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Abstract: Semiconductor photocatalysis provides potential solutions for many energy and
environmental-related issues. Recently, various semiconductors with hierarchical nanostructures
have been fabricated to achieve efficient photocatalysts owing to their multiple advantages, such as
high surface area, porous structures, as well as enhanced light harvesting. ZnO has been widely
investigated and considered as the most promising alternative photocatalyst to TiO2. Herein,
we present a review on the fabrication methods, growth mechanisms and photocatalytic applications
of hierarchical ZnO nanostructures. Various synthetic strategies and growth mechanisms, including
multistep sequential growth routes, template-based synthesis, template-free self-organization and
precursor or self-templating strategies, are highlighted. In addition, the fabrication of multicomponent
ZnO-based nanocomposites with hierarchical structures is also included. Finally, the application of
hierarchical ZnO nanostructures and nanocomposites in typical photocatalytic reactions, such as
pollutant degradation and H2 evolution, is reviewed.
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1. Introduction

Various semiconductor nanomaterials have been widely used to solve energy and environment
problems with their excellent photocatalytic properties [1–3]. In recent years, many researchers
have focused on the fabrication of hierarchical semiconductor nanostructures and nanocomposites
owing to their advantages, including high surface area, porous structures, as well as enhanced light
harvesting, etc. [4]. Particularly, zinc oxide (ZnO) has attracted considerable attention as an efficient
and promising candidate in photocatalytic applications because of its low cost, non-toxicity and high
quantum yields [5–7].

Up to now, several reviews have been published on the fabrication strategy of hierarchical
photocatalysts with various morphologies. However, only a small part mentioned the synthesis
of hierarchical ZnO materials in photocatalytic application [4,8–10]. In addition, especially in the
photocatalytic application of ZnO, most of the previous reviews are limited to low dimension (0D, 1D
and 2D) ZnO nanostructures, where reviews about hierarchical ZnO nanostructures are still insufficient.

Herein, we present a review on the fabrication of hierarchical ZnO nanostructures for
photocatalytic application. First, the advantages of ZnO hierarchical photocatalysts are discussed. Then,
various synthetic strategies towards different hierarchical ZnO nanostructures and nanocomposites
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are reviewed, including multistep sequential growth routes, template-based synthesis, template-free
self-organization and precursor or self-templating strategies. The fabrication of nano-architectured ZnO
with hollow, porous and bio-inspired structures is also included. Moreover, the design and syntheses
of ZnO-based hierarchical nanocomposites are highlighted. Finally, photocatalysis applications of
hierarchical ZnO nanostructures and nanocomposites for photocatalytic processes, such as pollutant
degradation and H2 production, are briefly discussed.

2. Advantages of Hierarchical ZnO Nanostructures and Nanocomposites

2.1. High Surface Area and Porous Structures

The surface area and porous structures of semiconductor nanostructures play important roles
in their photocatalytic activity [11–13]. Many researches have demonstrated that hierarchical
nanostructures with a high surface area [14–16] showed better photocatalytic properties than
those of conventional materials. Low dimensional ZnO nanostructures, such as nanoparticles,
nanorods, nanosheets, nanotetrapods, etc. [17], were usually found to have a small surface area
(typically <10 m2/g). In contrast, hierarchical nanostructures usually exhibited high surface to volume
ratios, a large accessible surface area and better permeability, which could not only provide abundant
active adsorption sites and photocatalytic reaction sites [18], but also improve the uniformity of the
active sites distribution in the photocatalysts [4]. In some case, the increased surface area could also
contribute to the increase of surface defects, which may act as active sites for photocatalytic reactions.
We have recently developed a facile ultra-rapid solution method to fabricate ZnO nanosheets with a
tunable BET surface area and rich oxygen-vacancy defects. The as-prepared ZnO nanosheets were
rich in oxygen-vacancies, and the increased BET surface area led to a further increase of surface
oxygen-vacancy concentration. The rich oxygen-vacancies promoted the visible-light absorption of
the ZnO nanosheets, leading to high photocatalytic activities towards the degradation of rhodamine
B, about 11-times higher than that of ZnO nanoparticles with few oxygen defects [19]. The design of
hierarchical nanostructures constructed from nano-scaled building blocks possessing interconnected
pores can also result in the increase surface areas. For instance, hierarchical ZnO porous structures
with high specific surface areas >500 m2/g could be produced using MOF as the precursor [20]. It was
also demonstrated that the formation of porous networks in hierarchical structures would result in the
creation of more efficient channels for the transport of reactant molecules, which facilitate the diffusion
process [21–24].

2.2. Enhanced Light Harvesting

Increasing the light-harvesting ability of photocatalysts can greatly enhance the photocatalytic
property [11]. The hierarchically-structured photocatalysts with interconnected pores could increase
the number of light traveling paths and thereby result in increased interaction time and enhanced
absorption efficiency, especially for core-shell and hollow structures. For example, hierarchical ZnO
hollow spheroids exhibited enhanced photocatalytic dye degradation activity due to more efficient
utilization of light through the multiple light reflections in the hollow structures [25]. Carbon-doped
porous ZnO nanoarchitectures [26] showed enhanced photocatalytic H2-evolution activities owing
to the increased light path length within the pore-channel networks. The enhanced light absorption
was attributed to the so-called light-scattering effects [27], which were also widely employed in
dye-sensitized solar cells [28]. Generally, the interconnected accessible pore channels in the hierarchical
structures were crucial for promoting the light-harvesting efficiency. Therefore, the construction of
hierarchical porous nanostructures was particularly effective to increase the light harvesting.

2.3. Synergistic Nano-Building Blocks and Multi-Components

The superior photocatalytic performance of the hierarchical micro/nanostructures could be
also related to their self-supporting structural features, which could overcome the agglomeration
and sintering problems observed in the case of conventional nanosized ZnO [28,29]. Moreover,
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enhanced efficiency for charge transfer and separation could be expected among these well-organized
nanoscale building blocks, especially when heterostructured nanocomposites were further constructed.
These above advantages of hierarchical ZnO nanostructures have recently motivated researchers
engaged in developing various synthesis routes of hierarchical ZnO nanostructures, which will be
summarized in the following section.

3. Synthetic Strategies of Hierarchical ZnO Nanostructures and Nanocomposites

3.1. Multistep Sequential Growth Routes

A multistep strategy can be used to fabricate many desired hierarchical structures, such as
branched nanostructures, nanosheet-nanorod structures, core-shell structures, etc., from either
multi-independent processes or from a one-pot solution with continuous processes [9]. Based on the
preparation processes, multi-step self-assembly can be classified into two or more typical types, namely
multi-step self-assembly with multi-discontinuous processes and multi-step self-assembly completed
in one-pot solution syntheses. Compared to the conventional one-step assembly, the multi-step
sequential growth routes allow the combination of multiple nanoscale building blocks. Moreover,
this approach could also be employed in the formation of heterostructures or hybrid nanomaterials in
a cost-effective way [8].

Multi-step self-assembly with multi-discontinuous processes involves the preparation of primary
low dimensional structures, followed by the formation of hierarchical structures via sequential
modification of primary structures. For instance, Zhang et al. [30] reported a multi-sequential
nucleation and growth route for the systematic building of a complex ZnO hierarchical nanostructure
by combining 1D units under a solution method. The growth processes included three steps:
preparation of primary ZnO rods, oriented growth of nanoplates on the columnar facets of primary
ZnO rods through a low temperature solution method and the formation of the final complex ZnO
hierarchical structures via further hydrothermal treatment. The schematic illustration and pictorial
presentation of samples are shown in Figure 1. Using a similar nucleation and growth protocol,
brush-like hierarchical ZnO nanostructures assembled from initial 1D ZnO nanostructures were
prepared by Zhang et al. [31] via a simple hydrothermal approach. Ko et al. [29] have produced
nanoforests of high density, comprising long branched tree-like hierarchical crystalline ZnO nanowires.
In order to improve the synthesis efficiency, the two-step strategy was developed by using seeded
substrate where the primary low dimensional structures were formed, followed by a further chemical
reaction process to obtain the final hierarchical structures. For example, Xu et al. [32] reported a
two-step synthesis process to prepare hierarchical ZnO nanowire-nanosheet arrays that referred to
two processes: (1) the preparation of ZnO nanosheet arrays on conductive glass substrates; and (2) the
aqueous chemical growth of ZnO nanowires on the surfaces of the primary ZnO nanosheets (Figure 2).
Cheng et al. [33] produced branched ZnO nanowires on conductive glass substrates via a similar
strategy. Such hierarchical ZnO nanostructures can also be produced on other substrates, such as ITO,
FTO, silicon, etc. [34–37].

Despite multi-step self-assembly with multi-discontinuous processes having been widely used in
the fabrication of hierarchical ZnO structures, problems such as long reaction times and tedious
procedures could limit the application for large-scale production. To deal with such problems,
multi-step self-assembly completed in one-pot solution synthesis has been developed for efficient
fabrication of hierarchical ZnO nanostructures. Using such a strategy, Lu et al. [38] reported a
two-step continuous approach in one-pot reaction to construct ZnO 3D superstructures, in which
the crystallization and the assembly process were controlled by a steady gas/liquid between H2O2

and dimethylsulfoxide (DMSO) organic solvent. The first step was the assembling of microspheres
from ZnO nanorod building blocks, followed by the formation of the 3D superstructure via the
connection within those microspheres’ units side-by-side in a secondary assembly process. In other
cases, hierarchical ZnO nanostructures composed of ZnO nanosheets [39] or ZnO nanorods [40] could
also be obtained.
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Figure 2. (a) The schematic process of the hierarchical ZnO nanoarchitectures and (b–d) SEM images of
the hierarchical ZnO nanowire-nanosheet architectures at different stages (Reproduced with permission
from [32], Copyright 2010, American Chemical Society).

Recently, we reported hierarchical ZnO architectures assembled by nanosheets and nanorods
via a facile solution method [41]. In this reaction system, the critical morphology controller is the
concentration of OH−. When OH− was contained at 0.33 mol/L, the ZnO nanosheets were first
formed as the substrates for the heterogeneous nucleation and growth, and then, ZnO nanorod arrays
that were oriented grew on the nanosheets in a secondary assembly process to generate the ZnO
nanosheet-nanorod structures in which γ-Zn(OH)2 and ε-Zn(OH)2 acted as the zinc sources for the
growth of nanorod arrays (Figure 3). The above developed approaches allowed the stepwise control
of experimental conditions and provided an opportunity for the rational design and synthesis of
controlled architectures in nanostructures.
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3.2. Template-Based Synthesis

Template-based syntheses were most widely used in fabricating hollow structures, porous
structures, bio-inspired structures, etc., due to the advantages of well-controlled morphology,
large-scale production and diverse templates [42]. Generally, the formation process involves the
growth of desired materials on hard templates, such as polymer, silica and carbon, which can be
removed by chemical etching or thermal decomposition, or soft templates, such as emulsion micelles
and even bubbles [43–49].

3.2.1. Hierarchical ZnO Hollow Structures

The ZnO hollow structures can be constructed in many forms, such as various hollow spheres,
including core-shell, yolk-shell and some other interesting morphologies. For example, Dilger et al. [50]
reported yolk-shell and hollow ZnO spheres synthesized by gas phase treatment at different
temperatures in which the SiO2 hard templates could be partially or fully removed. Soft templates
can also be selected to assist the formation of hollow structures. Sinha et al. [25] reported that
ZnO hollow spheroids could be obtained by using a soft template as water bubbles via a modified
hydrothermal method under tungsten light irradiation. In addition, a co-surfactant template,
including a triblock copolymer of complex polyethylene oxide-poly-propylene oxide-polyethylene
oxide (PEO20-PPO70-PEO20, P123) and absolute ethanol (EtOH), was employed to assist the formation
of ZnO hollow spheres by Sun et al. [51]. In another case, Yin et al. [52] proposed a water-soluble
biopolymer as soft templates used in producing hollow cage-like superstructures assembled by ZnO
nanorods constructed with, and the number of the hollow cages could be adjusted by verifying the
reaction time. Typically, the morphology of ZnO double-cage structures is as shown in Figure 4.
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3.2.2. Porous Hierarchical ZnO Nanostructures

Owing to the large active surface areas favoring the diffusion of guest molecules, porous structures
have attracted increasing attention, especially the three-dimensionally-ordered macroporous (3DOM)
nanostructures [53]. Wang et al. [54] synthesized In-doped ZnO 3DOM structures using PMMA
microspheres as templates through a one-step colloidal crystal templating (CCT) approach (Figure 5).
The PMMA hard templates could be easily removed by calcination. In another case, ZnO 3DOM
structures were synthesized directly inside the microreactor using opals as the template [55]. The opals
were first self-assembled on the channels of the microreactor to generate channels for the Zn source
and finally removed by calcination. A similar synthesis strategy was also used to fabricate other ZnO
porous structures, such as C-doped ZnO hierarchical structures on an ITO substrate [26]. In addition,
through a one-step CCT route, Kim et al. [56] reported surfactant-templated methods to prepare
hierarchical ZnO mesoporous structures from a coupling reaction of lauroyl chloride with different
amino acids.
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3.2.3. Bio-Inspired ZnO Hierarchical Structures

Inspired by nature, researchers have developed biomimetic routes to fabricate some interesting
artificial structures with certain functions. Using butterfly wings as templates, a biomorphic ZnO
replica with hierarchical periodic raster structures was synthesized under a three-step process [57].
Instead of using biological templates, biomimetic ZnO plate twin-crystal periodical arrays were
deposited on a patterned substrate that was gelatin assisted under mild conditions [58]. Yin et al. [59]
reported a bio-inspired photoelectrode of a ZnO-modified graphene honeycomb film fabricated
by a two-step process involving self-assembly of graphene oxide/dimethyldioctadecylammonium
(GO/DODA), followed by reduction of GO and in situ growth of ZnO nanorods under hydrothermal
treatment. Sun et al. [60] described fish-scale bio-inspired multifunctional ZnO nanostructures that
have a similar morphology and structure to the cycloid scales of the Asian Arowana using templates
such as PEO20-PPO70-PEO20, P123 and EG co-surfactant. A similar strategy was used for rhabdom-like
ZnO microspheres bio-inspired by fly eyes [61].

Besides, layer-layer architectural [62], binding peptides [63], flowerlike, spindle-like, sword-like,
umbellar-like, prism-like [64,65], biprisms-like [66] and other interesting hierarchical structures [67]
can also be fabricated under template-based routes.

3.3. Template-Free Self-Organization

Template-based methods have been widely used in the fabrication of hierarchical ZnO structures.
However, some typical disadvantages, such as a long reaction process, the high cost of templates, some
uncontrollable morphological changes during template removal and the presence of heterogeneous
impurities, remain [3]. To deal with those drawbacks, hence, convenient and efficient routes such as
template-free methods have been developed for the fabrication of hierarchical nanostructures [68,69].
Among them, template-free self-organization is one of the most simple and effective routes to fabricate
various hierarchical ZnO structures.

One of the most effective ways to fabricate a ZnO hollow structure is the Ostwald ripening process
(ORP), which involves the coarsening of smaller particles into bigger particles [70,71]. Wang and his
co-workers produced hollow ZnO microspheres via a one-pot template-free hydrothermal synthesis
and found that the hollowness of these microspheres could be controlled by adjusting the zinc source
concentration [72] (Figure 6). Ji et al. [73] reported hierarchical nanostructured ZnO dandelion-like
hollow spheres synthesized by a one-step solvothermal method. Using a similar route, hierarchical
ZnO hollow spheres consisting of nanoparticles were prepared by a microwave-assisted solvothermal
method [74].
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The self-organization strategy can be also used to fabricate ZnO hierarchical structures
assembled by tunable building blocks. For example, ZnO hierarchical structures composed of
interconnected and monocrystalline nanosheets can be constructed in an aqueous solution system
without any templates under sonochemical treatment at room temperature [75]. The formation
of the hierarchical structures is based on oriented attachment and reconstruction. In the reaction
synthesis system, thicker, porous and coarse crystallized ZnO sheets were first constructed via
oriented attachment of small-sized nanocrystals. After reconstruction, ultrathin, integrated and
monocrystalline nanosheets were obtained (Figure 7). Based on the policy, various hierarchical ZnO
structures, such as flower-like [76–78], comb-like [79], pompon-like [80], nanocrystallite aggregates [81],
twin-sphere [82], hyperbranched array [83], hexagonal-pyramid-like microcrystals [84,85], etc.,
could also be obtained. Pachauri et al. [86] demonstrated various hierarchical structures, including
flower-like, viscous-fingers-like and rolling-pin-like, using nanoplatelets as basic building blocks and
Yagi–Uda-antenna-like ZnO hierarchical structures deploying nanowires as building blocks obtained
under a simple low-temperature chemical bath-based growth procedure. The morphology of such
hierarchical structures could be adjusted by the regulation of the precursors.
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Controllable hierarchical structures can also be prepared by regulating the pH [87] or the
concentration of precursors [88]. Recently, we reported the ultra-rapid formation of various
hierarchical ZnO structures, such as nanorods-based micro flowers, nanosheet-based microspheres
and nanoparticles in star-like assemblies, via a facile solution method [89]. The shape of the nanoscale
building blocks of the hierarchical structures could be easily controlled by adjusting the supersaturation
depending on the variation of dilution ratios or the [OH−] to [Zn2+] ratios. With the increasing
of supersaturation from 1.26, to 2.34, to 3.51, the morphology of hierarchical ZnO nanostructures
transformed from nanorods-based to nanosheets-based and, finally, to nanoparticle-based assemblies,
and the formation time of hierarchical ZnO structures deceased from 2 h to 30 s (Figure 8). Owing to
the superiorities of template-free methods, further efforts should be made to achieve the large-scale
synthesis of various hierarchical structures.
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3.4. Precursor or Self-Templating Strategies

Another typical template-free route is the so-called precursor-derived or self-templating route.
The synthesis process is followed by two main steps including the formation of precursors containing
specific hierarchical structures followed by the calcination of the precursors to obtain the final products.
The precursors used to prepare hierarchical structures are usually classified into inorganic and
organic precursors.

Zinc-containing inorganic salts with a specific hierarchical morphology were usually selected
to synthesize various hierarchical ZnO nanostructures. For instance, using a layered basic zinc
carbonate (LBZC)-containing multi-layered structure as the precursor, mesoporous hierarchical ZnO
nanostructures can be obtained as annealing products keeping the morphology, shape and sizes of the
precursor LBZC [21]. Since the morphology of materials depends on the selection of precursors, many
researchers focused on the facile formation of precursors. Liu et al. [90] introduced a PEG-mediated
organic-inorganic interface cooperative self-organization strategy applied to achieve the self-assembly
of Zn5(CO3)2(OH)6 nanosheets into flower-like 3D superstructures, then the 3D structures composed
of nanosheets transformed into porous ZnO nanosheet-based hierarchical structures without
morphology change. Furthermore, using the same precursors, Sinhamahapatra et al. [91] reported 3D
hierarchically-porous ZnO architectures constructed of two-dimensional (2D) nanosheets through the
calcination of the hydrozincite intermediate. Such flower-like ZnO hierarchical structures were also
obtained by using Zn4(OH)6SO4·4H2O as the precursor [92]. For another different morphology of ZnO
hierarchical structures, Wang et al. [93] prepared nest-like 3D ZnO porous structures through annealing
the zinc hydroxide carbonate precursor, which was obtained by a one-pot hydrothermal process
(Figure 9). A three-dimensional hierarchical porous ZnO with a tubular structure has been prepared
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by calcining a tubular hierarchical hydrozincite precursor [94]. A bladed bundle-like architecture has
been fabricated from many precursors, such as ZnO·0.33ZnBr2·1.74H2O, zinc glycerol and Zn-based
hydroxide double salts (Zn-HDS) [95–98].
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Besides those mentioned ZnO hierarchical structures formed from inorganic zincite-based salts,
some organic zinc-bearing precursors were also employed. For example, Hong et al. [97] demonstrated
a facile approach to prepare sheet-like hierarchical ZnO structures by treating zinc glycerol precursor
with a calcination process. Moreover, Yang et al. prepared hierarchical aggregates of ZnO nanoparticles
with 3D cubic morphologies via simple heat treatment of MOF-5 under different atmospheric
conditions [20]. Furthermore, from the decomposition of the MOF-5 precursor, Li et al. reported
hierarchical ZnO parallelepipeds [99]. Thus, it is desirable to obtain more and more interesting
hierarchical structures via precursor or self-templating strategies in future research.

4. Fabrication of Hierarchical ZnO-Based Nanocomposites

To improve the photocatalytic efficiency of ZnO, hierarchical ZnO-based composites have been
widely developed by combining semiconductors, metals and carbon materials with ZnO owing to the
synergistic effects between the components.

One efficient way to improve the photocatalytic activity of hierarchical ZnO nanostructures
is constructing ZnO-based composites with either wide band or narrow band semiconductors.
Combining this with the former could efficiently prolong the life span of photoexcited electron-hole
pairs and enhance the anti-photocorrosion ability, owing to the synergistic contribution of each
unit in the composites [100–102]. For example, Xiao et al. [103] prepared branched hierarchical
ZnO nanorod-TiO2 nanotube array heterostructures (ZnO NRs/NP-TNTAs) via a two-step assembly
method. Compared with ZnO nanorods, the enhanced separation efficiency of the photogenerated
electron-hole charge of ZnO NRs/NP-TNTAs was confirmed under photoelectrochemical studies,
which led to the enhancement of RhB degradation performance. Various combinations of wide
band semiconductors, such as a TiO2 nanobelt/ZnO nanorod hierarchical nanostructure [104],
branched hierarchical TiO2/ZnO hierarchical nanostructures [105], ZnO-SnO2 hollow spheres [106]
and SnO2-ZnO hierarchical structures with SnO2 back bones and ZnO branches [107] (Figure 10),
were developed, which all showed an enhanced photocatalytic property. Despite a certain
improvement having been achieved by combining ZnO with other wide band semiconductors, problem
such as low efficiency of visible-light absorption for such semiconductors, remain. Hence, to improve
the overall energy conversion, narrow band semiconductors were introduced to combine with ZnO
hierarchical structures. For, example, Liu et al. [108] reported nanotree-like CdS/ZnO hierarchical
composites, where the ZnO nanoseeds were first coated on the surface of CdS via a surface adsorption
process, and then, ZnO nanowires were grown on CdS to form the branched assemblies after a reflux
process. Under irradiation of visible light, The CdS/ZnO hierarchical composites exhibited enhanced
photocatalytic ability compared with both ZnO and CdS nanowires.
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Noble metals are also promised to be combined with ZnO hierarchical structures to achieve
photocatalytic functionality improvements due to noble metals being able to act as electron-scavenging
centers to allow for effective electron-hole pair separation [109,110]. Ahmad et al. [111]
synthesized hierarchical flower-like ZnO-Au nanostructures where Au was deposited on ZnO
via an electrochemical method. Nanoplate-built ZnO hollow microspheres decorated with Au
nanoparticles with enhanced photocatalytic activity were produced by Xia et al. [112] through a
facile solvothermal route.

Besides those mentioned, recently, carbon-based materials, such as reduced graphene oxide (rGO)
and carbon nanotube (CNT), have been utilized in conjunction with ZnO hierarchical structures owing
to their good conductivity and large surface area. For instance, to enhance the photocurrent and
photocatalytic activity, Luo et al. [113] reported rGO-hierarchical ZnO hollow sphere composites
through a 15-min ultrasonic treatment in which the conjunction between rGO and ZnO could be
attributed to electronic interaction between the components. Zhang et al. [114] have prepared
a ZnO-CNT heterostructure via a hydrothermal route. ZnO nanowires were grown on modified
well-aligned carbon nanotube (CNT) arrays where the pre-deposited ZnO grains on the CNTs served
as the nucleation sites for the growth of the ZnO nanowires. Thus, it is expected to develop more
efficient and eco-friendly methods to fabricate hierarchical ZnO-based composites in the future.

5. Photocatalytic Applications of Hierarchical ZnO Nanostructures and Nanocomposites

ZnO has received much attention in many fields of photocatalysis application, such as the
degradation and environmental pollutants and H2 generation, owing to its lower cost, non-toxic
and efficient photoelectrocatalytic performance [115–122]. Since ZnO (3.37 eV) has almost the same
band gap energy as TiO2 (3.2 eV), its photocatalytic capability is anticipated to be similar to that of
TiO2. Moreover, ZnO is relatively less expensive compared to TiO2, whereby the usage of TiO2 is
uneconomical for photocatalytic application [123].

The simplified photocatalysis degradation or process of semiconductors, such as ZnO, is as
follows: (1) excitation of ZnO by UV irradiation; (2) generation of excitons; (3) formation of various
reactive oxidative species (ROSs); and (4) oxidation of the organic compounds or reduction of
the water by ROSs [124–126]. H2 generation is a photoelechemical process in which water can
be spilt. However, the wide band gap ZnO (3.37 eV) could be only activated in the ultraviolet
(UV) region, which accounts for less than 5% of the total energy of the solar spectrum [127,128].
Moreover, the rapid recombination of photogenerated electron-hole pairs in ZnO often leads to
decreased photocatalytic activity [129]. Therefore, various elements, such as N and C, have been
doped into the wide-band-gap ZnO hierarchical structures to enhance the solar energy utilization [130].
For example, N- and C-doped ZnO hierarchical photocatalysts have been found to exhibit better
absorption of light in both visible and ultraviolet regions due to their smaller band gaps [130].
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Especially, Liu et al. [90] reported hierarchical flower-like C-doped ZnO superstructures (ZnO flowers)
assembled from porous nanosheets, which showed better photocatalytic decomposition of the RhB dye
in aqueous solutions than ZnO due to the enhanced light absorption over a wide range of wavelengths.
Semiconductors, such as CdS, are usually combined with ZnO to form hierarchical heterostructures
for visible light photocatalytic degradation due to their narrow band gaps [108,131–133]. For example,
nanoscale tree-like CdS/ZnO nanocomposites with a hierarchical architecture showed the ability
for selective oxidation of thioanisole and anaerobic reduction of nitro compound 4-nitroaniline
under irradiation of artificial solar light [108]. In addition, hierarchical CdS-decorated 1D ZnO
nanorod-2D graphene hybrids exhibit enhanced photocatalytic activity and recycling performance
toward selective reduction process under visible light irradiation [29]. In the other case, we recently
reported a highly efficient direct Z-scheme Ag3PO4-ZnO hierarchical photocatalysis by depositing
Ag3PO4 particles on defect-rich ZnO hierarchical nanosheets used for degeneration of RhB under
visible light irradiation [19]. The prepared heterostructured Ag3PO4-ZnO samples showed higher
visible light photocatalytic activity than single-phase ZnO or Ag3PO4 photocatalysts, which was
attributed to the efficient charge transfer between ZnO and Ag3PO4 through a synergistic effect of
surface oxygen vacancies and Ag3PO4 coupling. Recently, many researchers have focused on the
localized surface plasmon resonance (LSPR) effect of metal nanoparticles (NPs) for visible-light-driven
plasmonic photocatalysts application [134–141]. For instance, sandwiched ZnO@Au@Cu2O nanorod
films were synthesized on steel mesh substrates via a simple three-step approach and showed an
efficient visible-light photocatalytic performance for the degradation of the MO solution [142].

Those non-doped ZnO hierarchical composites could also be used in the field of H2

generation [118,122,143–150]. Barpuzary et al. [143] prepared urchin-like CdS@ZnO hetero-arrays
via a template-based method. The core-shell CdS@ZnO nano-urchins showed enhanced hydrogen
generation with apparent quantum yields of 15% (Figure 11). Yu and his co-workers [147]
fabricated a ternary heterostructure of CdS/Au/ZnO, through a two-step self-assembly process.
The heterostructure of CdS/Au/ZnO showed improved photocatalytic hydrogen evolution rate
with 60.8 mmol h−1, which was 4.5-times higher than the CdS/ZnO heterostructure. Furthermore,
Hsu et al. [146] reported that a hierarchical Ag2S-coupled ZnO@ZnS core−shell nanorod-decorated
metal wire mesh showed higher H2 production rates reaching 5870 and 168 µmol g−1 h−1 under UV
and visible light irradiation than ZnO/metal mesh. Thus, the fabrication of hierarchical ZnO-based
heterostructures is a promising strategy to enhance both photocatalytic degradation and H2 generation.
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6. Conclusions and Outlook

In this review, we comprehensively discussed the recent development in the synthesis routes
of hierarchical ZnO nanostructures, as well as their photocatalytic potentiality. A variety of tailored
hierarchical nanostructures were studied by researchers with logical design of experiment procedures.
Especially, rational establishment of facile template-free synthesis technologies could be highly efficient
and environmentally benign for the construction of hierarchical ZnO-based nanostructures. In addition,
as photocatalysts, hierarchical ZnO-based composites combined with narrow band semiconductors
or noble metals exhibited enhanced photocatalytic performance under visible light irradiation owing
to their superiorities of high surface area, porosity and the synergisms among them, which led to
the improvement of light utilization and charge-transfer properties. Therefore, such composites
efficiently obtained under a proper template-free approach play important roles in environment and
energy applications.

Although many significant achievements have been made in the synthesis of hierarchical
ZnO-based nanostructures, further efforts are required to solve problems, such as small-scale,
low-yield production of hierarchical ZnO-based materials, the unclear interaction mechanisms
between building units and the low solar light utilization. In the future, the green, cost-effective
and industry-scale template-free synthesis of hierarchical ZnO-based photocatalysts would be highly
desirable. Furthermore, besides photocatalysis applications, the development of the novel syntheses of
hierarchical ZnO nanostructures is also expected to lead to multiple potential applications in the fields
of sensors, solar cells, electronic or photoelectrochemical devices.
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