusion rather than wave propagation; thus, phasons play different roles than phonons
in the hydrodynamics of QCs. The phason modes denote the relative motion of the density waves
and the phason field w is not sensitive to spatial translations, such that the phasons are not oscillatory,
instead, they are diffusive with very large diffusion times. Furthermore, some researchers explained
that the motion of the phasons is atomic jumps. Following the above two models, Mikulla and
Trebin et al. [55], Takeuchi et al. [56], Rösch [57] and co-workers carried out extensive work in terms
of analytic and numerical methods, this results in many solutions in dislocation and crack dynamics
for different quasicrystal systems. Similar to [58,59], Fan and his co-workers obtained some analytical
solutions for some 1D and 2D quasicrystals [60–63]. More recently, Tupholme studied an anti-plane
shear crack moving in one-dimensional hexagonal quasicrystals based on the reference [64,65].
Li gave a general solution for elasto-dynamics of two dimensional quasicrystals [66]. In contrast
to the generalized elasto-dynamics, this kind of study may be named elasto-/hydro-dynamics of
quasicrystals, because the equations of motion of phonons are elasto-dynamics equations, while the
equations of motion of phasons are diffusion equations originated from the hydrodynamics; (3) There
is a recent and promising model introduced by Agiasofitou and Lazar for describing the dynamics of
quasicrystals, in which the authors clarify that an elasto-dynamic model of wave-telegraph type can be
used [67]. Based on this model, phonons are represented by waves, and phasons by waves damped in
time and propagating with finite velocity. Therefore, the equations of motion for the phonon fields
are of wave type and for the phason fields are of telegraph type. The proposed model constitutes
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a unified theory in the sense that already established models in the literature can be recovered as
asymptotic cases of it. Moreover, the same authors have investigated and compared three models
of dynamics: the elasto-dynamic model of wave type and the elasto-hydrodynamic model and the
elasto-dynamic model of wave-telegraph type [68]. For these models, they derived the equations of
motion of dislocations for arbitrary quasicrystals. To the best of the author’s knowledge these are the
main-current models in the literature for the description of the dynamics of quasicrystals.

The different points of view on the dynamics of elasticity of quasicrystals lead to the difficulty
of the study. Though some researchers believe that the hydrodynamics, i.e., the model (2) based
on the viewpoint of Lubensky et al., is a fundamental standpoint, the theory has not been verified
experimentally. In this case we give a general survey on the development of different theories and
their applications below, which may be beneficial to readers who are interested in the dynamics
of quasicrystals. This review is focused on the basic concepts and fundamental framework of the
theory of elasto-dynamics for quasi-crystalline materials, including some 1D, 2D, and 3D quasicrystals.
A decomposition and superposition procedure has been suggested to simplify the elasto-dynamics
problems of quasi-crystals. Simplification of the basic equations provides the possibility to solve
boundary value or initial-boundary value problems of elasto-dynamics elasticity. The above may be
seen as a development of the theory and methodology to those of classical dynamic elasticity. Also,
some elasto-dynamic problems for some 1Dand 2D quasi-crystals are studied, as are some examples of
their theory.

2. Elasto-Dynamics of Quasicrystals Followed Bak’s Argument

Ding et al. first proposed the elasticity of quasicrystals in [19]. The basic equations in deformation
geometry are repressed by

εij =
1
2
(

∂ui
∂xj

+
∂uj

∂xi
), wij =

∂wi
∂xj

(1)

In linear elasticity of quasicrystals the stress tensors (generalized Hooke’s law) related to the
strain tensors can be expressed by {

σij = Cijklεkl + Rijklwkl

Hij = Kijklwkl + Rklijεkl
(2)

where σij and εij phonon stresses and strains, ui, wi are phonon and phason displacements, Hij and wij
phason stresses and strains, Cijkl , Kijkl and Rijkl the phonon, phason, phonon-phason coupling elastic
constants respectively.

The law of the momentum conservation is assumed to hold for both the phonons and the phasons.
For the elasto-dynamics, the viewpoint raised by Bak in linear and small deformation case the equations
of motion are:

∂σij

∂xj
= ρ

∂2ui
∂t2 ,

∂Hij

∂xj
= ρ

∂2wi
∂t2 (3)

where ρ denotes the average mass density of the material. In this sense, Equation (3) follows Bak’s
argument [12,13]. The elasto-dynamics equations can be deduced by substituting (1) and (2) into (3).
The mathematical structure of this theory is relatively simple, and the formulations are similar to that of
classical elasto-dynamics; many researchers followed the formulation to develop the elasto-dynamics
of quasicrystals and applications in defect dynamics and thermodynamics. In the following sections
we give some examples of the theory. Some of them have been published.
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2.1. Example 1: Basic Equations for Elasto-Dynamics of Anti-Plane Elasticity of Some Quasicrystals

The basic equations of anti-plane elasticity for one-dimensional hexagonal quasicrystals or
three-dimensional icosahedral, and cubic quasicrystals take a similar form. Let us consider icosahedral
quasicrystals first. The stress tensors are related to the strain tensors repressed by

σzy = σyz = µ
∂uz

∂y
+ R

∂wz

∂y
, σxz = σzx = µ

∂uz

∂x
+ R

∂wz

∂x
(4a)

Hzy = (K1 − K2)
∂wz

∂y
+ R

∂uz

∂y
, Hzx = (K1 − K2)

∂wz

∂x
+ R

∂uz

∂x
(4b)

Substituting (4) into (3) yields

A∇2u− ρ
∂2

∂t2 u = 0 (5)

where ∇2 is two dimensional Laplace operator, ρ is the density of the material, u = [uz, wz]
T and

A =

[
µ R
R K1 − K2

]
, “T” denotes the transpose of a matrix.

A simple approach for simplifying the Equation (5) is to introduce two new functions as follows

u = Bϕ (6)

where B =

[
α −R
R α

]
, and ϕ = [φ, ψ].

Then the Equation (5) reduces to

S∇2ϕ =
∂2

∂t2ϕ (7)

where

S =

[
s2

1
s2

2

]
(8a)

α =
1
2
[µ− (K1 − K2) +

√
(µ− (K1 − K2))

2 + 4R2] (8b)

sj =

√
ε j

ρ
, j = 1, 2 (8c)

ε1,2 =
1
2
[µ + (K1 − K2)±

√
(µ− (K1 − K2))

2 + 4R2] (8d)

sj indicates the speeds of wave propagation. It is clear that the results are caused by the coupled
phonon and phason fields. Suppose there is no couple effect, i.e., R→ 0 , one can get

s1 →
√

µ

ρ
, s2 →

√
(K1 − K2)

ρ
(9)

and the known constant
√

µ
ρ indicates the elastic wave speed of the phonon field, while

√
K1−K2

ρ

requires K1 − K2 > 0 and represents the speed of the elastic wave speed of the phason field.
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Substituting (6) into (4) gets the displacement and stress expressions based on the
two displacement functions φ and ψ

σyz = σzy = (αµ + R2) ∂φ
∂y + R(α− µ) ∂ψ

∂y

σxz = σzx = (αµ + R2) ∂φ
∂x + R(α− µ) ∂ψ

∂x

Hzy = R(α + (K1 − K2))
∂φ
∂y + (α(K1 − K2)− R2) ∂ψ

∂y

Hzx = R3(α + (K1 − K2))
∂φ
∂x + (α(K1 − K2)− R2) ∂ψ

∂x

(10)

The above formula can be regarded as anti-plane elasticity of one-dimensional quasicrystals and
cubic quasicrystals as well. The difference lies in that µ, K1 − K2 and R are replaced by C44, K44 and
R44 for cubic quasicrystals or replaced by C44, K2 and R3 for one-dimensional hexagonal quasicrystals.

The solution of (7) can be determined by using the method for solving wave equations in
mathematical physics.

2.2. Example 2: Elasto-Dynamics of Hexagonal Quasicrystals

In this case the generalized Hooke’s law is [23]

σxx = C11
∂ux
∂x + C12

∂uy
∂y

σyy = C12
∂ux
∂x + C11

∂uy
∂y

σxy = σyx = C66(
∂ux
∂y +

∂uy
∂x )

σzy = σyz = C44
∂uz
∂y + R3

∂wz
∂y

σxz = σzx = C44
∂uz
∂x + R3

∂wz
∂x

Hzy = K2
∂wz
∂y + R3

∂uz
∂y

Hzx = K2
∂wz
∂x + R3

∂uz
∂x

(11)

The resulting wave equations are

∇2F =
1
c2

1

∂2F
∂t2 , ∇2G =

1
c2

2

∂2G
∂t2 (12a)

∇2φ =
1
s2

1

∂2φ

∂t2 , ∇2ψ =
1
s2

2

∂2ψ

∂t2 (12b)

where
ux =

∂F
∂x

+
∂G
∂y

, uy =
∂F
∂y
− ∂G

∂x
(13a)

uz = αφ− Rψ, wz = R3φ + αψ (13b)

α =
1
2
[C44 − K2 +

√
(C44 − K2)

2 + 4R32] (13c)

c1 =
√

C11/ρ, c2 =
√
(C11 − C12)/ρ (13d)

sj =

√
ε j

ρ
, j = 1, 2 (13e)

ε1,2 =
1
2
[C44 + K2 ±

√
(C44 − K2)

2 + 4R32] (13f)
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2.3. Example 3: Elasto-Dynamics of Plane Elasticity of Dodecagonal Quasicrystals

Let us take the z-axis as periodic direction in point group 12 mm dodecagonal quasicrystals.
Suppose that the field variables not depends on the coordinate z, then the elasticity problem of
dodecagonal quasicrystals can be turned into the plane elasticity problem and anti-plane elasticity
problem. Meanwhile, here we only consider the plane elasticity, and the field quantities are{

ui = ui(x, y, t)(i = 1, 2)

wi = wi(x, y, t)(i = 1, 2)
(14)

in which t represents time.
For the dodecagonal quasicrystals the generalized Hooke’s law is as follows

σxx = C12(εxx + εyy) + (C11 − C12)εxx

σyy = C12(εxx + εyy) + (C11 − C12)εyy

σxy = σyx = (C11 − C12)εxy

Hxx = K1wxx + K2wyy

Hyy = K1wyy + K2wxx

Hxy = (K1 + K2 + K3)wxy + K3wyx

Hyx = (K1 + K2 + K3)wyx + K3wxy

(15)

In addition, we can see the phonon and phason are decoupled, i.e., Rijkl = Rklij = 0.
If we follow the standpoint of Bak [12,13], the related equilibrium equations with absence of the

body force are 

∂σxx
∂x +

∂σxy
∂y = ρ ∂2ux

∂t2

∂σyx
∂x +

∂σyy
∂y = ρ

∂2uy
∂t2

∂σzx
∂x +

∂σzy
∂y = ρ ∂2uz

∂t2

∂Hxx
∂x +

∂Hxy
∂y = ρ ∂2wx

∂t2

∂Hyx
∂x +

∂Hyy
∂y = ρ

∂2wy
∂t2

(16)

in which ρ indicates the mass density of the materials.
Let us bring in the four displacement potential functions into the fixed coordinate system (x1, y, t)

such that {
ux1 = ∂F

∂x1
+ ∂G

∂y , uy = ∂F
∂y −

∂G
∂x1

wx1 = ∂P
∂x1

+ ∂Q
∂y , wy = − ∂P

∂y + ∂Q
∂x1

(17)

Then the above basic equations are ascribed to the following wave Equations

∇2F =
1
c2

1

∂2F
∂t2 ,∇2G =

1
c2

2

∂2G
∂t2 ,∇2uz =

1
c2

3

∂2uz

∂t2 ,∇2P =
1
d2

1

∂2P
∂t2 ,∇2Q =

1
d2

2

∂2Q
∂t2 (18)

in which ∇2 = ∂2/∂x1
2 + ∂2/∂y2 represents the two-dimensional Laplace operator, and

c1 =

√
C11

ρ
, c2 =

√
(C11 − C12)

2ρ
, d1 =

√
K1

ρ
, d2 =

√
(K1 + K2 + K3)

ρ
(19)

indicates the elastic wave speeds of the phonon field and phason field in the quasicrystal.
Equation (18) provide a macro-description of vibration and wave propagation in two-dimensional

quasicrystals with 12-fold symmetry, which can be turned into the classical elastic wave equations.
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2.4. Example 4: The Approximate Form of Elasto-Dynamics of Two-Dimensional Elasticity (or Simplified
Three-Dimensional Elasticity) of Icosahedral Quasicrystals

Considering the weak coupling case (the phonon-phason coupling is only in direction z), the final
wave equations are

∇2F =
1
c2

1

∂2F
∂t2 , ∇2G =

1
c2

2

∂2G
∂t2 (20a)

∇2wx =
1
c2

3

∂2wx

∂t2 , ∇2wy =
1
c2

4

∂2wy

∂t2 (20b)

∇2φ =
1

d1
2

∂2φ

∂t2 , ∇2ψ =
1

d22
∂2ψ

∂t2 (20c)

in which c1, c2 defined by (19), c3 = c4 =
√

K1/ρ and d1, d2 are the s1, s2 defined by (19).
It is unavailable to obtain standard wave equations for elasto-dynamics of quasicrystals so far

from the above four cases.

2.5. A Moving Screw Dislocation in Anti-Plane Elasticity of Some Quasicrystals

Let us consider a straight screw dislocation line parallel to the quasi-periodic axis which moves
along a periodic x axis in the periodic plane. Suppose the dislocation moves with a constant velocity V .
Meanwhile, suppose that the dislocation has the Burgers vector is (0, 0, b||3 , 0, b⊥3 ). The dislocation
conditions can be repressed by ∫

Γ
duz = b||3 ,

∫
Γ

dwz = b⊥3 (21)

where Γ denotes the Burgers circuit surroundings the core of the moving dislocation.
Henceforth we use (x1, x2, t) to denote the fixed coordinates and (x, y) to denote the moving

coordinates. In order to facilitate this, we introduce the Galilean transformation

x = x1 −Vt, y = x2 (22)

Then the known wave Equation (7) can be ascribed to the Laplace equations,
(i.e., (∇2 − 1

s2
1

∂2

∂t2 )→ ∇2
1 , (∇2 − 1

s2
2

∂2

∂t2 )→ ∇2
2,∇2 = ∂2

∂x2
1
+ ∂2

∂x2
2
)

∇2
1φ = 0, ∇2

2ψ = 0 (23)

where

∇1
2 =

∂2

∂x2 +
∂2

∂y2
1

, ∇1
2 =

∂2

∂x2 +
∂2

∂y2
2

(24a)

yj = βjy, βj =
√

1− V2/s2
j , j = 1, 2 (24b)

The solution of Equation (23) is

φ = ImF1(z1), ψ = ImF2(z2) (25)

where
zj = x + iyj(i =

√
−1) (26)

F1(z1) and F2(z2) are analytic functions of z1 and z2; “Im” indicates the imaginary part of
a complex function.

The analytic functions are determined from the boundary conditions (21) as

φ(x, y1) =
A1

2π
arctan

y1

x
, ψ(x, y1) =

A2

2π
arctan

y2

x
(27)
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where

A1 =
αb||3 + Rb⊥3
α2 + R2 , A2 =

αb||3 − Rb⊥3
α2 + R2 (28)

The displacement field in terms of the fixed coordinate is

uz(x, y, t) = 1
2π(α2+R2)

[(α2arctan β1y
x−Vt + R2arctan β2y

x−Vt )b
||
3 + (arctan β1y

x−Vt − arctan β2y
x−Vt )αRb⊥3 ] (29a)

wz(x, y, t) = 1
2π(α2+R2)

[(R2arctan β1y
x−Vt + α

2
3arctan β2y

x−Vt )b
⊥
3 + (arctan β1y

x−Vt − arctan β2y
x−Vt )αRb||3 ] (29b)

If we use W per unit length to denote the energy of moving dislocation, which is defined by the
following integrals and composed of the potential energy Wp and kinetic energy Wk

Wk =
1
2
ρ
x

Ω

[(
∂uz

∂t
)

2
+ (

∂wz

∂t
)

2
]dx1dx2, Wp =

1
2

x

Ω

[σij
∂uz

∂t
+ Hij

∂wz

∂t
]dx1dx2 (30)

in which the integral around a ring r0 < r < R0, r0 indicates the size of the dislocation core and R0

indicates the size of the dislocation net. In a general way r0 ∼ 10−8 cm, and R0 ∼ 104 r0. Substituting
the stress and displacement expressions into (30), one obtains

Wk =
kk
4π

ln
R0

r0
,Wp =

kp

4π
ln

R0

r0
(31)

where

kk =
ρV2(α2 + R2)

2
(

A2
1
β1

+
A2

2
β2

) (32a)

kp =
A2

1
2 (µα2 + (K1 − K2)R2 + 2αR2)(β1 +

1
β1

) +
A2

2
2 (µR2 + (K1 − K2)α

2 − 2αR2)(β2 +
1
β2

) (32b)

A1 and A2 are given by (28). The total energy is

W =
kk + kp

4π
ln

R0

r0
(33)

When V → s2 , i.e., β2 → 0, the energy takes a limit to infinity; this is meaningless. Thus s2 can
be regarded as the limit of the velocity from a moving dislocation. When V � s2, the energy W can be
expressed as

W ≈W0 +
1
2
ρV2[(b||3 )

2
+ (b⊥3 )

2
]

1
4π

ln
R0

r0
= W0 +

1
2

m0V2 (34)

where W0 denotes the energy per unit length of a rest screw dislocation,

W0 = [µ(b||3 )
2
+ R(b⊥3 )

2
+ 2b||3 b⊥3 R]

1
4π

ln
R0

r0
(35)

And m0 is named by apparent mass of the dislocation per unit length:

m0 = [µ(b||3 )
2
+ R(b⊥3 )

2
+ 2b||3 b⊥3 R]

1
4π

ln
R0

r0
(36)

Let V = 0, the solution is clear enough to be able to reduce to the solution of a static dislocation.
Furthermore assume b⊥3 = 0 and R = 0, we obtain the solution of reduced problem

uz(x−Vt, y) =
b

2π
arctan

β1y
x−Vt

(37a)

σyz = σzy =
b

2π
µβ1(x−Vt)

(x−Vt)2 + β2
1y2

(37b)
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σxz = σzx = − b
2π

µβ1y

(x−Vt)2 + β2
1y2

(37c)

W ≈ (µb2 +
1
2
ρV2b2)

1
4π

ln
R0

r0
(37d)

m0 =
ρb2

4π
ln

R0

r0
(37e)

which is equal to the Eshellby solution for crystals.
The above solution can be reduced to the solutions anti-plane elasticity cases of cubic or hexagonal

quasicrystals. The material constants should be replaced similarly with Section 2.1.

2.6. A Mode III Moving Griffith Crack in Anti-Plane Elasticity

Consider a moving Griffith crack of Mode III, which moves with constant speed V along x1

(see Figure 1). The fixed coordinates are (x1, x2, t) and the moving coordinates are (x, y).
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Figure 1. Moving Griffith crack of Mode III.

In the moving coordinates the boundary conditions are√
x2 + y2 → ∞ : σij = 0, Hij = 0 (38a)

y = 0, |x| < a : σyz = −τ, Hyz = 0 (38b)

The general solution to the Laplace equations is

φ(x1, y1) = ReF1(z1),ψ(x1, y2) = ReF2(z2) (39)

where F1(z1) and F2(z2) are analytic functions of z1 and z2.
The problem is solved by using the conformal mapping

z1, z2 = ω(ζ) =
a
2
(ζ+ ζ−1) (40)

After some manipulations, we obtain the solution

F1(z1) = F1[ω(ζ)] = G1(ζ) =
i∆1

∆
ζ, F2(z2) = F2[ω(ζ)] = G2(ζ) =

i∆2

∆
ζ (41)
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in which
∆ = β1β2[(αµ+ R2)(α(K1 − K2)− R2)− R2(α+ (K1 − K2))(α− µ)] (42a)

∆1 = ταβ2(α(K1 − K2)− R2) (42b)

∆2 = ταβ1R(α+ (K1 − K2)) (42c)

The inverse mapping as

ζ = ω−1(z1) =
z1

a
−
√
(

z1

a
)

2
− 1 = ω−1(z2) =

z2

a
−
√
(

z2

a
)

2
− 1 (43)

The corresponding stresses are

σyz = σzy = (αµ+ R2)β1
∂

∂y1
ReF1(z1) + R(α− µ)β2

∂

∂y2
ReF2(z2) (44a)

σxz = σzx = (αµ+ R2)
∂

∂x
ReF1(z1) + R3(α− µ)β2

∂

∂x
ReF2(z2) (44b)

Hzy = R3(α+ (K1 − K2))β1
∂

∂y1
ReF1(z1) + (α(K1 − K2)− R2)

∂

∂y2
ReF2(z2) (44c)

Hzx = R3(α+ (K1 − K2))β1
∂

∂x
ReF1(z1) + (α(K1 − K2)− R2)

∂

∂x
ReF2(z2) (44d)

Substituting (43) into (41) then into (44a), the stresses can be expressed in the explicit form as

σyz = σzy = − τ
∆
(αµ+ R2)β1β2(α(K1 − K2)− R2)[1− d

(d1d2)
1
2

cos(θ− 1
2
θ1 −

1
2
θ2)]

+
τ

∆
β1β2R2(α+ (K1 − K2))(α− µ)[1−

D

(D1D2)
1
2

cos(θ− 1
2

Θ1 −
1
2

Θ2)]

(45)

with
d =

√
x2 + y2

1, d1 =
√
(x− a)2 + y2

1, d2 =
√
(x + a)2 + y2

1 (46a)

D =
√

x2 + y2
2, D1 =

√
(x− a)2 + y2

2, D2 =
√
(x + a)2 + y2

2 (46b)

θ = arctan(
y1

x
), θ1 = arctan(

y1

x− a
), θ2 = arctan(

y1

x + a
) (46c)

Θ = arctan(
y2

x
), Θ1 = arctan(

y2

x− a
), Θ2 = arctan(

y2

x + a
) (46d)

It is easy to show that (45) satisfies the boundary conditions of the problem. Similarly, σxz = σzx,
Hzx and Hzy can be expressed explicitly.

Let y = 0 in Equation (45), we have

σyz(x, 0) =

{
xτ√

x2−a2 − τ, |x| > a

−τ, |x < a|
(47)

The stress is singular of order (x− a)−1/2 when x → a .
The stress intensity factor for Mode III for the phonon field is

K||I = lim
x→a+

√
π(x− a)σyz(x, 0) =

√
πaτ (48)

This is equal to the Yoffe solution [64], in which the stress intensity factor is also independent of
the crack moving speed V.
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The energy of the moving crack is defined by

W = 2
∫ a

0
[σzy(x, 0)⊕ Hzy(x, 0)][uz(x, 0)⊕ wz(x, 0)]dx

=
1
∆
(∆1α− ∆2R)τπa =

1
∆
[αβ2(α(K1 − K2)− R2)− β1R2(α+ (K1 − K2))]πa2τ

(49)

The crack energy release rate is

G =
1
2

∂W
∂a

=
1

2∆
[αβ2(α(K1 − K2)− R2)− β1R2(α+ (K1 − K2)](K

‖
I )

2
(50)

The above results hold for anti-plane elasticity of three-dimensional cubic and one-dimensional
hexagonal quasicrystals as well provided that the material constants µ, K1 − K2 and R are replaced by
C44, K44 and R44 or by C44, K2 and R3, respectively.

2.7. The Moving Dugdale Model for Plane Elasticity of Dodecagonal Quasicrystals

Fan and his co-workers finished many systematical studies on elasticity and elasto-dynamics of
quasicrystals. In the following sections, we will reveal the general solutions of the dynamic problems
of the point group 12 mm two-dimensional dodecagonal quasicrystals and give an example using
this approach. A moving Dugdale model of the point group 12 mm two-dimensional dodecagonal
quasicrystals is solved in this paper. The Dugdale-type plastic zones ahead of the crack tip are also
obtained for when a crack in a dodecagonal quasicrystal is moving or growing at a constant speed V
in the direction Ox1. We introduce the Galileo transformation for convenience

x = x1 −Vt, y = y (51)

Then the wave equations are reduced to the Laplace equations in the moving coordinate
system (x, y) 

(
∂2

∂x2 +
∂2

∂y2
1

)
F (x, y1) = 0,

(
∂2

∂x2 +
∂2

∂y2
2

)
G (x, y2) = 0(

∂2

∂x2 +
∂2

∂y2
3

)
P (x, y3) = 0,

(
∂2

∂x2 +
∂2

∂y2
4

)
Q (x, y4) = 0

(52)

where {
y1 = α1y, y2 = α2y, y3 = α3y, y4 = α4y

α1 =
(
1−V2c2

1
) 1

2 , α2 =
(
1−V2c2

2
) 1

2 , α3 =
(
1−V2d2

1
) 1

2 , α4 =
(
1−V2d2

2
) 1

2
(53)

We give a general solution to the Equation (52) by using complex variable function theory F (x, y1) = F1 (z1) + F1 (z1), G (x, y2) = i
[

F2 (z2)− F2 (z2)
]

P (x, y3) = F3 (z3) + F3 (z3), Q (x, y4) = i
[

F4 (z4)− F4 (z4)
] (54)

where Fi (zi) (i = 1, 2, 3, 4) are four analytic functions of the complex variables zi (i = 1, 2, 3, 4) given by

z1 = x + iy1, z2 = x + iy2, z3 = x + iy3, z4 = x + iy4 (55)

and Fi (zi) are the complex conjugations of Fi (zi).
It is noted that some new symbols for convenience Φ (z1) =

dF1(z1)
dz1

= F′1 (z1) , Ψ (z2) =
dF2(z2)

dz2
= F′2 (z2)

Φ1 (z3) =
dF3(z3)

dz3
= F′3 (z3) , Ψ1 (z4) =

dF4(z4)
dz4

= F′4 (z4)
(56)
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and we will obtain the complex expressions of the displacements
ux = 2Re [Φ (z1)− α2Ψ (z2)]

uy = −2Im [α1Φ (z1)−Ψ (z2)]

wx = 2Re [Φ1 (z3)− α4Ψ1 (z4)]

wy = −2Im [α3Φ1 (z3)−Ψ1 (z4)]

(57)

and the stresses expressed by

σxx + σyy = 2µ
(
α2

1 − α2
2
) [

Φ′ (z1) + Φ′ (z1)
]

σxx − σyy + i2σxy = 2µ

[
(1− α1)

2Φ′ (z1) + (1 + α1)
2 Φ′ (z1)+

(1− α2)
2Ψ′ (z2) + (1 + α2)

2 Ψ′ (z2)

]
Hxx + Hyy = 2(K2 + K3)

(
α2

3 − α2
4
) [

Φ′1 (z3) + Φ′1 (z3)
]

Hxx − Hyy + i2Hxy = 2(K2 + K3)

[
(1− α3)

2Φ′1 (z3) + (1 + α3)
2 Φ′1 (z3)+

(1− α4)
2Ψ′1 (z4) + (1 + α4)

2 Ψ′1 (z4)

]
(58)

Suppose the phason field has no contribution on phonon field deformation, we will only discuss
the phonon field, which can provide a macroscopic description for this kind dynamic problem.
To proceed we represent Φ (z1) and Ψ (z2) in series expansion form which are in agreement with the
boundary conditions 

Φ (z1) =
σ
(∞)
xx +σ

(∞)
yy

4µ(α2
1+α2

2)
− i

σ
(∞)
xy

4µα2
1
+

∞
∑

n=1
z−n

1

Ψ (z2) =
σ
(∞)
yy

4µα2
+

(1+α2
2)
(

σ
(∞)
xx +σ

(∞)
yy

)
8µα2(α2

1−α2
2)

+
∞
∑

n=1
z−n

2

(59)

and σ
(∞)
ij denotes the stresses at infinity.

With the help of a conformal transformation

z1, z2 = ω (ζ) (60)

The exterior of Γ in the z1-plane or z2-plane is mapped into the interior of the unit circle γ in the
ζ-plane. Supposing the distribution of normal and shear stresses on Γ to be −σsq1 (x) and −τsq2 (x),
from the relations in the Equation (58) we have{

Re
[(

1 + α2
2
)

Φ′ (z1)− 2α2Ψ′ (z2)
]
= σs

2µ q1 (x)

Im
[
2α1Φ′ (z1)−

(
1 + α2

2
)

Ψ′ (z2)
]
= τs

2µ q2 (x)
(x, y ∈ Γ) (61)

where σs and τs are material constants and q1 (x) and q2 (x) are known functions.
We begin by writing unknown functions in terms of the Equation (60)

Φ (z1) = Φ [ω (ζ)] = Φ∗ (ζ) , Ψ (z2) = Ψ [ω (ζ)] = Ψ∗ (ζ) (62)

and
Φ′ (z1) = Φ′∗ (ζ)/ω′ (ζ) , Ψ′ (z2) = Ψ′∗ (ζ)/ω′ (ζ) (63)

Then the boundary conditions (61) may be rewritten as
1

2πi
∫

γ
G1(σ)dσ

σ−ζ + 1
2πi
∫

γ
ω′(σ)
ω′(σ)

G1(σ)dσ
σ−ζ = σs

2µ ·
1

2πi
∫

γ
ω′(σ)q∗1(σ)dσ

σ−ζ

1
2πi
∫

γ
G2(σ)dσ

σ−ζ − 1
2πi
∫

γ
ω′(σ)
ω′(σ)

G2(σ)dσ
σ−ζ = τs

2µ ·
1

2πi
∫

γ
ω′(σ)q∗2(σ)dσ

σ−ζ

(64)
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where |ζ| < 1 and {
G1 (σ) =

(
1 + α2

2
)

Φ′∗ (σ)− 2α2Ψ′∗ (σ)

G2 (σ) = 2α1Φ′∗ (σ)−
(
1 + α2

2
)

Ψ′∗ (σ)
(65)

and {
q1 (x) = q1 [ω (σ)] = q∗1 (σ)

q2 (x) = q2 [ω (σ)] = q∗2 (σ)
(66)

Thus the dynamic crack problem is reduced to the boundary value problem (64) of G1 (ζ) and G2 (ζ),
which are analytic functions in the interior of the unit circle γ. For concrete functions ω (ζ), q∗1 (σ) and
q∗2 (σ), the solutions can be obtained.

In general, the plastic deformation will occur in the vicinity of the crack tip when it expands or
propagates. The zone is placed at the crack tip and subjected to so-called “cohesive forces” impeding
the fracture growth. So we extend the Dugdale-Barenblatt model for the moving crack problem.
As shown in Figure 2, the material is loaded to a pulling stress σyy = σ(∞) at infinity, and the so-called
coupled cohesive force zone is located at y = 0, l < |x| < l + b, where b is unknown, and in the
cohesive force zone σyy is equal to the stress σs which represents the yield stress of the quasicrystals.
Obviously, this simplified model is linearized. So we can utilize the superposition principle to prescribe
the above problem apart from a negligible constant term as follows:

y = 0, |x| < l : σyy = −σ(∞), Hyy = 0, σxy = 0, Hxy = 0

y = 0, l < |x| < l + b : σyy = σs − σ(∞), Hyy = 0, σxy = 0, Hxy = 0(
x2 + y2) 1

2 → ∞ : σij = 0, Hij = 0

(67)
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For this problem the mapping function reads

z1, z2 =
l + b

2

(
ζ +

1
ζ

)
(68)

Substituting Equations (67) and (68) into (66), on the basis of the Cauchy integral theory and the
analytic continuity principle we obtain

Φ′ (z1) =
1
µ

1+α2
2

(1+α2
2)

2−4α1α2

(
2θ1
πζ2 σs − σ(∞)

)
ζ2

ζ2−1 + 1
2πi

σs
µ

1+α2
2

(1+α2
2)

2−4α1α2
ln e2iθ1−ζ2

e−2iθ1−ζ2

Ψ′ (z2) =
1
µ

2α1

(1+α2
2)

2−4α1α2

(
2θ1
πζ2 σs − σ(∞)

)
ζ2

ζ2−1 + 1
2πi

σs
µ

2α1

(1+α2
2)

2−4α1α2
ln e2iθ1−ζ2

e−2iθ1−ζ2

(69)
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where the angle θ1 located in the unit circle γ in the ζ-plane corresponds to the crack tip and can be
determined by cosθ1 = l/(l + b), and ζ = ±1 corresponds to the ends of the cohesive force zone.

Because the stresses at the ends of the cohesive force zone, i.e., at y = 0, x = ± (l + b) at the
z-plane or in ζ = ±1 at the ζ-plane must be equal to a finite value, there is no stress singularity. From
the known Equations (58) and (69), these conditions lead to

1
µ

1 + α2
2(

1 + α2
2
)2 − 4α1α2

(
2θ1

π
σs − σ(∞)

)
= 0, (70)

and combining with the condition cosθ1 = l/(l + b), we can easily obtain the size of the cohesive
force zone

b = l

[
sec

(
πσ(∞)

2σs

)
− 1

]
(71)

This value is corresponding to the result of the Dugdale model in nonlinear static fracture of
isotropic body.

Using the displacement formulas and the integration of the functions (70) and noting the
Equation (71), we can get the displacement uy

uy = 1
π

(l+b)σs
µ

α1(α2
2−1)

(1+α2
2)

2−4α1α2

{
Im
(

2θ1σs
ζ + πσ(∞)ζ

)
+ Re

[(
eiθ + eiθ1

)
ln ζ2−e2iθ1

ζ2−e−2iθ1
−
(

eiθ1 − eiθ1

)
ln
(ζ+eiθ1)

(
ζ−eiθ1

)
(

ζ+eiθ1
)
(ζ−eiθ1)

]} (72)

in which ζ take its value on the circle i.e., ζ = σ = eiθ .
According to the following formula, we take the limitation and the dynamic crack tip opening

displacement is found to be
δ

dynamic
I = lim

θ→θ1
2uy = f (v) δstatic

I (73)

in which

f (v) =


(1 + ν)

α1(1−α2
2)

4α1α2−(1+α2
2)

2 , plane stress state

α1(1−α2
2)

4α1α2−(1+α2
2)

2 /(1− ν) , plane strain state
(74)

δstatic
I =

8lσs

πE′
lnsec

(
πσ(∞)

2σs

)
and E′ =

{
E plane stress state
E/
(
1− ν2) plane strain state

(75)

In these formulas the expression of δstatic
I is equal to the result of statics, in which E and ν are

Young’s modulus and Poission’s ratio respectively.

3. Elasto-/Hydro-Dynamics of Quasicrystals Based on the Argument of Lubensky et al.

The formulation in the preceding sections come from Bak’s standpoint, which is based on the
equations of motion

ρ
∂2ui
∂t2 =

∂σij

∂xj
, ρ

∂2wi
∂t2 =

∂Hij

∂xj
(76)

Fan et al. [23] discard some ideas of both the arguments of Bak and Lubensky and presented the
following equations of motion under linear and small deformation to replace the wave equations

ρ
∂2ui
∂t2 =

∂σij

∂xj
, κ

∂wi
∂t

=
∂Hij

∂xj
(77)
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The first equation of (57) is the usual equation of elasto-dynamics, in which ρ is the mass density;
the other one is a diffusion equation, where κ = 1/Γw, in which Γw the kinematics coefficient Γw of
the phason field introduced by Lubensky et al. [52]. It is obvious that the second equation of (57) is
a linearized equation of hydrodynamics of quasicrystals of Lubensky et al. The dynamic equations can
be regarded as the elasto-/hydro-dynamic equations of quasicrystals. This operation is believed to be
reconcile the contradiction.

3.1. Application 1 of Elasto-/Hydro-Dynamics-Approximate Solution for a Moving Screw Dislocation in
Anti-Plane Elasticity

Consider a moving dislocation in anti-plane problem of three-dimensional icosahedral or cubic or
one-dimensional hexagonal quasicrystal. In this case the stress and strain relations are regarded as
Equation (4). The basic difference lies in the equations of motion, they are

µ∇2uz + R∇2wz = ρ
∂2uz

∂t2 , R∇2uz + (K1 − K2)∇2wz = κ
∂wz

∂t
(78)

Equation (78) are wave-diffusion equations.
Suppose the screw dislocation has a speed V, which moves along direction Ox. So we can easily

write the boundary conditions√
x2 + y2 → ∞ : σij(x, y, t)→ 0, Hij(x, y, t)→ 0 (79a)

∫
Γ

duz = b‖3 ,
∫
Γ

dwz = b⊥3 (79b)

The problem (78), (79) is solved by means of perturbation incorporating the varitional method.
R/µ is a small quantity, which can serve as the perturbation parameter. First, we determine the
zeroth-order solution. So the governing equation is

ρ ∂2u0

∂t2 − µ∇2u0 = 0

κ ∂w0

∂t − (K1 − K2)∇2w0 = 0
(80)

where u0, w0 signify the zeroth-order solution.
Recall the Galileo transformation

x = x1 −Vt (81)

We can obtain
∂

∂t
= −V

∂

∂x
,

∂2

∂t2 = V2 ∂2

∂x2 (82)

Putting (82) into (80) yields
∂2u0

∂x2 + 1
β2

1

∂2u0

∂y2 = 0

∂2w0

∂x2 + β2
2

∂w0

∂x + ∂2w0

∂y2 = 0
(83)

where

β2
1 = 1− V2

c2 , β2
2 =

Vκ

K1 − K2
=

V
(K1 − K2)Γw

(84)

in which c =
√

µ/ρ is the transverse wave velocity of the phonon field in an icosahedral quasicrystal.
Consider the dislocation conditions in (79), we have the following two sets of equations

∂2u0

∂x2 + 1
β2

1

∂2u0

∂y2 = 0∫
Γ

du0 = b‖3
(85a)
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∂2w0

∂x2 + β2
2

∂w0

∂x + ∂2w0

∂y2 = 0∫
Γ

dw0 = b⊥3
(85b)

The solution is

u0 =
b‖3
2π arctan β1y

x
(86)

To solve Equation (85b), let
w0 = w1 + w2 (87)

in which w1 satisfies 
∂2w1
∂x2 + ∂2w1

∂y2 = 0∫
Γ

dw1 = b⊥3
(88)

which has the solution

w1 =
b⊥3
2π

arctan
y
x

(89)

and w2 satisfies 
∂2w2
∂x2 + β2

2
∂w2
∂x + ∂2w2

∂y2 =
β2b⊥3 y

2π(x2+y2)∫
Γ

dw2 = 0
(90)

The Equation in (90) is very complicated. It can be solved approximately by the variational
method. Without giving the detail, the approximate solution is

w2 = −
b⊥3
2π

β2
2x2y

(x2 + y2)(1 + β2
2x)

(91)

From Equations (77), (79) and (91), we obtain

w0 =
b⊥3
2π

(arctan
y
x
−

β2
2x2y

(x2 + y2)(1 + β2
2x)

) (92)

The governing Equation (78) for the first-order solution are

ρ ∂2u1

∂t2 − µ∇2u1 = R ∇2w0

κ ∂w1

∂t − (K1 − K2)∇2w1 = R ∇2u0
(93)

where u1, w1 signify the first -order solution.
Solving the governing Equation (93) with the boundary condition (79), and using the variational

method weobtain the first-order solution as follows

u1 = − b⊥3
2π

R
(ρV2−µ)

2β2
2x2y(3x2−y2+6β2

2x3+2β4
2x4)

(x2+y2)
2
(1+β2

2x)3

w1 = − b‖3 R
2π(K1−K2)

2(β3
1−β1)x3y

(x2+β2
1y2)

2
(1+β2

2x)

(94)



Crystals 2016, 6, 152 17 of 32

The displacements of the moving dislocation problem follows the above-mentioned
perturbation solution

uz(x1, y, t) ≈ u0
z(x1, y, t) + u1

z(x1, y, t)

=
b‖3
2π arctan β1y

x −
b⊥3
2π

R
(ρV2−µ)

2β2
2x2y(3x2−y2+6β2

2x3+2β4
2x4)

(x2+y2)
2
(1+β2

2x)3

wz(x1, y, t) ≈ w0
z(x1, y, t) + w1

z(x1, y, t)

=
b⊥3
2π [arctan y

x −
β2

2x2y
(1+β2

2x)(x2+y2)
]− b‖3 R

2π(K1−K2)

2(β3
1−β1)x3y

(x2+β2
1y2)

2
(1+β2

2x)

(95)

where x = x1 −Vt.
The strains with the corresponding displacements are

εyz = εzy = 1
2 [

b‖3
2π

β1x
x2+β2

1y2 +
b⊥3
π

β2
2R

ρV2−µ

3x6−12x4y2+y6+6(x7−3x5y2)β2
2+2(x8−3x6y2)β4

2

(x2+y2)
3
(1+β2

2x)3 ] (96a)

εzx = εxz =
1
2 [−

b‖3
2π

β1y
x2+β2

1y2 +

b⊥3
π

β2
2R

ρV2−µ

14x3y3−2xy5+(−3x6y+38x4y3+x2y5)β2
2−8(x7y−3x5y3)β4

2−2(x8y−3x6y3)β6
2

(x2+y2)
3
(1+β2

2x)4 ]
(96b)

wzy =
b⊥3
2π

x(x2 + y2 + 2β2
2xy2)

(x2 + y2)2(1 + β2
2x)
−

b‖3
π

R
K1 − K2

x3(x2 − 3β2
1y2)(β3

1 − β1)

(1 + β2
2x)(x2 + β2

1y2)
3 (96c)

wzx = − b⊥3
2π

y(2β2
2x3+y2+4β2

2xy2+x2(1+2β4
2y2))

(x2+y2)
2
(1+β2

2x)2 +
b‖3
π

R
K1−K2

x2y(x2+2β2
2x3−2β2

1β2
2xy2−3β2

1y2)(β3
1−β1)

(1+β2
2x)2

(x2+β2
1y2)

3 (96d)

The stresses are

σyz = σzy =
b⊥3
2π [

2β2
2Rµ

ρV2−µ

3x6−12x4y2+y6+6(x7−3x5y2)β2
2+2(x8−3x6y2)β4

2

(x2+y2)
3
(1+β2

2x)3 +
Rx(x2+y2+2β2

2xy2)

(x2+y2)
2
(1+β2

2x)
]

+
b‖3
2π [

µβ1x
x2+β2

1y2 − 2R2

K1−K2

x3(x2−3β2
1y2)(β3

1−β1)

(1+β2
2x)(x2+β2

1y2)
3 ]

(97a)

σzx = σxz =
b⊥3 R
2π [

2β2
2µ

ρV2−µ

14x3y3−2xy5+(−3x6y+38x4y3+x2y5)β2
2−8(x7y−3x5y3)β4

2−2(x8y−3x6y3)β6
2)

(x2+y2)
3
(1+β2

2x)4

− y(2β2
2x3+y2+4β2

2xy2+x2(1+2β4
2y2))

(x2+y2)
2
(1+β2

2x)2 ] +
b‖3
2π [

2R2

K1−K2

x2y(x2+2β2
2x3−2β2

1β2
2xy2−3β2

1y2)(β3
1−β1)

(1+β2
2x)2

(x2+β2
1y2)

3

− µβ1y
x2+β2

1y2 ]

(97b)

Hzy =
b⊥3
2π [

2β2
2R2

ρV2−µ

3x6−12x4y2+y6+6(x7−3x5y2)β2
2+2(x8−3x6y2)β4

2

(x2+y2)
3
(1+β2

2x)3 + (K1 − K2)
x(x2+y2+2β2

2xy2)

(x2+y2)
2
(1+β2

2x)
]

+
b‖3 R
2π [ β1x

x2+β2
1y2 −

2x3(x2−3β2
1y2)(β3

1−β1)

(1+β2
2x)(x2+β2

1y2)
3 ]

(97c)

Hzx =
b⊥3
2π [

2β2
2R

ρV2−µ

14x3y3−2xy5+(−3x6y+38x4y3+x2y5)β2
2−8(x7y−3x5y3)β4

2−2(x8y−3x6y3)β6
2

(x2+y2)
3
(1+β2

2x)4

−(K1 − K2)
y(2β2

2x3+y2+4β2
2xy2+x2(1+2β4

2y2))

(x2+y2)
2
(1+β2

2x)2 ] +
b‖3 R
2π [

2x2y(x2+2β2
2x3−2β2

1β2
2xy2−3β2

1y2)(β3
1−β1)

(1+β2
2x)2

(x2+β2
1y2)

3

− β1y
x2+β2

1y2 ]

(97d)

For cubic or hexagonal quasicrystals, the solutions are obtained by replacing µ, (K1 − K2) and R
by C44, K44 and R44 or by C44, K2 and R3 respectively in the above equations. It is pointed out that the
solution is composed of three parts, namely, wave propagation, diffusion motion and their interaction.
The part of the phonon field is governed by wave propagation, and the part of the phason field is
governed by diffusion motion. Consequently, the difference between the present solution and the
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dynamic solution of the based on Bak’s argument lies in the diffuse effect. Let V = 0, the present
solution can be reduced to the static dislocation solution. The solution reveals that the phason field
impedes dislocation.

For illustrations, the case of V = 0.1c, c =
√

µ/ρ is depicted in Figures 3–6. In the numerical

computation we take b⊥3 = 0.8b‖3 , ρ = 4.1 kg/cm3, µ = 70 GPa, K1 = 72 MPa, K2 = −37 MPa,
R/µ = 0.004, Γw = 1/κ = 4.8 × 10−19 m3gs/kg [69].
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3.2. Application 2 of Elasto-/Hydro-Dynamics—Dynamic Propagating Crack and Solutions of
Two-Dimensional Decagonal Quasicrystals

On the basis of the preceding elasto-/hydro-dynamics formulation we consider two-dimensional
quasicrystals in this section. By using the dynamic Equation (57), we are able to formulate
two-dimensional elasto-/hydro-dynamics of quasicrystals. For illustration of its applications, we only
present some solutions in this section.

Because two-dimensional decagonal quasicrystals occupy an important position in all
quasicrystals observed to date, herein we consider only the two-dimensional decagonal quasicrystals.
Referring to Figure 7, suppose the periodic direction is the z axis and a Griffith crack penetrates along
the z axis in the solids. If the elastic field is induced by the uniform tensile stress at the upper and
lower surfaces of the specimen, it is obvious that all variables of the elastic field are independent of z,
i.e., ∂/∂z = 0. In this case the stress-strain relations can be written in

σxx = L(εxx + εyy) + 2Mεxx + R(wxx + wyy)

σyy = L(εxx + εyy) + 2Mεyy − R(wxx + wyy)

σxy = σyx = 2Mεxy + R(wyx − wxy)

Hxx = K1wxx + K2wyy + R(εxx − εyy)

Hyy = K1wyy + K2wxx + R(εxx − εyy)

Hxy = K1wxy − K2wyx − 2Rεxy

Hyx = K1wyx − K2wxy + 2Rεxy

(98)

where L = C12, M = (C11 − C12)/2 denote the elastic constants of the phonon field, K1 and K2 are the
elastic constants of the phason field, R is the coupling elastic constant of the phonon-phason.

To substitute Equations (98) into (57), one obtains the motion equations of decagonal quasicrystals
as follows

∂2ux

∂t2 = c2
1

∂2ux

∂x2 + (c2
1 − c2

2)
∂2uy

∂x∂y
+ c2

2
∂2ux

∂y2 + c2
3(

∂2wx

∂x2 + 2
∂2wy

∂x∂y
− ∂2wx

∂y2 ) (99a)

∂2uy

∂t2 = c2
2

∂2uy

∂x2 + (c2
1 − c2

2)
∂2ux

∂x∂y
+ c2

1
∂2uy

∂y2 + c2
3(

∂2wy

∂x2 − 2
∂2wx

∂x∂y
−

∂2wy

∂y2 ) (99b)

∂wx

∂t
= d2

1(
∂2wx

∂x2 +
∂2wx

∂y2 ) + d2
2(

∂2ux

∂x2 − 2
∂2uy

∂x∂y
− ∂2ux

∂y2 ) (99c)
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∂wy

∂t
= d2

1(
∂2wy

∂x2 +
∂2wy

∂y2 ) + d2
2(

∂2uy

∂x2 + 2
∂2ux

∂x∂y
−

∂2uy

∂y2 ) (99d)

where

c1 =

√
L + 2M

ρ
, c2 =

√
M
ρ

, c3 =

√
R
ρ

, d1 =

√
K1

κ
and d2 =

√
R
κ

, d3 =

√
K2

κ
(100)

The constants c1, c2 and c3 are the elastic wave speeds; d2
1, d2

2 and d2
3 are the diffusive coefficients.

As shown in Figure 7, the decagonal quasicrystal with a Griffith crack is a rectangular specimen
with a central crack of length 2a(t) subjected to a dynamic or static tensile stress at its ends; a(t) is
the crack length which is a function of time. Due to the symmetry of the specimen only the upper
right quarter is considered. For dynamic initial growth of the crack, suppose that the crack is stable,
i.e., a(t) = a0 is a constant; but for fast propagation of the crack, a(t) is not a constant, instead it is
unstable. Here we only consider dynamic initiation of crack growth, then fast propagation of the crack
is omitted. The content can be seen in [23,62,63].Crystals 2016, 6, 152 25 of 38 
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Due to symmetry of the specimen, it is sufficient to analyze the elastic field in the upper right
quarter. Under such circumstances, if the upper right quarter is considered then the boundary
conditions can be stated as follows

ux = 0, σyx = 0, wx = 0, Hyx = 0 on x = 0 for 0 ≤ y ≤ H (101a)

σxx = 0, σyx = 0, Hxx = 0, Hyx = 0 on x = L for 0 ≤ y ≤ H (101b)

σyy = p(t), σxy = 0, Hyy = 0, Hxy = 0 on y = H for 0 ≤ x ≤ H (101c)

σyy = 0, σxy = 0, Hyy = 0, Hxy = 0 on y = 0 for 0 ≤ x ≤ a(t) (101d)

uy = 0, σxy = 0, wy = 0, Hxy = 0 on y = 0 for a(t) ≤ x ≤ L (101e)

in which p(t) = p0 f (t) is a dynamic load, p0 = const is use to denote the stress.
The initial conditions are that the initial displacements and velocities of the phonon field and

phason field are equal to zero, i.e.,

ux(x, y, t) |t=0 = 0 uy(x, y, t) |t=0 = 0

wx(x, y, t) |t=0 = 0 wy(x, y, t) |t=0 = 0
∂ux(x,y,t)

∂t |t=0 = 0 ∂uy(x,y,t)
∂t |t=0 = 0

(102)
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We shall solve the problem by using the finite difference method. To this end, the field variables
and boundary-initial conditions will be expressed in terms of the displacements. This can be done
through the constitutive Equation (98). For computation, the mass density of two-dimensional
decagonal Al-Ni-Co quasicrystals ρ = 4.186 × 10−3 g·mm−3 is used. The phonon elastic moduli
are C11 = 2.3433, C12 = 0.5741(1012dyn/cm2 = 102 GPa) obtained by resonant ultrasound
spectroscopy [17]. The elastic constants of the phason field are K1 = 1.22 Gpa and K2 = 0.24 Gpa
estimated by Monto-Carlo simulation [21], and Γw = 1/κ = 4.8× 10−19 m3gs/kg. The coupling
constant R of the quasicrystal is taken to be R/M = 0.01, and R/M = 0 for the uncoupled case
in crystals.

When the specimen with a invariable crack is loaded by a varying applied load p(t) = p0 f (t),
in which f (t) is the Heaviside function, the coupled phonon and phason reveals the distinctive physical
properties of the quasicrystals in contrast with the periodic crystals. The normalized dynamics stress
intensity factor KI(t)/

√
πa0 p0 is used, and the numerical results are plotted in Figure 8. It is worth

noting that one curve indicates the quasicrystal with R/M = 0.01 and the other indicates the periodic
crystals with R/M = 0. Due to the coupling effect of the phonon and phason, the normalized dynamics
stress intensity factor between quasicrystals and classical crystals is quite different. In the figure,
t0 = 2.6735µs is the time that the wave travels from the external boundary to the crack surface. So the
velocity of the wave propagation can be computed as ν0 = H/t0 = 7.4807 km/s, which is completely
in conformity with the longitudinal wave speed c1 =

√
(L + 2M)/ρ of the phonon field. This fact

declares that the phonon wave propagation is dominant in coupling of the wave propagation-motion
of diffusion, and there are oscillations in the figure of the stress intensity factor that are especially clear.
The oscillations declare that the reflection and diffraction between waves come from the crack surface
and the specimen boundary surfaces. The oscillations may be greatly influenced by the specimen
geometry and the material constants.
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3.3. Application 3 of Elasto-/Hydro-Dynamics-Dynamic Crack Propagation of Icosahedral Quasicrystals

3.3.1. A Cracked Specimen of Icosahedral Quasicrystals of Plane Problem Based on FDM

Referring to Figure 9, consider a centered crack specimen of icosahedral QCs of plane problem.
Suppose a Griffith crack penetrates through the specimen of icosahedral QCs along the quasi-periodic
direction, i.e., the z axis direction. Consider a deformation of the specimen induced by a uniform
tensile stress at upper and lower surfaces of icosahedral QCs such that it is obvious that all variables of
elastic field are independent of z, i.e., ∂

∂z = 0. Then all the equations will be simple.
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Let us regard displacements of equilibrium as the unknown variables of the governing differential
equations for a two-dimensional problem, then the equation can be written easily such that
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where ∇2 is two-dimensional Laplacian operator, and c1 =
√

λ+2µ
ρ , c2 =

√
µ
ρ , c3 =

√
R
ρ , d1 = K1

κ ,

d2 = K2
κ and d3 = R

κ . It needs to be noticed that the known constants c1, c2 and c3 represent elastic
wave speeds of the phonon fields, while d1, d2 and d3 are diffusive coefficients, and do not represent
wave speeds. The length of the specimen is 2L and the height is 2H, and 2a(t) is the length of the crack.
Due to symmetry of the specimen, it is sufficient to analyze the elastic field in the upper right quarter.
Under such circumstances, if the upper right quarter is considered then the boundary conditions can
be stated as follows

ux = 0, σyx = 0, σzx = 0, wx = 0, Hyx = 0, Hzx = 0 x = 0, 0 ≤ y ≤ H (104a)

σxx = 0, σyx = 0, σzx = 0, Hxx = 0, Hyx = 0, Hzx = 0 x = L, 0 ≤ y ≤ H (104b)

σyy = p(t), σxy = 0, σzy = 0, Hyy = 0, Hxy = 0, Hzy = 0 y = H, 0 ≤ x ≤ H (104c)

σyy = 0, σxy = 0, σzy = 0, Hyy = 0, Hxy = 0, Hzy = 0 y = 0, 0 ≤ x ≤ a(t) (104d)
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uy = 0, σxy = 0, σzy = 0, wy = 0, Hxy = 0, Hzy = 0 y = 0, a(t) < y ≤ L (104e)

where p(t) is used for simulating a dynamic loading.
Suppose the initial displacements and velocities of the phonon field and phason field are equal to

zero, i.e.,

ui(x, y, t)|t=0 = 0, wi(x, y, t) |t=0 = 0 ,
∂ui
∂t

(x, y, t)
∣∣∣∣
t=0

= 0, (i = x, y, z) (105)

In order to obtain the numerical results, we now pay attention to investigating the effect of the
phonon and phason fields in the icosahedral Al-Pd-Mn QCs. The related parameters are used, in which
the density ρ = 5.1 g/cm3 and the elastic constants λ = 75 (GPa), µ = 65 (GPa) for the phonon
fields [69], meanwhile the elastic constants K1 = 300 MPa, K2 = −45 MPa for phason fields [70] and
the relevant constant of diffusion coefficient Γw = 1/κ = 4.8× 10−10cm3·µs/g for phason fields.
The phonon-phason coupling constant has not been measured for icosahedral QCs so far. In view of
contrasting with the measured parameters of the decagonal quasicrystals, we take R/µ = 0.01 for
icosahedral QCs too. Below we graphically display the results.

In the following section we take the related parameters H = 20 mm, L = 52 mm, the initial length
a0 = 12 mm of the crack. Firstly, we will discuss the dynamic stress intensity factor in the dynamic
loadings for: (a) different Poisson coefficients while the density of material and the elastic constants of
phason field remain unchanged; (b) different the elastic constants of the phason field as a fixed value
K2 = −45 MPa, and K1 takes different values while Poisson coefficients remain unchanged. Please see
Table 1:

Table 1. Mechanical properties of icosahedral quasicrystals [16,17,21,69,70].

λ (GPa) µ (GPa) ν

Al-Li-Cu 30.4 40.9 0.213
Al-Cu-Fe-Ru 48.4 57.9 0.228

Al-Pa-Mn 74.9 72.4 0.254

This difference in Figure 10a can be summarized as: the change of wave is caused by the change
of ν value, which can lead to the refraction and reflection of stress wave with different velocity in the
solid. So it is predictable that the difference will become very remarkable when the loading sustains.
Assuming the phonon field of material constants λ = 75, µ = 65 (GPa), the dynamic stress intensity
factors are depicted in the Figure 10b. It can be seen that when the elastic constant of the phason field
as a fixed value K2 = −45 MPa, and K1 takes different values, the dynamic stress intensity factors
fluctuate at the start of a period of time, the dynamic stress intensity factor decreases with the increase
of K1, and after a period of time, the dynamic stress intensity factor increases with the increase of K1.
Also if K1 is taken as a fixed value, and K2 takes different values, the dynamic stress intensity factors
are hardly altered. Thus it can be declared that K1 occupies a central role in the deformation of QCs,
and this effect cannot be ignored. In addition, we can infer that in three-dimensional icosahedral QCs,
the two elastic constants of phason field, K1 plays a leading role.
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The fast crack propagation also belongs to nonlinear problem in the deformation of QCs, in which
the movement rule of crack is unknown in advance. In the field of fracture mechanics research,
the researchers always make some simplifying assumptions to the movement rule of crack when
they give the analysis for the propagation of the crack. We suppose that the crack extends along the
x-axial direction and is related to y-axial with symmetry. The parameters of the specimen are given
by L = 50 mm, H = 20 mm, and the initial length of the crack is a0 = 12 mm and the parameters
of material can be seen in the foregoing section, and p0 = 80 Mpa. Suppose the pull stress in the
vicinity of crack tip is the parameter to control the fracture of QCs. By applying stress criterion, the fast
crack propagation of icosahedral QCs specimen with a center crack is discussed in this section. In the
mathematical iteration, the pull stress perpendicular to the crack surface of a point in the vicinity of the
crack tip is calculated at any time. When its value is beyond stress threshold σc of the fracture, the crack
expands forward a grid. Here the calculation is based on σc = 450, 550, 650 (MPa). The results can be
reflected by Figures 11–13.Crystals 2016, 6, 152 30 of 38 
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The differential equations of equilibrium for anti-plane problem can be expressed by 
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On the basis of Equations (86) and (87) one can get 
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If let 1 /c =μ ρ, 2 /c R= ρ , 3 /c R= κ , 4 1 2( ) /c K K= − κ, zu u= , zw w= , the equations can be expressed 
by 
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The results can be seen in these figures, which reveal: which reveal: (1) The speed rate of crack
propagation along with the increase of σc becomes smooth, and has a tendency to decrease; (2) In the
crack propagation, the crack opening displacement near the crack tip has the same tendency with the
stress; (3) In the process of simulation, for cracks found near the plate location, the stress intensity
factor and stress suddenly become large (we only describe the crack extension to have a short distance
from the plate end location), the extension rate of the crack has a tendency to decline.

3.3.2. A Cracked Specimen of Anti-Plane Problem in Icosahedral QCs Based on FDM

Anti-plane longitudinal shear problems in icosahedral QCs, the non-zero strain components
are εyz = εzy, εzx = εxz, wzy, wzx. The non-zero stress components are uz = uz(x, y), wz = wz(x, y).
The relation of stress and strain based on displacements can be simplified as{

σzx = σxz = µ ∂uz
∂x + R ∂wz

∂x , Hzx = (K1 − K2)
∂wz
∂x + R ∂uz

∂x

σzy = σyz = µ ∂uz
∂y + R ∂wz

∂y , Hzy = (K1 − K2)
∂wz
∂y + R ∂uz

∂y
(106)
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The differential equations of equilibrium for anti-plane problem can be expressed by

∂σzx

∂x
+

∂σzy

∂y
= ρ

∂2uz

∂t2 ,
∂Hzx

∂x
+

∂Hzy

∂y
= κ

∂wz

∂t
(107)

On the basis of Equations (106) and (107) one can get

µ∇2uz + R∇2wz = ρ
∂2uz

∂t2 , R∇2uz + (K1 − K2)∇2wz = κ
∂wz

∂t
(108)

If let c1 = µ/ρ, c2 = R/ρ, c3 = R/κ, c4 = (K1 − K2)/κ, uz = u, wz = w, the equations can be
expressed by

∂2u
∂t2 = c1∇2u + c2∇2w,

∂w
∂t

= c3∇2u + c4∇2w (109)

where
√

c1 represents the velocity of the phonon field.
Referring to Figure 14, consider an icosahedral QC with a centered crack, the length of which

is 2a.
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The initial conditions including the initial displacements and velocity ofthe phonon field and 
phason fieldare equal to zeroes, i.e., 

( , ,0) 0zu x y = , ( , ,0) 0zw x y = , 
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0z

t

u
t =

∂ =
∂

 (111) 

In the following the length of the crack a=0.2, and H =1, stress load=10MPa. The elastic 
constants can be taken as the following Table 2: 
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Figure 14. A schematic of a mode III crack penetrates along z-axial direction.

Without loss of generality, we only consider the upper right quarter of the cracked specimen.
Due to the lack of the elastic constants of the phason field, we first assume the stress of phason field
Hzy = 0 in the boundary. Then the boundary conditions of the phonon and phason fields can be easily
written such that 

σzy = q f (t), Hzy = 0, y = H, |x| ≤ H

σzx = 0, Hzx = 0, x = −H, x = H, 0 ≤ y ≤ H

σzy = 0, Hzy = 0, |x| ≤ a, y = 0

uz = 0, wz = 0, |x| > a, y = 0

(110)

The initial conditions including the initial displacements and velocity ofthe phonon field and
phason fieldare equal to zeroes, i.e.,

uz(x, y, 0) = 0, wz(x, y, 0) = 0,
∂uz

∂t

∣∣∣∣
t=0

= 0 (111)

In the following the length of the crack a = 0.2, and H = 1, stress load = 10 MPa. The elastic
constants can be taken as the following Table 2:
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Table 2. The related parameters used in numerical computation [16,17,21,69,70].

µ R K1 −K2 κ ρ

0.65 g/cm · µs2 0.0066 g/cm3 · µs 0.31 g/cm · µs2 1/4.8 × 1010 g/cm3 · µs 5.1 g/cm3

This Figure 15 declares that the normalized dynamic stress intensity factor is equal to zero before
the longitudinal wave induced by the dynamic loading propagates to the surface of the crack. The time
is exactly equal to that of the wave that propagates to the surface of the crack.
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From Figure 16, it is obvious that the difference between the displacement of a point at the crack
tip of the phonon and phason field is tremendous. The influence of the altered loadings for icosahedral
QCs with a crack will be studied below. Three cases are considered. The first one is the load stress is
equal to 2 MPa. After that the load stress is equal to 2 MPa or 10 MPa. The normalized dynamic stress
intensity factor (NDSIF) does not alter along with the change of load stress, so the stress at the crack tip
increases when the load stress increases. Below, three displacements are depicted in Figures 17 and 18,
we can see that, when the load stress increases, the displacements fluctuate drastically.
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Figure 18. The displacement of a point at the crack tip of phonon field (a) and phason field (b).

Similar to the plane problem, we apply the stress criterion as the fracture criteria. Assume that the
stress value of a point near the crack tip is to control the size of the fracture parameters. Using stress
criterion, this paper made a rapidly expanding analysis of the crack. In this problem, three cases
will be considered σfractrue/σinitial = 0.5, 0.7, 0.9, in which σfractrue is the initial fracture stress and
σinitial = 100 Mpa. The results can be seen in Figure 19.
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From Figure 20, when the σfractrue are equal to 50 Mpa and 70 Mpa and 90 Mpa, the times of crack
extends to the boundary of the material are 5.6 µs and 6.2 µs and 7.2 µs respectively. The dynamic stress
intensity factors have a uniform change trend based on the different initial fracture stress. When the
fracture stress become larger, the situation is different, and the icoshedral QCs (Al-Mn-Pd) start to
fracture. The speed of crack propagation increases as the fracture stress reduces, and the fracture
resistance of the materials becomes stronger. It is can be inferred that a higher speed of the crack
tip can be achieved in the expansion, and the dynamic fracture process corresponds with ordinary
materials. It shows that even though the phason field and phonon-phason coupling effects exist in
QCs, in the fracture process of QCs and ordinary materials there exist a lot of similarities, and this
phenomenon does not go against the basic principle of the fracture dynamics.
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4. Conclusions

In the previous sections, the dynamics of elasticity and defects of different quasicrystals based
on Bak’s argument and the argument of Lubensky et al. are formulated and a series of solutions are
constructed. The first model can be regarded as elasto-dynamics, and the second one can be regarded
as an elasto-/hydro-dynamics model for the material, or as a collaborating model of wave propagation
and diffusion. Except for a few examples which are given, some analytic solutions are obtained and
a numerical procedure based on the finite difference is used. The finite difference scheme is applied
to the dynamic initiation of crack growth and crack fast propagation for two-dimensional decagonal
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Al-Ni-Co and three-dimensional icosahedral Al-Pd-Mn quasicrystals, the stress intensity factors and
displacement and stress fields around the tip of stationary and propagating cracks are investigated.
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