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Abstract: We present a novel method to determine the projected atomic potential of a specimen
directly from transmission electron microscopy coherent electron nano-diffraction patterns,
overcoming common limitations encountered so far due to the dynamical nature of electron-matter
interaction. The projected potential is obtained by deconvolution of the inverse Fourier transform of
experimental diffraction patterns rescaled in intensity by using theoretical values of the kinematical
atomic scattering factors. This novelty enables the compensation of dynamical effects typical of
transmission electron microscopy (TEM) experiments on standard specimens with thicknesses up
to a few tens of nm. The projected atomic potentials so obtained are averaged on sample regions
illuminated by nano-sized electron probes and are in good quantitative agreement with theoretical
expectations. Contrary to lens-based microscopy, here the spatial resolution in the retrieved projected
atomic potential profiles is related to the finer lattice spacing measured in the electron diffraction
pattern. The method has been successfully applied to experimental nano-diffraction data of crystalline
centrosymmetric and non-centrosymmetric specimens achieving a resolution of 65 pm.

Keywords: transmission electron microscopy; coherent diffraction imaging; electron crystallography;
atomic potential

1. Introduction

Transmission Electron Microscopy (TEM) represents a powerful tool to investigate the properties
of matter at very high spatial resolution [1,2]. Transmission electron microscopes operate in a relatively
wide energy range, typically from 40 to 400 keV [1], which corresponds to an electron wavelength
A between 6.0 and 1.6 pm allowing, in principle, a diffraction-limited spatial resolution well below
the interatomic distances of atoms in matter. Unfortunately, the quality of the TEM electron lenses
worsened mainly by spherical and chromatic aberrations, reduces the spatial resolution of about
two orders of magnitude with respect to the diffraction limit [1]. Up to the end of the last century it was
practically impossible to compensate the spherical aberration of the electron lenses [3]. Only recently
the development of computer assisted aberration magnetic multi-pole correctors has made it possible
to improve the resolution in High Resolution TEM (HRTEM) to about 50 pm [4].

As an alternative approach, the coherent Electron Diffractive Imaging (EDI) has demonstrated
interesting performances in improving the HRTEM resolution [5-7] achieving so far 70 pm in a
non-aberration corrected TEM, thus revealing fundamental material properties not detectable in
the HRTEM images [7]. Indeed, through a lens-less imaging method, from the inverse Fourier
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Transform (FT) of the wave scattered by a specimen (amplitude and phase), it is possible to recover its
image with a resolution limited, in principle, only by the illumination wavelength. Experimentally,
only scattered wave intensities are measured because phase information is lost. Moreover, the
experimental diffraction pattern is limited by its finite Numerical Aperture (NA), type of detector [8],
instability of the sample, use of a central beam stopper, signal-to-noise ratio, and completeness of the
recorded data [9]. Nevertheless, if the diffraction data still contains enough information proportional
to the FT modulus of the sample scattering function, the image can be reconstructed by using a phase
recovering method. The seminal idea, due to Sayre [10], was demonstrated experimentally for the
first time for X-ray diffraction [11] and, more recently, for electron diffraction in TEM [5]. The method
is theoretically based on the Nyquist-Shannon sampling theorem [12] and requires the acquisition
of diffraction patterns at least at the Nyquist’s frequency [13]. The phase of the scattered wave is
recovered by using iterative algorithms. They relate information available in the object domain,
where the a priori knowledge about the object support—derived from HRTEM images—is applied, to
information in the Fourier domain, where the known data are the measured diffracted intensities [5-7].
For a TEM thin specimen the diffraction pattern is not affected by high-order aberrations [5]. Hence,
if the phase can be correctly recovered, it is possible to achieve a lens-less image of the sample at a
resolution only limited by the intensities corresponding to the higher spatial frequencies recorded
in the pattern [9]. Retrieving the correct phase in EDI experiments requires, however, a non-trivial
data reduction before any phasing algorithm can be applied [5-7,14]. Last but not least, the dynamical
electron-specimen interactions can mix-up the diffracted intensities making complicated or even
impossible the application of electron crystallography methods [15], generating artifacts in the atomic
structure derived by EDI experiments [16]. Dynamical effects require the choice of TEM specimens
extremely thin and limit the applicability of the EDI approach and, more in general, of crystallographic
methods applied to electron diffraction. Indeed, as reported by Zou and coworkers [15], if dynamical
scattering is significant, the diffracted intensities are not related to the structure factor in a simple way
and in many cases the presence of dynamical effects has hampered efforts to analyze structures by
electron diffraction.

In this paper, we show that it is possible to extract the correct average projected atomic
potential directly from the measured electron diffraction even in the presence of dynamical diffraction
effects typical of TEM experiments on standard specimens with thicknesses up to a few tens of
nm. We performed nano-diffraction experiments on different material systems considering both
centrosymmetric and non-centrosymmetric crystalline structures and different specimen thicknesses.
The method requires a pattern from a nano-sized illuminated region, without using the beam stopper.
The size of the electron beam determines the region of the specimen that can be probed. The raw
nano-diffraction must be rescaled to compensate, at least partially, the dynamical effects, by imposing
a suitable mathematical constraint, and the inverse FT yields the auto-correlation function of the
illuminated nano-region. Here a further novelty consists in choosing to use experimental conditions of
spatial confinement of the illumination that lead to a non-aliased auto-correlation function, contrary to
Patterson functions obtained by diffraction patterns from relatively large areas of the specimen [16].
Deconvolution of the non-aliased auto-correlation function gives the sample projected atomic potential
averaged on the nano-sized illumination region. The spatial resolution of the projected atomic potential
map is related to the finer spatial frequencies measured in the experimental diffraction pattern. In our
experiments a resolution of 65pm was achieved.

2. Results and Discussion

2.1. Electron Diffraction Experiments with Nano-Sized Coherent Illumination

The experiments were performed by a JEOL-JEM-2010F-UHR (Jeol Ltd., Tokyo, Japan) operating
at 200 kV equipped with a high-coherence Schottky-type cathode. The microscope has a resolution
at optimum defocus in High resolution transmission electron microscopy (HRTEM) of 190 pm [7].
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The optical setup produces a parallel electron nano-beam, which defines the confined spatial support of
the scattering function, illuminating only a nano-metric region of the analyzed specimens. Let O be the
nano-sized scattering area plus the non-illuminated surrounding area. To satisfy the Nyquist-Shannon
theorem the nano-sized beam, i.e., the so-called spatial support S, has to be less than 50% of O [16].
The cathode emission condition and the electron optical illumination system have been set up to
maximize the probe coherence on the smallest achievable illuminated area [16]. Current density lower
than 0.1 pA/cm? and low acquisition times enable the nano-diffraction pattern to be acquired, on the
1024 x 1024 charge-coupled-device (CCD) camera, without the beam stopper used to eliminate the
direct beam. Thus all the diffracted intensities, including the zero-order beam, are measured in the
nano-diffraction pattern.

The illumination area used for the experiments on a specimen of SrTiO3 in [100] zone axis is
shown in the HRTEM image in Figure 1. The illuminated area in the direct space corresponds toa 5/0
ratio of about 22% and hence the oversampling conditions are well satisfied. It is worth noting that the
spots of higher intensity in the HRTEM image describe a square lattice corresponding to the projected
potential of the atomic columns of Ti+O and Sr (Figure 1). The relevant HRTEM image simulation
for specimen thickness of 25.0 nm and underfocus of 41.3 nm, was calculated in the Bloch-waves
approach by considering 100 excited beams [1]. The dots in the simulated image in the right inset of
Figure 1 indicate the true positions of the projected atomic structure used in the calculation. Hence, a
comparison of the simulation with the HRTEM shows that the atomic columns containing only oxygen
are not visible in the experimental image.

Figure 1. High resolution transmission electron microscopy (HRTEM) image of a nano-region of a
SrTiO3 extended sample in [100] zone axis, with a zoom in the inset on the left. A simulation for
underfocus 41.3 nm and specimen thickness of 25.0 nm is shown in the inset on the right. The dots in
the simulation point to the structural positions of the SrTiO3 atomic species in this projection: Sr = Blue,
Ti+O = pale blue, O = pale green.

2.2. Intensity Rescaling of the Nano-Diffraction Pattern

We found that quantitative structural atomic information can be extracted from the nano-ED
pattern acquired from the area illuminated in Figure 1, provided that proper constraints are used.
If the electron diffraction pattern were kinematical it would be straightforward to derive the projected
potential [1]. Unfortunately the kinematical approximation for electron diffraction is never completely
satisfied. The presence of dynamical effects in real experiments makes in many cases a troublesome
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problem to derive quantitative data from the measure of the electron diffraction intensities. The goal
would be to find a method to rescale properly the intensities of experimental diffraction patterns in
order to compensate the eventual presence of dynamical effects. In Bragg diffraction, atoms belonging
to the same unit-cell generate secondary waves whose phases are a function of their relative position.
It is possible to compute an upper limit of the diffracted amplitude as a function of the scattering
angle, adding the amplitudes of secondary waves generated by all the atoms within the unit-cell
irrespective of their relative positions within the cell. This enables the estimation of the maximum
scattering amplitude of the structure Fqx(s) = Z;fi(s), which is the sum of the scattering factors f;(s)
of the atoms in the crystal unit cell. Any interference between waves scattered by different unit cells
(Bragg peaks) will be characterized by an intensity lower or equal to | Fjux(s) | 2 To evaluate Fuux(s)
we need to know the atoms contained in the unit cell. An approximate estimation of the chemical
composition of the specimen can be available either from the nominal composition of the sample
or could be straightforwardly derived during the same experimental session by energy dispersive
X-ray spectroscopy or electron energy loss spectroscopy. In our experiments we found that knowledge
of the sample chemistry with an accuracy of about 10% is enough to guarantee the reliability of the
results. Thus, the approximate knowledge of the chemical composition of the sample enables the
estimation of Fj;x(s). Atomic scattering factors are tabulated as a function of s = sin6/A, where 6 is the
scattering angle. Thus, | Fyx(s) | 2 decreases as a function of 0 following well-established theoretical
models [17]. Therefore, its value can be used as a mathematical constraint to rescale the intensity I of
the experimental nano-diffraction with respect to the measured direct beam (I;;4x). It is important to
underline that this mathematical constraint can be applied only if the nano-ED pattern contains the
direct beam I,;,5.

Let’s define the constraint: sup{I(s)} = | F;;ax(s) | 2/1 Fyax(0) 12 < 1. The condition I(s)/Lnay < sup{l(s)}
should be satisfied for each scattering vector modulus s, measured in the nano-diffraction. The average
intensities I (s), corresponding to the larger s values in the experimental diffraction pattern out of
the Bragg peaks, are subtracted iteratively to the whole pattern until Iy (s)/Inax < sup{I(s)} is fulfilled.
Unphysical negative values are constrained to zero. With this rescaling the measured direct beam
becomes the zero-order reflection of the pattern. After the sup{I(s)}-rescaling some diffraction peaks
may still not satisfy the condition I(s)/Iusx < sup{I(s)}, due to measurement errors, small tilt angles
with respect to precise zone-axis and, mainly, because of residual dynamical scattering effects. Thus,
diffracted intensities exceeding I(s)/Inax < sup{l(s)} are further rescaled subtracting local mean intensity
values. We found that this rescaling, in experimental cases with dynamical effects typical of specimen
thicknesses up to a few tens of nm, as usual in TEM experiments, can enable the correct retrieval of
atomic structural information from the experimental nano-diffraction patterns. In Appendix A we
have reported some theoretical considerations about the proposed approach, discussing also its limits
of applicability.

Figure 2 shows the results of the intensity-rescaling on SrTiO3 (100) ED-pattern. Figure 2a shows
the raw nano-diffraction and Figure 2b the result after the rescaling, calculating sup{I(s)} by the Doyle
and Turner atomic scattering factor model [17], according to the nominal composition of the specimen.
Figure 2c shows the difference between patterns of Figures 2a,b. Figure 2d shows a comparison, in
a logarithmic scale, between the line profiles of the patterns in Figures 2a,b extracted from the scans
highlighted in Figure 2, blue and red in (a) and (b), respectively. In Figure 2d also the corresponding
profile of sup{I(s)} is plotted (black curve). The diffraction spot with the highest Miller’s index along
the scans is the (5,5,0), which corresponds to a lattice spacing of 55 pm. Also the (0,6,0) reflection has
been highlighted, corresponding to a lattice spacing of 65 pm, since the experimental pattern contains
all Friedel’s pairs up to this resolution.
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Figure 2. Intensity-rescaling on SrTiO3 (100) electron diffraction (ED)-pattern: (a) Raw experimental
nano-diffraction pattern (logarithmic scale); (b) sup{I(s)} rescaled pattern; (c) difference between
patterns shown in (a) and (b); (d) comparison in a logarithmic scale between the line profile along the
dashed blue line in (a) (blue curve) and along the dashed red line in (b) (red curve) after rescaling.
Black curve is the corresponding profile of sup{I(s)} X Imax constraint.

2.3. Auto-Correlation Function

The inverse FT of the rescaled diffraction pattern contains information on the scattering potentials.
In X-ray crystallography the inverse FT of the measured diffracted intensities is the Patterson function,
which can be deconvolved to extract structural information [18]. In fact, in X-ray crystallography
the Patterson function is an aliased version of the unit cell electron density autocorrelation function,
because its linear dimensions are double with respect to the lattice cell parameters. In the case of
nano-diffractions taken from nano-regions of an extended crystalline structure, if the Nyquist-Shannon
sampling is satisfied, the square modulus of the inverse FT of the measured intensities is not aliased [16].
Indeed, the zero scattering region around the illuminated nano-area of the sample enables one to
obtain a non-aliased projected atomic potential auto-correlation function C(r) directly by the square
modulus of an inverse FT of the sup{I(s)}-rescaled nano-diffraction pattern, where r is the position
vector in the direct space. This auto-correlation function could be deconvolved, likewise Patterson
functions, leading to non-aliased maps of the projected atomic potential. The procedure has been
described in the Methods section.

Moreover, the atomic potential V(r) is a complex function and the diffused electron wave
in weak phase-object approximation is related to the potential by: {(r) = 1 + imAD(r), where
®(r) = 2meV(r)/H? [1]. Here, m, e, h and i, are the electron mass, charge, Plank’s constant and imaginary
unit, respectively. The diffracted intensity I(s) can be approximated as I (s)x(mA)? 1 E(s) |2, where F(s)
is the structure factor corresponding to the complex scattering potential ®(r). The auto-correlation
function C(r), obtained by the inverse FT of the measured nano-diffraction pattern I(s), is a complex
Hermitian function: C(—r) = C*(r). It is proportional to ®(r) ©® ®*(—r), where “®” denotes the
convolution operator and “*” denotes the complex conjugate. It is given by:

C(r)= [T (s)ds = [ e (s)ds + [e?™TAI (s)ds = Ces (r) +i [ sin (2ms - r)AI (s)ds. (1)

Here, the diffracted intensity has been divided into the symmetric I;s(s) and anti-symmetric Al(s)
contribution. From Equation (1) the imaginary part of C(r) depends only on the non-centrosymmetric
component of the diffraction pattern, as Cs(r) is real and positive. A first contribution to the asymmetry
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of the electron diffraction pattern is due to misalignment of the crystal with respect to zone axes.
An essential part of the non-centrosymmetric component is due to dynamical scattering [19], which
is directly related to the thickness of the specimen (see Appendix A). Another contribution to the
non-centrosymmetric part of the electron nano-diffraction pattern is due to absorption and derives
from inelastic interactions such as phonon and plasmon scattering and single electron excitations
from inner atoms [20,21]. For thin specimens this last effect contributes very little to the complex
part of the object scattering function, which is only a few percent of the real part [6,7]. Moreover,
the cross section from phonon scattering is sharply peaked at the atom cores and the corresponding
absorption effects can be described by introducing a complex potential where the imaginary part ®(r)
is proportional to the real part ®r(r) [21,22]. Thus, P(r) = Pr(r) + iP;(r) = Pr(r) + iadr(r), with «
very small, of the order of 0.01-0.05 for many atomic species [20]. Therefore, for centrosymmetric
projected potentials almost all the asymmetry of the electron diffraction pattern for thin specimens
can be ascribed to misalignment of the crystal with respect to zone axes, and the phase of the complex
scattering function ®(r) would have no further information about the sample’s atomic structure
not already contained into its modulus. Therefore, all structural information will be contained in
Ces(r) =2 Dr(r) ® Pr(—r) x (1 + «?). Instead, in the case of thin samples and non-centrosymmetric
projected potentials, in conditions of a nano-sized illumination, Al(s) could give direct information
about the anti-symmetric part of ®r(r), whereas Is(s) is related to both the symmetric and
anti-symmetric parts of the potential (see Appendix A).

2.4. Deconvolution of C(R): Centrosymmetric Case

Since the [100] zone-axis projected atomic potential of the SrTiO3 is centrosymmetric, to simplify
the notation, in the following let ®(r) be its real part ®r(r) and C(r) be its centrosymmetric part
Ces(r). The auto-correlation deconvolution of the real part of the nano-diffraction pattern can give
the correct positions of the atomic species that contribute to the projected atomic potential, but it is
proportional to ®(r) ® ®(-r). Assuming that the shape of the atomic potential can be approximated
with Gaussian functions, the width of the ®(r) ® ®(-r) will be about 21/2 that of ®(r). Moreover,
projected atomic potential ® is approximately proportional to Z?/3, with Z the atomic number [23]
and C(r) is proportional to Z#/3. To obtain the correct relative scale between the values of the projected
potential peaks belonging to different atomic columns, the square root C(r)!/? has to be computed,
whose width is 21/2 of C(r). Thus, to obtain the correct width of the peaks in the projected atomic
potential map, namely Cg(#), it is necessary to deconvolve C(r)1/? peaks to about one half of their
initial width, obtained by 1/21/2 x 1/21/2.

Figure 3a shows the result of Cy,. raw(r) for the raw experimental nano-diffraction of Figure 2a,
whereas Figure 3b shows the result of Cj, resc() for the rescaled nano-diffraction of Figure 2b. Figure 3¢
shows the SrTiO3 potential in [100] zone-axis projection calculated by the simulation program JEMS
(Java Electron Microscopy Simulations) [24]. Figure 3d shows the sum of two scans highlighted with
red dashed lines in Figure 3b (red curve) and the sum of two scans highlighted with black dashed
lines in Figure 3c (black curve) to compare the SrTiO3 simulated projected atomic potential with
that retrieved from the deconvolution of the experimental rescaled diffraction pattern. Moreover,
in Figure 3d the calculated and experimental potentials ® have been normalized with respect to their
maxima, elevated to power 3/2 and multiplied by Z = 38 (Sr) to compare the final result directly with
the average atomic number of the atoms contributing to the different columns of the projected atomic
potential [23]. Figure 3e shows a zoom of the Sr peak to compare its experimental width, obtained by
the deconvolution (red curve), with projected atomic potential values simulated at different spatial
resolutions, from 55 pm to 75 pm. Debye-Waller factor values at room temperature are taken from
JEMS [24]. Note that the deconvolution of the auto-correlation raw data (Figure 3a) does not show the
correct structure for SrTiOs as the oxygen atomic columns are missing. Furthermore, the maximum of
the Ti+O projected potential is 16% lower than the calculated value. This is expected mainly because
the dynamical effects mix the intensity of the diffracted waves [1].
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Figure 3. Deconvolution of the projected atomic potential auto-correlation function C(r): (a) C(r) atomic
projected potential obtained from raw experimental nano-diffraction data; (b) C(r) atomic projected
potential obtained from rescaled nano-diffraction data; (c) SrTiO3 calculated projected atomic potential
in [100] zone-axis; (d) red curve: sum of the two scans highlighted with the red dashed lines in Figure 3b;
black curve: sum of the two scans highlighted with the black dashed lines in Figure 3c. In Figure 3d
the experimental and calculated potentials ® have been normalized to 1, plotted at a power of 3/2 and
rescaled to have a maximum equal to Z = 38 (Sr); (e) zoom of the Sr peak to compare its experimental
width (red curve), with projected potential values simulated at different spatial resolutions.

Conversely, after sup{I(s)}-rescaling the deconvolved auto-correlation shows the correct average
[100]-projected SrTiO3 atomic structure, including the oxygen columns. Figure 3d shows that the
result is not only qualitatively in agreement with the calculated SrTiO; atomic potential, but also
quantitatively. For Ti+O and O columns the maxima of the experimental projected potentials are both
about 4% smaller than calculated values. This is, in fact, a good quantitative result considering that the
crystal potential calculations performed by linear combination of atomic potentials are affected by an
error of about 10% [25]. Moreover, as shown in Figure 3e, the peak width differences between
experimental and calculated potentials are due to the finite spatial resolution corresponding to
the finer spatial spacing recorded in the diffraction pattern. Indeed, the best agreement between
experimental and calculated potentials is obtained for a spatial resolution of 65 pm. As shown in
Figure 2b, all reflections with lattice spacing larger or equal to 65 pm have been measured, enabling the
achievement of a spatial resolution for the retrieved averaged projected atomic potential of (65 & 2) pm.

The thickness of the sample was (25 & 2.5) nm. It has been evaluated by comparing the ratio
of the diffracted intensities with the dynamical calculations as a function of the specimen thickness.
The value of 25 nm implies a dynamical scattering not negligible. It is about 25% of the extinction
distance [1] of the (110) reflection, the most intense reflection shown in the scan of Figure 2b. This is
why we cannot see at all the oxygen atomic columns in the deconvolved auto-correlation function of
the raw data (Figure 3a) and also why the visible experimental Ti+O projected atomic potentials are not
in quantitative agreement with the calculated values. Conversely, we found that the projected atomic
potential can be correctly retrieved after sup{l(s)}-rescaling of the nano-diffraction data demonstrating
a successful recovery of the experimental data from the dynamical effects.

2.5. Deconvolution of C(R): Non-Centrosymmetric Case

Figure 4 shows a HRTEM image focused at the interface between GaAs/ZnSe. The features of
the interface in the HRTEM image are shown magnified in the relevant inset. This experiment is the
analogous one of that shown in Figure 1 but now the projected atomic potential is non-centrosymmetric,
as the GaAs and the ZnSe have the structure of the sphalerite. Furthermore, the presence of the interface
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introduces a geometrical asymmetry that enables one to investigate further the peculiarities of this new
approach also in the presence of extended defects breaking the crystal perfection. The heterostructure
is made by a ZnSe epilayer grown by molecular beam epitaxy on a (001) GaAs substrate. TEM sample
is prepared in [110] cross-sectional geometry. The details of the specimen growth and TEM sample
preparation have been reported in a previous work [26].

Figure 4. HRTEM image in [110] zone axis focused at the GaAs/Znse interface. In the inset a magnified
view of the HRTEM image contrast at the interface.

The resolution of the HRTEM image in Figure 4 is 0.19 nm [26] and it is not enough to distinguish
the cations and anions atomic columns spacing of 0.14 nm in this projection. The illuminated area and
electro-optical conditions in Figure 4 are those in which the experimental diffraction pattern shown
in Figure 5a was acquired according to the Nyquist’s sampling requirement. Figure 5b shows the
diffraction pattern, obtained by performing the sup{I(s)}-rescaling. Figure 5c shows the difference
between the measured raw pattern and that obtained after the sup{I(s)}-rescaling. Figure 5d shows
the anti-symmetrical part of the rescaled diffraction pattern, which can be directly related to the
non-centrosymmetric part of the atomic projected potential, as shown in Appendix A.

Figure 5. Intensity-rescaling on the GaAs/Znse (110) ED-pattern: (a) measured diffraction pattern;
(b) restored pattern; (c) difference between the measured and the restored patterns; (d) anti-symmetric
component Al of the restored pattern.
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In Figure 6 we show the deconvolution of the autocorrelation functions for the raw diffraction
data (Figure 6a) and after the sup{I(s)}-rescaling (Figure 6b), taking into account the contribution of
non-centrosymmetric part Al (see Appendix A).

ﬂ I z=34Ge) [ | 0L
27

i 9
0 L~ . c

0 025 05 075 1

Figure 6. Deconvolution of the GaAs/Znse [110]-projected atomic potential auto-correlation function
C(r): (a) projected atomic potential obtained from raw experimental nano-diffraction data; (b) projected
atomic potential obtained from rescaled nano-diffraction data; (c) scans of the averaged projected
atomic potentials, elevated to the power of 3/2 for a direct comparison with the atomic number Z,
in red for the restored intensities, in black for the raw data.

As it can be evinced by the scans reported in Figure 6c¢ the restored intensities lead to the average
correct potential (red curve), with the correct relative positions of the two sub-lattices, at a fractional
coordinate distance of 0.25 in the [110] projection. Moreover, also the relative intensities of the cation
Ga/Zn columns (average Z of 30.5), with respect to the anion As/Se columns (average Z of 33.5) are
correctly displayed from a quantitative point of view. Conversely, the projected average potential
obtained by the measured intensities not restored (black curve in Figure 6c¢) is characterized by a wrong
relative position of the two sphalerite sub-lattices, which appears separated in fractional coordinates
of 0.29 in the [110] projection. This finding can be considered as a direct consequence of the dynamical
scattering, which affects the measured diffraction pattern, and it confirms what already was obtained
in a previous work in the study of the [211]-oriented Si samples [9,16].

Figure 7 shows the whole projected potential derived from the rescaled diffraction pattern shown
in Figure 5b. It can be compared with the HRTEM image shown in Figure 4. It should be noted how
in the map the cation-anion projected atomic potential spaced by 0.14 nm can now be distinguished
whereas this was convoluted in the relevant HRTEM image due to the poorer resolution limited by
the spherical aberration of the objective lens. The figure also points to how the information on the
interface position is now missing, as the atomic potentials are averaged over the whole illuminated
area. Hence local geometrical information is absent. In the same way, any other structural defect or
non-periodic structural/chemical feature would not be visible. To retrieve local structural information
about the interface and any other defect, an EDI phasing procedure is needed [7].
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Figure 7. [110]-projected ZnSe/GaAs atomic potential (at higher magnification in the inset) averaged
in the whole illuminated area corresponding to the HRTEM image of Figure 4.

For a theoretical insight on the proposed approach, to restore nano-diffraction data affected by
dynamical scattering for typical TEM experiments on standard specimen thicknesses up to few tens of
nm, see Appendix A.

3. Methods

Deconvolution of the Autocorrelation Function

In this section we have briefly schematized some details of the method used to deconvolve the
auto-correlation function of the projected atomic potentials. In Figure 8, as example, we have shown
the result obtained in the particular case of the rescaled pattern shown in Figure 5b. Deconvolution of a
non-aliased auto-correlation function C(r) can be performed in two ways: (1) multiplying C(r) times its
translated replica on a secondary maximum ry, i.e., times C(r-ry); (2) finding the minimum between
C(r) and C(r—rm) [18]. Moreover, in the presence of crystallographic symmetries it is possible to impose
symmetry operators S; to C(r), for I = 1, m independent symmetries, obtaining m C(r-S;r) [18]. In this
case the deconvolution can be obtained either multiplying C(r—rv) times all the m independent of
C(r-S;r) or finding the minimum between C(r—ry) and all the m independent of C(r-S;r).

Figure 8a shows the auto-correlation function C(r) obtained by the inverse FT of the
sup{l(s)}-rescaled diffraction pattern corresponding to the example of the ZnSe/GaAs heterostructure,
oriented in a [110] zone axis, discussed in the previous section. Figure 8b shows the shifted replica
of the auto-correlation function C(r-rm) centered on a secondary maximum ry. Figure 8c shows the
product of C(r) and C(r-rm). Since in the illuminated area atomic columns belonging to both the
substrate and to the epilayer are present, as schematically indicated in Figure 8c, we find on the cations
and anions atomic columns the contributions of both materials constituting the heterostructure. Thus,
the projection of one sub-lattice will give the average atomic potential corresponding to the Ga (Z = 31)
and Zn (Z = 30) atomic columns. The other will give the average atomic potential corresponding
to the As (Z = 33) and Se (Z = 34) atomic columns. Figure 8d shows the final projected atomic
potential obtained deconvolving the increased width of the atomic columns due to the auto-correlation,
as discussed in the previous section. This goal can be accomplished by deriving the Point Spread
Function (PSF) directly from the normalized C(r) main peak. Hence, the next step is to deconvolve
the square root of C(r) (see Section 2), by applying a Lucy-Richardson (LR) deconvolution approach,
until about one half of its initial peak width is reached [27]. When the projected atomic potential
is non-centrosymmetric, as in the example shown in Figure 8, the anti-symmetrical part ®4(r) can
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be directly estimated by the inverse FT of Al and added to the symmetrical part determined by the
deconvolution of the inverse FT of the centrosymmetric component Icg of the diffraction pattern (see
Appendix A).

Deconvolved averaged projected potential

Figure 8. Deconvolution of the auto-correlation function C(r): (a) C(r) obtained by the inverse Fourier
transform (FT) of the rescaled diffraction pattern for the ZnSe/GaAs heterostructure, oriented in a [110]
zone axis; (b) shifted replica of the auto-correlation function C(r-ry;) centered on a secondary maximum
rvi; (€) product of C(r) and C(r-ryy); (d) projected potential obtained deconvolving the contribution to
the column width due to the auto-correlation.

4. Conclusions

We have presented experimental results and data analysis based on: (i) preparation of a coherent
nano-beam of 200 kV electrons and measurement of a complete (without beam-stopper) coherent
diffraction pattern from a nano-region of extended samples, satisfying the Nyquist-Shannon sampling
requirement; (ii) scaling of the measured intensities by imposing a mathematical constraint related to
the maximum scattering amplitude that can be associated to the structure; (iii) deconvolution of the
auto-correlation function obtained by the modulus of inverse FT of the rescaled nano-diffraction pattern
to derive the average projected atomic potential. The results show a straightforward reconstruction
for both centrosymmetric and non-centrosymmetric specimens in good quantitative agreement with
the theoretical expectation. This is a new method for the study of matter at sub-atomic resolution that
in many cases allows the overcoming of the limitations imposed by dynamical effects to quantitative
structure analyses by electron diffraction. The method enables the measurement of the projected
potential averaged on the illuminated nano-area, meaning that the presence of any eventual defect in
this area is smeared over the whole average potential, slightly increasing the error in its determination.
Nevertheless, the method gives quite readily the average potential on an area of few nm, without any
need to retrieve phases, which in turn requires the knowledge of the support corresponding to the
illumination beam. Moreover the proposed approach can be considered as a tool to restore diffraction
data affected by dynamical effects in typical TEM experiments on standard specimen thicknesses up to
a few tens of nm, making the pattern suitable for EDI phasing procedures capable of detecting local
variations due to structural defects. Thus, the method makes also possible a wider application of EDI,
partially relaxing the strong restrictions imposed on the thickness of the specimen by the dynamical
nature of electron-matter interaction. It can be expected also that other crystallographic approaches
based on electron diffraction could benefit from these findings.
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Appendix A. Theory

In this appendix we present a general theoretical framework to understand the role and the limits
of the proposed method to restore dynamical nano-diffraction data.

Appendix A.1. Electron Wave Function for a Nano-Sized Illumination Beam

Structural information on samples is contained in the relevant diffraction patterns recorded at far
field. The scattered intensity is:

2
I(s) = ‘/l[) (r) exp [i® (r)] exp [—i27ts - ¥] dr (A1)

where ®(r) = 2meV(r)/h?, V(r) is the Coulomb atomic potential of the sample and ¢(r) the illuminating
electron wave function. Here, m, e, i, and i, are the electron mass, charge, Planck constant and
imaginary unit, respectively. In general, the illuminating electron wave function can be written as
P(r) = A(r)explie(r)], where A(r) is the wave amplitude and @(r) the phase. It can be expressed also as
a wave packet superposition [5]:

P (r) = /g(s)exp [insz)\ (CSZAZSZ + Af)] exp [i27ts - r|ds (A2)

where Cs and Af are the spherical aberration and the defocus of the electron objective lens, respectively.
Here, g(s) is the wave amplitude with wave vector k = 27ts. The finite width of g(s), necessary to form
a nano-sized illumination, limits the lateral coherence of the electron beam. In turn, this leads to a
smaller field of view and a higher intensity in the center of the illuminated nano-region [5]. This is
just what happens in experimental conditions for which an incident nano-sized beam has a maximum
intensity at its center and assumes a decreasing amplitude profile as a function of 7, described by the
function A(r) = |¢(r) |, going to zero within few nm from its maximum (see, for example, Figure 1).

Appendix A.2. Transverse Coherence Length

In a real TEM nano-diffraction experiment the incident electron wave has an angular divergence
v, representing a bundle of plane waves incident on the object. To estimate the upper limit of the beam
angular spread v, considering Ar~5 nm, i.e., of the order of half size of the illuminated area in Figure 1,
from the uncertainty principle we obtain AkAr = 27ty Ar/A~1. As the wavelength of 200 keV electrons is
A =25 pm, y~A/(2nAr)~80 prad. Here, k = 27s, so the finite value of the angular divergence leads to a
finite transverse coherence length, given by

Le~A/(2y). (A3)

For y~80 prad we obtain L.~15 nm. Therefore, choosing a proper experimental setup,
an illuminated area of 2A7~10 nm can be, in principle, coherently illuminated.

Appendix A.3. Compensation of Non-Linear Phase Shifts

The phase of the illuminating wave depends on the microscope electro-optical parameters
(Equation (A2)). Indeed, the non-linear information transmission of the diffracted beams, described by
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the phase factor of Equation (A2), is mostly determined by the design of the objective lens, in which
the only tuning parameter in equipment not Cs corrected is the defocus Af. In weak-phase approximation
the nonlinear phase transformation of the objective lens does not affect the experimental diffraction
pattern [1], since the transfer function of Equation (A2) is described by a phase-factor with unitary
modulus. Conversely, the corresponding image is strongly affected by the non-linear phase shift
introduced by the objective lens. This is why in HRTEM experiments the defocus is tuned to obtain a
slowly varying phase factor in a suitable range of frequencies to produce an experimental result not
strongly dependent on the rapid oscillations of the phase [1] (see Figure 1).

/\2
s2A <Cs'252 +A f) ~ (A4)

N[N

In general, in case of nano-beam illumination, the nonlinear phase transformation of the objective
lens could, in principle, affects also the diffraction pattern yielding a complex illumination function.
Nevertheless, choosing illuminating conditions to make the non-linear phase shift almost constant
for each s, from Equation (A2) it follows that ¢(r) would be slowly variable over the spatial region
where A(r) # 0. Under this condition the illuminating function can be approximated by (r) = A(r),
neglecting the low spatial variability of phase @(r) as a function of r.

Appendix A.4. Dynamical Effects on the Non-Centrosymmetry of the Diffraction Pattern

Denoting with FT~![I] the inverse FT of Equation (A1), ¢(r) = A(r) and applying the product
approximation to describe the phase shift introduced by the sample on the incident wave [28] we obtain

C(r) =FT[I(s)] = {A(r) exp[i® ()]} ® {A (=) exp[~i®" (-7)]}. (A5)

To simplify the notation, in the following we will suppress the explicit dependence on s and r.
Here “®” denotes the convolution product and “*” the complex conjugate. C is the auto-correlation of
the complex function A exp(i®).

As already stated, ®(r) = Or(r) + iPj(r) = Pr(r) + iaxPr(r) = (1 + ix)Pr(r), where Pr(r) is
proportional to the Coulomb projected atomic potential and « of the order of 0.01-0.05 for many atomic
species [20]. Structures with atoms of different species can be described by « = x(r), with a(r) << 1.
Therefore, Equation (A5) can be rewritten as:

C = FT ' [I] = [Aexp (i®r) exp (—a®r)] ® [Aexp (—i®g) exp (—adR)]. (A6)

The term exp(—a®r) describes the absorption. Equation (A6) gives the dynamical intensity
scattered by the sample for a nano-sized illuminating beam with amplitude A(r). Let us note that
the right side of Equation (A6) is real if ®g(r) is centrosymmetric [19] and A(r) = A(—r). In this case,
rewriting the complex exponential functions in terms of trigonometric functions it gives:

C = FT ! [I] = [Acos (®R) exp (—adR)] ® [Acos (®r) exp (—adR)] +

[Asin (Pr) exp (—adDr)] ® [Asin (DPgr) exp (—adR)]. (A7)

If @R (r) is centrosymmetric, a straightforward calculus shows that complex terms cancel each other
and, as already stated, any non-centrosymmetry in the measured diffracted pattern can be almost fully
ascribed to mis-tilts of the crystalline sample with respect to the precise zone axis orientation. However,
it should be noted that for nano-sized illuminations another possible cause of non-centrosymmetry
of the diffraction pattern obtained by a centrosymmetric projected potential could be ascribed to an
asymmetric nano-beam illumination, i.e., A(r) # A(-r).
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From Equation (A5) it follows that the diffracted wave is the sum of the FT of a cosine and a sine
terms. For a non-centrosymmetric projected potential we can rewrite the cosine and sine terms as the
sum of symmetric and anti-symmetric components [19]:

cos [ (r)] = 3 {cos [PR (r)] + cos [Pr (—7)]} + % {cos [Pr (r)] — cos [Pr (—7)]}

sin [Pg (r)] = § {sin [@g (r)] + sin [P (—7)]} + 3 {sin [®r (r)] — sin [@g (—7)]}. (A8)

Denoting the FT of the above components as Ceos, 1Acos and Cgip, iAsin, respectively, it results:

~ 2
[(+s) = ]A ® FT [exp (—a®R)] ® [Ceos % iAcos + i (Coin =+ iAsin)]] -

~ 2 (A9)
| A @ FT [exp (—a®R)] @ [Coos F Asin +i (Cain + Accs)]|
Here, the symbol “~” denotes the FT. Thus, I(s) # I(—s) and the diffraction pattern would be
non-centrosymmetric, also for a symmetric illumination function A(r) = A(-r). For a centrosymmetric
Dr(r) = Pr(-7) the anti-symmetric components Acos and Agin would be negligible and, if A(r) = A(-r),
from Equation. (A9) readily it would follow that I(s) = I(-s), as previously stated. Conversely, for a
non-centrosymmetric projected potential even small dynamical effects would produce breaking of
Friedel’s pair symmetry, independently of any mis-tilt of the specimen with respect to the precise
Zone axis.

Appendix A.5. Weak Phase Approximation

If &g << 1, from Equation (A9) the so-called Weak Phase Approximation (WPA) is obtained
expanding in series the trigonometric functions up to the first order in & and neglecting the absorption
terms. Under WPA the diffracted intensity is readily derived by the FT of the following Equation:

Cwpa = FT 7! [Iypa] = A® A+ (ADR) ® (ADR) + O(P}), (A10)

leading to:
Twpa = ‘A‘2+‘Z®&>R‘2 (A11)

The first term in the right side of Equation (A11) gives the direct beam, which is the FT of
the autocorrelation function of the incident nano-beam amplitude A. Whereas the last term of
Equation (A11) gives the WPA diffracted pattern, which is the FT of the auto-correlation function of
the projected atomic potential ®r times the incident nano-beam amplitude A. Thus, the widths of
Bragg peaks will be directly related to the size and shape of the illumination nano-beam.

Appendix A.6. Second-Order Dynamical Perturbation to the Weak Phase-Approximation

In TEM the condition ®r << 1 is violated even for few unit cells’ sample thickness. A dynamical
scattering factor fz,, can be formally defined as [28]

FT ™! [ifgin] = exp (i) — 1, (A12)

Whereas the kinematical scattering factor fy;, is directly related to the WPA projected potential:
FT ! [ifyin] = FT ! [ifwpa) = i@ (A13)
Thus, the dynamical contribution to scattering for a nano-size illumination beam will be given by:

FT LI — I,] = [A (exp (iPRr) exp (—a®r) — 1)] @ [A (exp (—i®PR) exp (—a®r) —1)] — (ADR) @ (ADR). (A14)
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Expanding in series Equation (A14) up to the second-order, and neglecting small absorption
terms, it leads to:
FT (1 - Iyy] = [A®%/2] @ [49}/2] + 0 (93). (A15)

Hence: 5
I ]A@ Fr ®cT>R] J4+ Iwpa > Typa. (A16)

Equation (A16) indicates that the phase of the dynamical scattering factors [28] takes an active part
in the scattering process since in the convolutions there is @y with its phase. Thus, in general, fayn is not
a real quantity. This finding will cause destructive interferences for some Bragg reflection amplitudes
and constructive for others, through multiple scattering, described by the convolution operation inside
the square modulus. Nevertheless, the square modulus of the second order dynamical term will be
added to the kinematical contribution obtainable in a WPA. Therefore, if any of the Bragg reflections
would be affected by dynamical scattering, the corresponding diffracted intensities would increase for
the second-order dynamical contribution. By considering higher orders in the power expansion of
the trigonometric functions some terms could give a negative contribution to the intensity of some
Bragg reflections, but the overall result, for sample thickness smaller than half of the corresponding
extinction distances, would be to increase the diffracted intensities, reducing the direct beam intensity.

This finding leads to the need to rescale diffracted intensities, as discussed in the paper, which
are too large with respect to the maximum value of the scattering amplitude calculated from the
a-priori approximate knowledge of the sample chemistry. This operation can be made by means of
the two-dimensional radial function sup{I(s)}, as shown in the paper, depending on the scattering
vector modulus s. Indeed, the approximate knowledge of the chemical composition of the sample
enables one to estimate the maximum scattering amplitude of the structure Fax(s) = Zifi(s), which
is the sum of the scattering factors fi(s) of the atoms in the crystal unit cell assuming that all are
adding constructively their scattered amplitudes. In this way the upper limit of any diffracted intensity,
normalized to the incident beam intensity, can be readily evaluated. Therefore, the rescaling of the
measured intensities by using the sup{I(s)} = | Fyuax(s) |%/1 Fyax(0) |2 constraint partially corrects the
effect of the dynamical scattering, reducing the effect of the dynamical contribution of Equation (A16)
and of other higher order terms to the diffracted intensities. Obviously, this does not assure that the
rescaled diffracted intensity is fully corrected by dynamical scattering, but our experimental tests show
that this rescaling of intensities is sufficient to guarantee the quantitative determination of the projected
atomic potential. Indeed, the deconvolution of the modulus of the FT of the rescaled diffraction pattern
readily gives the correct projected atomic potential ®r(r) averaged in the nano-region where A(r) # 0.
Our experimental tests indicate that for sample thickness larger than one third of the smaller extinction
distance, the dynamical effects cannot be recovered by the proposed approach. Nevertheless the
range of applicability of the method is very wide because, usually, in standard TEM experiments the
thickness of the specimen does not exceed a few tens of nm.

As in any crystallographic approach, the interferences of all crystals unit cells inside the
illuminated volume leads to a very accurate determination of the coordinates of the atomic species.
However, in this way any information about any structural defect is averaged and, consequently, lost.
This is why in the case of GaAs/ZnSe, discussed in Section 2, the recovered projected atomic potential
does not show any clue of the interface visible in the relevant HRTEM. To obtain local variations of the
projected atomic potential, to realize the true imaging of the illuminated nano-region of the sample
and visualize eventual defects, an EDI phasing approach is necessary, but this is beyond the scope of
this work.

Appendix A.7. General Equations

All the above results stand on the assumption of a slowly spatial dependence of the phase ¢(r) of
the illuminating electron wave function ¢(r) = A(r)explip(r)]. When the dependence of the phase ¢(r)
on the spatial position r cannot be neglected Equation (A5) has to be generalized as follow:
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C = FT1 1] = {Aexpliglexpli®]} © { Aexp|—iflexp|—i®"]} =
[Acos (¢ + Pr) exp (—aPr)] @ [Acos (¢ + Pr) exp (—adr)] + (A17)
[Asin (¢ + ®g) exp (—a®g)] @ [Asin (¢ + Og) exp (—a®g))

In this case the illuminating function (electron probe) has to be phased to disentangle phase
information regarding the sample, i.e., ®r(r), from the contribution of the incident wave, i.e., @(r).
Indeed, the diffraction pattern will be characterized by several interferences related to the probe.
The deconvolution of the illumination phase wave from the contribution of the sample is needed,
for example, in X-ray Fresnel diffraction Keyhole CDI [29], in ptychography [30,31] and in any case
in which it is not possible to tune properly the optical conditions for the lenses in order to suitably
compensate non-linear phase components of the illuminating wave function.

Appendix A.8. Incoherent Source Approximation

However, it should be noted that in some cases Equation (A17) can be simplified by more general
theoretical considerations. Let us assume that a diffraction pattern is collected in the Fraunhofer
geometry, which requires that both source-object and object-detector distances are much larger than
object and source sizes. In these conditions, the fully coherent diffraction pattern recorded in far field
from the sample is:

Loy (s) o ‘/ / P (r1) Y x (r2) exp [iD (r)] exp [—iP™ (r)] exp [—i27ts - (r1 — 12)] dridrz|. (A18)

If we are dealing with a beam of finite lateral size and non-null divergence, the coherence
properties of the wave-field impinging onto the sample in the incoherent approximation can be
described through the coherence function [32]:

P(r)px*(r2) =] (r1—1r2)=](y). (A19)

Which is a function only of the relative distance y=rq — r, between different points of the sample.
From Equations (A18) and (A19) it results:

~ 2

I(s) o \ [ exp i (re)] exp [~i0" (11 +y) dra] () exp (~i2s - y) dy\ = Lon(s) @ |A(s)| . (A20)

~ 2
Here, |A(s) ‘ is the square modulus of the FT of J(y), directly related to the incident nano-beam

shape and size. In these conditions the coherent dynamical diffracted intensity I..;(s) is convoluted with
the intensity profile of the incident beam. Equation (A20) implies that, in experimental situations similar
to those treated in the present work, it is not necessary to know the incident illumination function in
modulus and phase. This situation is substantially different from ptychography [30,31] or Fresnel X-ray
Keyhole CDI [29]. Indeed, in some experiments it is sufficient to know only the intensity of the source
probe. This finding is a consequence of the assumption (A19). It is valid only for monochromatic
spatially incoherent sources, i.e., when the spatial coherence is developed through wave propagation
and when we are dealing with the Fraunhofer diffraction geometry. This result is a direct consequence
of the Van Cittert-Zernike theorem [32]. Indeed, in the far-field limit, the Van Cittert-Zernike theorem
for an incoherent source relates the angular distribution of the wave-field impinging on the sample
directly to the FT of the physical source square modulus amplitude. Equation (A20) can be assumed
approximately valid also for Schottky TEM sources, used in the present work, because the spatial
coherence of the electron waves emitted by these sources is reached by reducing their size on a small
scale, but single electrons are emitted incoherently from each other by different regions of the sources.
Under the condition given by Equation (A19) the inverse FT of I, given by Equation (A7), can be further
simplified as follows:
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C=FT![I]=(A®A) x [cos (Pr) exp (—aPR)] ® [cos (Pr) exp (—adR)] +

+ (A® A) x [sin (Pr) exp (—adr)] @ [sin (Pr) exp (—aDr)]. (A21)

Equation (A21) implies that the beam profile can be considered as a multiplicative envelope that
can be extracted by the convolution with the projected atomic potential ®r(r). This is possible since
A(r) is slowly variable as a function of r with respect to the ®r(r) lattice periodicity and the phase ¢(r)
can be considered almost constant on the same spatial scale.

Appendix A.9. Further Insight for the Kinematical Approximation

Non-centrosymmetric atomic projected potentials in the presence of dynamical scattering
and absorption lead to a violation of the Friedel’s law, with I(s) # I(-s). Thus, in general, the
non-centrosymmetry implies that the auto-correlation function C(r) is a complex function. However,
if the imaginary part of the potential is approximately proportional to the real part, for uniform
illumination A(r) = const, in conditions of kinematical scattering and low absorbing samples,
the imaginary part of C(r) is negligible also for non-centrosymmetric atomic projected potential. Indeed,
let denote with ®5(r) and ®4(r) the symmetrical and anti-symmetrical part of the real component
Dr(r) of the projected potential, respectively:

g (r) = P (r) + Pa (r). (A22)
For kinematical scattering, i.e., in WPA conditions, we have

Crin = {P@s (r) + P4 (r) + ia [ @5 (r) + Pa ()]} @ {P5 (—) + Pa (—71) —ia [Ps (—7) + Pa (—1)]} (A23)
205 (1) R@Ps (1) + DPa (1) @DPa (—1) + P4 (1) @ Ps (—1) + Ds (1) @Dy (7).

In the above Equation the mixed terms ®4(r)@Ps(—r) and Ps(r)QP 4(—r) eliminates each other
due to the even and odd parity of ®5(r) and ®4(r), respectively. Since « << 1, in Equation (A23) the
term proportional to o has been neglected. Moreover, it is straightforward to verify that for the
complex part, the term proportional to ic, is null. Therefore, the auto-correlation function will be real
also for a non-centrosymmetric projected potential:

Ciin (1) = P (1) @ Pg (—1) + DA (1) @Pa (—1) = Ps (r) @ DPg (r) — D4 (r) @Dy (1), (A24)

from which 5

, (A25)

:‘d)

2 . 2
Lin = FT [Cyin] = ’q’s’ + “DA‘

since
FT[®4 (r)] = iD4. (A26)

The situation changes for an illumination confined in a nano-region of the sample, as in the cases
under study in this work. In this instance, inserting Equation (A22) into Equation (A9), for a symmetric
illumination A(r) = A(-r) and a low absorbing sample, we obtain:

~ ~ ~ ~ ~ 12
L (£5) = ‘A ® [(5 - (q>5 + iq>A)] ® [5¢<1>A + icbs} \ : (A27)
Thus, even in absence of absorption, neglecting the term proportional to &, we obtain:

lin (£9) = |40 0585+ 18] | = | A7 Ao da+id0dy (A28)

~12 ~ ~ 12 ~ ~ 12 ~ [~ ~
’A’ +‘A®¢s‘ +’A®¢A‘ :F2A<A®CI>A>.

From Equation (A28) it follows
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Aliy (8) = Itin () — Iin (—s) = —4A (A@) éI3A>, (A29)

from which
FT ! ALy, (s)] = —4A @ (Ady). (A30)

Thus, the anti-symmetric part of the diffraction pattern contains information regarding the
anti-symmetric part of the projected potential. Therefore, if the rescaling of the measured intensities
has allowed, at least partially, restoring of the diffraction data from dynamical effects, the deconvolution
of the inverse FT of I could give the correct projected potential also for non-centrosymmetric cases.
Indeed, in the incoherent source approximation, from Equations (A21) and (A30) the anti-symmetrical
part @4 (r) can be directly estimated by FT![I] and added to the symmetrical part determined by the
inverse FT of the centrosymmetric component Icg of the diffraction pattern, as carried out in this work
in the case of the specimen with the sphalerite structure discussed in Section 2.
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