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Abstract: ZnO micro- and nanostructures were obtained through thermal oxidation of Zn powders
at high temperature under air atmosphere. A detailed study of the microstructure, morphology,
optical, and photoluminescence properties of the generated products at different stages of thermal
oxidation is presented. It was found that the exposure time has a strong influence on the resulting
morphology. The morphogenesis of the different ZnO structures is discussed, and experimental
parameters for fabricating ZnO tetrapods, hollow, core-shell, elongated, or rounded structures by
thermal oxidation method are proposed on the basis on the obtained results. Notoriously, the crystal
lattice of the ZnO structures has negligible residual strain, although, the density of point defects
increases when the thermal treatment is extended; as consequence, their visible luminescence upon
UV excitation enhances.
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1. Introduction

Zinc oxide (ZnO) belongs to the IIB-VIA family. This semiconductor compound has strong polar
character and notorious physical and chemical stability under harsh environments. It is a polymorphic
material, crystallizing in three different structures: rocksalt (Fm3m), zinc-blende (F43m), and wurtzite
(P63mc). The rocksalt structure can be obtained only under high pressure conditions, whereas stable
zinc-blende ZnO has been grown on cubic substrates [1]. However, the most thermodynamically
favored phase at standard conditions of pressure and temperature is the wurtzite structure.

The physical and chemical properties of wurtzite ZnO (w-ZnO) has been extensively studied
due to its potential application in different technological fields. In the past decades, several methods
have been developed to obtain w-ZnO crystals with desired microstructure and morphology, since
upon controlling them, functional materials with designed properties could be fabricated. With this
purpose in mind, sol-gel, hydrothermal, solvothermal, melting, sputtering, chemical bath deposition
(CBD), atomic layer deposition (ALD), molecular-beam epitaxy (MBE), pulsed-laser deposition (PLD),
chemical-vapor deposition (CVD), thermal oxidation, among other techniques, have been used to
fabricate plenty of ZnO structures with different morphology and size. On comparison with other
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approaches, thermal oxidation has the advantage of producing large amounts of product in a short
time at low cost. Moreover, the resulting morphology of the obtained materials is sensitive to the
processing parameters [2–4]. For instance, on controlling reaction temperature, cooling rate, or
processing atmosphere chemistry, wires [5], needles [6], sphere-shape grains [7], hexagonal and
cylindrical prisms [8], multipods [9], whiskers [10], and urchinlike particles [11] have been fabricated.
In this regard, ZnO structures obtained through thermal oxidation have been applied in lasing [12,13],
light guide [14], photodetection [15], field emission [16], Schottky barriers [17], gas sensing, and
photocatalysis [18]. Nevertheless, the extensive variation of experimental parameters used to obtain
ZnO micro- and nanostructures by this technique hampers the generation of a compendium of
the growth mechanisms involved when specific processing parameters are used, which ultimately
determines the resulting morphology.

Here we report the study of a variety of ZnO micro- and nanostructures obtained at different
stages of thermal oxidation of Zn powders in order to elucidate their morphogenesis. Some of them
have been individually reported, but not included as a possibility in a collection of structures which can
be obtained by this technique. The morphology, structural, optical, and photoluminescence properties
of the obtained ZnO structures were analyzed in detail.

2. Results and Discussion

Figure 1 shows the X-ray patterns of the different samples. The set of X-ray reflections
observed in the diffractogram of the precursor (S0) confirms that it is hexagonal metallic zinc (h-Zn;
JCPDS #004–0831). However, an inspection in the range of low-diffraction angles reveals two tiny
peaks at 31.85◦ and 34.46◦, which match with the diffraction angles of 100 and 002 reflections of wurtzite
ZnO phase (w-ZnO; JCPDS #036–1451). The latter indicates formation of native oxide; most likely on
the surface of Zn grains. This is attributed to exposition of the metallic precursor to air atmosphere.
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Figure 1. Left: X-ray patterns of the precursor powder (S0) and the products obtained after its thermal 
oxidation (900 °C; air atmosphere) during different times: 3 (S1), 6 (S2), 12 (S3), and 24 min (S4). Right: 
detail of the X-ray peaks observed at the smallest diffraction angles. The position and relative intensity 
of the X-ray reflections reported for w-ZnO and h-Zn are shown for reference. 

Table 1. Diffraction angle (2θ), calculated interplanar distance (d), and full width at high maximum 
(FWHM) of the X-ray peaks observed in the diffractograms of the samples obtained by thermal 
oxidation. The crystallographic data of the h-Zn (JCPDS #004–0831) and w-ZnO (JCPDS #036–1451) 
structures are given for comparison. 

S0 (0 min) S1 (3 min) S2 (6 min) S3 (12 min) S4 (24 min) h-Zn w-ZnO 

2θ; FWHM; d (°; °; Å) hkl; d (Å) 

31.85; 0.23; 2.810* 31.79; 0.10; 2.812 31.79; 0.08; 2.813 31.74; 0.09; 2.817 31.75; 0.16; 2.818* --- 100; 2.814 

34.46; 0.20; 2.602* 34.45; 0.10; 2.601 34.45; 0.08; 2.601 34.39; 0.09; 2.605 34.41; 0.16; 2.606* --- 002; 2.603 

36.29; 0.08; 2.473 36.29; 0.07; 2.474 36.29; 0.07; 2.474 36.22; 0.09; 2.478 36.24; 0.17; 2.479* 002; 2.473 101; 2.476 

39.00; 0.07; 2.308 38.99; 0.09; 2.308 39.03; 0.05; 2.306 --- --- 100; 2.308 --- 

43.21; 0.09; 2.092 43.24; 0.06; 2.091 43.25; 0.07; 2.090 --- --- 101; 2.091 --- 

47.60; 0.28; 1.911* 47.56; 0.08; 1.910 47.57; 0.09; 1.910 47.50; 0.09; 1.912 47.51; 0.13; 1.912 --- 102; 1.911 

54.33; 0.07; 1.687 54.33; 0.08; 1.687 54.35; 0.08; 1.687 --- --- 102; 1.687 --- 

56.69; 0.37; 1.624* 56.61; 0.09; 1.624 56.62; 0.10; 1.624 56.56; 0.10; 1.626 56.56; 0.14; 1.626 --- 110; 1.625 

62.91; 0.36; 1.477* 62.88; 0.12; 1.477 62.88; 0.10; 1.477 62.83; 0.11; 1.478 62.83; 0.14; 1.478 --- 103; 1.477 

66.55; 0.61; 1.405* 66.40; 0.12; 1.407 66.40; 0.10; 1.407 66.34; 0.12; 1.408 66.33; 0.15; 1.408 --- 200; 1.407 

68.05; 0.47; 1.378* 67.97; 0.12; 1.378 67.98; 0.11; 1.378 67.91; 0.11; 1.379 67.91; 0.14; 1.379 --- 112; 1.378 

69.23; 0.56; 1.357* 69.11; 0.13; 1.358 69.12; 0.14; 1.358 69.05; 0.11; 1.359 69.04; 0.14; 1.359 --- 201; 1.358 

70.06; 0.09; 1.342 70.06; 0.09; 1.342 70.08; 0.09; 1.342 --- --- 103; 1.342 --- 

70.65; 0.08; 1.332 70.66; 0.07; 1.332 70.66; 0.07; 1.332 --- --- 110; 1.332 --- 

--- --- 72.60; 0.13; 1.301 72.53; 0.10; 1.302 72.53; 0.13; 1.302 --- 004; 1.302 

77.01; 0.12; 1.237 77.03; 0.09; 1.237 77.03; 0.14; 1.237 76.92; 0.12; 1.239 76.92; 0.15; 1.238 --- 202; 1.238 

In each pattern, the strongest X-ray reflection is indicated in bold. (*) Interplanar distance calculated 
using the wavelength of 1.541838 Å (Cu Kα,ave), otherwise the considered value was 1.540562 Å (Cu Kα1). 

In order to study further the evolution of the crystal array of the obtained ZnO samples, they 
were analyzed by micro-Raman spectroscopy. The w-ZnO structure has 12 phonon modes at the 
Brillouin-zone center (Γ). They are represented by the irreducible relation: Γ = 2A1 + 2B1 + 2E1 + 2E2. 

Figure 1. Left: X-ray patterns of the precursor powder (S0) and the products obtained after its thermal
oxidation (900 ◦C; air atmosphere) during different times: 3 (S1), 6 (S2), 12 (S3), and 24 min (S4).
Right: detail of the X-ray peaks observed at the smallest diffraction angles. The position and relative
intensity of the X-ray reflections reported for w-ZnO and h-Zn are shown for reference.

As expected, the intensity of the X-ray reflections associated with the w-ZnO phase increases
monotonically with the exposure time of the precursor powder to high temperature. No X-ray peak
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corresponding to metallic zinc could be observed after 12 min of thermal oxidation (S3), indicating
complete oxidation of the metallic phase at this stage.

A notable feature of the X-ray peaks of the metallic precursor (h-Zn), prior to and after thermal
oxidation, is the resolution of the Cu Kα doublet, even for those detected at the lowest angles (see
detail of Figure 1). This is because the diffracted X-ray beams are narrow, indicating that Zn grains are
highly crystalline, with negligible strain and micrometric in size. In the case of w-ZnO, the evolution of
the X-ray peaks is quite different. On increasing the exposure time, they get stronger and sharper (S1),
and after 6 min of thermal oxidation, the Cu Kα doublet can be resolved (S2). However, on extending
the exposure time, instead of a well-defined Cu Kα2 peak a shoulder is observed (S3), which finally
merges with the respective Cu Kα1 peak (S4). This behavior indicates that the ZnO formed initially is
nearly free of residual strain; nevertheless, on extending the exposure time, lattice distortion is induced.
Table 1 summarizes the main features of the X-ray peaks observed in each sample. It is noticed that
the X-ray peaks of w-ZnO trend to shift to lower diffraction angles while prolonging the exposure
time, indicating an increase of the average size of the unit cell. This effect is attributed to gradual
incorporation of oxygen atoms in the crystal structure of ZnO [19].

Table 1. Diffraction angle (2θ), calculated interplanar distance (d), and full width at high maximum
(FWHM) of the X-ray peaks observed in the diffractograms of the samples obtained by thermal
oxidation. The crystallographic data of the h-Zn (JCPDS #004–0831) and w-ZnO (JCPDS #036–1451)
structures are given for comparison.

S0 (0 min) S1 (3 min) S2 (6 min) S3 (12 min) S4 (24 min) h-Zn w-ZnO

2θ; FWHM; d (◦ ; ◦ ; Å) hkl; d (Å)
31.85; 0.23; 2.810 * 31.79; 0.10; 2.812 31.79; 0.08; 2.813 31.74; 0.09; 2.817 31.75; 0.16; 2.818 * --- 100; 2.814
34.46; 0.20; 2.602 * 34.45; 0.10; 2.601 34.45; 0.08; 2.601 34.39; 0.09; 2.605 34.41; 0.16; 2.606 * --- 002; 2.603
36.29; 0.08; 2.473 36.29; 0.07; 2.474 36.29; 0.07; 2.474 36.22; 0.09; 2.478 36.24; 0.17; 2.479 * 002; 2.473 101; 2.476
39.00; 0.07; 2.308 38.99; 0.09; 2.308 39.03; 0.05; 2.306 --- --- 100; 2.308 ---
43.21; 0.09; 2.092 43.24; 0.06; 2.091 43.25; 0.07; 2.090 --- --- 101; 2.091 ---

47.60; 0.28; 1.911 * 47.56; 0.08; 1.910 47.57; 0.09; 1.910 47.50; 0.09; 1.912 47.51; 0.13; 1.912 --- 102; 1.911
54.33; 0.07; 1.687 54.33; 0.08; 1.687 54.35; 0.08; 1.687 --- --- 102; 1.687 ---

56.69; 0.37; 1.624 * 56.61; 0.09; 1.624 56.62; 0.10; 1.624 56.56; 0.10; 1.626 56.56; 0.14; 1.626 --- 110; 1.625
62.91; 0.36; 1.477 * 62.88; 0.12; 1.477 62.88; 0.10; 1.477 62.83; 0.11; 1.478 62.83; 0.14; 1.478 --- 103; 1.477
66.55; 0.61; 1.405 * 66.40; 0.12; 1.407 66.40; 0.10; 1.407 66.34; 0.12; 1.408 66.33; 0.15; 1.408 --- 200; 1.407
68.05; 0.47; 1.378 * 67.97; 0.12; 1.378 67.98; 0.11; 1.378 67.91; 0.11; 1.379 67.91; 0.14; 1.379 --- 112; 1.378
69.23; 0.56; 1.357 * 69.11; 0.13; 1.358 69.12; 0.14; 1.358 69.05; 0.11; 1.359 69.04; 0.14; 1.359 --- 201; 1.358
70.06; 0.09; 1.342 70.06; 0.09; 1.342 70.08; 0.09; 1.342 --- --- 103; 1.342 ---
70.65; 0.08; 1.332 70.66; 0.07; 1.332 70.66; 0.07; 1.332 --- --- 110; 1.332 ---

--- --- 72.60; 0.13; 1.301 72.53; 0.10; 1.302 72.53; 0.13; 1.302 --- 004; 1.302
77.01; 0.12; 1.237 77.03; 0.09; 1.237 77.03; 0.14; 1.237 76.92; 0.12; 1.239 76.92; 0.15; 1.238 --- 202; 1.238

In each pattern, the strongest X-ray reflection is indicated in bold. (*) Interplanar distance calculated using the
wavelength of 1.541838 Å (Cu Kα,ave), otherwise the considered value was 1.540562 Å (Cu Kα1).

As described above, after 12 min of thermal oxidation, single-phase w-ZnO sample is obtained.
However, on extending the exposure time, the X-ray peaks get broader. For instance, when the
exposure time is sustained throughout 24 min, the full width at high maximum (FWHM) of the
100 reflection increases from 0.09◦ to 0.16◦ (other reflections follow the same behavior). This can be
understood upon considering that once completing the formation of ZnO phase, the heat transferred
from the surroundings increases the thermal motion of atoms, enough to generate lattice strain after
sudden cooling.

In order to study further the evolution of the crystal array of the obtained ZnO samples, they
were analyzed by micro-Raman spectroscopy. The w-ZnO structure has 12 phonon modes at the
Brillouin-zone center (Γ). They are represented by the irreducible relation: Γ = 2A1 + 2B1 + 2E1 + 2E2.
Among them, six modes are Raman active: the optical A1 and E1 modes, each one splits into transversal
(TO) and longitudinal (LO) branches (A1–TO, 380 cm−1; A1–LO, 576 cm−1; E1–TO, 407 cm−1; E1–LO,
583 cm−1), and the two E2 modes (E2–low, 101 cm−1; E2–high, 437 cm−1). The low frequency E2 mode
(E2–low) is associated with motion of the heavy Zn sublattice, whereas the high frequency E2 mode
(E2–high) concerns mainly with displacements of oxygen atoms [1,20,21].
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The Raman spectra of the different samples are shown in Figure 2. In the case of the precursor
powder, a broad signal dominates the spectrum, but still a small Raman peak is resolved around
98 cm−1. While the broad signal is attributed to fluorescence background, the Raman peak is associated
with E2–low vibrational mode of w-ZnO, confirming the formation of native oxide in the metallic
precursor. Furthermore, because the E2–high mode is not resolved, high density of crystal defects
associated with the oxygen sites could be present, probably oxygen vacancies. The latter indicates that
the native ZnO is nonstoichiometric. Then, as the exposure time is extended, the E2–low/E2–high
intensity ratio decreases (see inset of Figure 2), indicating progressive formation of the oxygen
sublattice, in agreement with the tendency of oxygen content of the samples determined by energy
dispersive X-ray spectroscopy (EDS) (see Table 2). Nevertheless, none of the obtained ZnO samples
are stoichiometric, but oxygen deficient.
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oxidation (900 °C; air atmosphere) during different times: 3 (S1), 6 (S2), 12 (S3), and 24 min (S4). Inset: 
Dependence of E2–low/E2–high intensity ratio with the exposure time. 

Figure 3 shows SEM micrographs of the precursor powder and the products obtained after its 
thermal oxidation during different times. As can be seen, the Zn powder precursor (S0) is constituted 
by micrometric rounded particles of different size. A detailed inspection reveals they are aggregates 
of sub-micrometric grains, generating particles with rough surface. After 3 min upon thermal 
oxidation (S1), the rounded particles are still observed, nevertheless, elongated micro- and 
nanostructures have grown on their surface (see solid circle in Figure 3–S1). Besides these two 
morphologies, a few tetrapods are also observed (see dashed circle in Figure 3–S1). In order to 
elucidate the formation mechanism of the elongated structures, an elemental analysis was performed 

Figure 2. Raman spectra of the precursor powder (S0) and the products obtained after its thermal
oxidation (900 ◦C; air atmosphere) during different times: 3 (S1), 6 (S2), 12 (S3), and 24 min (S4). Inset:
Dependence of E2–low/E2–high intensity ratio with the exposure time.

Table 2. Elemental composition, UV/visible emission intensity ratio (IUV/IVis), and band gap energy
(Eg) of the different samples obtained by thermal oxidation.

Sample Zn:O (avg. at.%) IUV/IVis (a.u.) ZnO–Eg (eV)

S0 81.4:18.6 2.49 3.23 ± 0.05
S1 66.3:33.7 0.64 3.22 ± 0.04
S2 65.2:34.8 0.49 3.22 ± 0.04
S3 60.4:39.6 0.06 3.21 ± 0.03
S4 58.7:41.3 0.11 3.22 ± 0.02

In general, increasing the exposure time up to 12 min, the Raman peaks progressively get stronger
and shift to the reported frequencies of vibrational modes of bulk w-ZnO, however they quench as
the exposure time is prolonged (24 min; S4). These results agree with the X-ray diffraction (XRD)
analysis. Again, it suggests that lattice distortion is favored by thermal energy upon completion of the
oxidation reaction.

Figure 3 shows SEM micrographs of the precursor powder and the products obtained after its
thermal oxidation during different times. As can be seen, the Zn powder precursor (S0) is constituted
by micrometric rounded particles of different size. A detailed inspection reveals they are aggregates of
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sub-micrometric grains, generating particles with rough surface. After 3 min upon thermal oxidation
(S1), the rounded particles are still observed, nevertheless, elongated micro- and nanostructures have
grown on their surface (see solid circle in Figure 3-S1). Besides these two morphologies, a few tetrapods
are also observed (see dashed circle in Figure 3-S1). In order to elucidate the formation mechanism of
the elongated structures, an elemental analysis was performed (see inset of Figure 3-S1). It was found
that the elongated structures have higher oxygen content than grains located at their base, indicative
of a chemical composition gradient.

When the exposure time is sustained through 6 min (S2), two different morphologies are
observed—in this case, hollow structures and tetrapods. A notorious feature of the hollow structures is
that they have open walls. Moreover, some of them seem to have suffered a strong break by an internal
force during the oxidation process, leading to formation of prominent holes (see inset of Figure 3-S2).
These two morphologies, tetrapods and hollow structures, are also found while the exposure time is
prolonged (S3 and S4). Nevertheless, several differences are evident: solid rounded particles are not
observed, the hollow structures trend toward having open shells (see inset of Figure 3-S3), and the
number and size of tetrapods increases.

As described above, several ZnO micro- and nanostructures can be obtained upon changing the
exposure time of the Zn powder under thermal oxidation. In this regard, it is tentative to suppose
that all the zinc particles increase their temperature at the same rate once they are introduced into the
furnace. Nevertheless, prior to the whole system reaching thermal equilibrium, the heat flow from
the surroundings to the precursor particles depends on the temperature difference and their surface
area, according with the heating-cooling law [22]. It follows that smaller particles must heat faster that
bigger ones, which implies the oxidation reaction is not conducted at the same temperature for all the
precursor particles, with the smallest (biggest) ones transformed at the highest (lowest) temperatures.
The latter condition provides access to several growth mechanisms, and thus, formation of different
kinds of ZnO structures simultaneously.

In the case of the sample S1, Zn-rich rounded particles and elongated micro- and nanostructures
are observed. It is believed that the round-shaped structures are generated by a solid–solid mechanism.
In this case, an underlying oxide layer is formed on the surface of zinc particles before they are melted,
leading to formation of structures with a ZnO shell and Zn-rich core. Obtaining of round-shaped ZnO
structures by thermal oxidation of polycrystalline Zn thin films using long exposure times has been
reported previously [7,23,24].

Considering the zinc meting point (~420 ◦C; 1 atm) [25], it is proposed that the elongated ZnO
structures growth via a self-catalytic liquid-solid mechanism. Initially, zinc droplets are produced by
melting of the smallest particles, then, atmospheric oxygen readily diffuses into them. After, ZnO
nuclei are generated and, subsequently, crystals. In this regard, by using atmospheres with low
oxygen content and high temperature, yet below the boiling point of pure zinc (~907 ◦C; 1 atm) [25],
formation of elongated structures—namely, rods [5], wires [26], needles [27], and whiskers [10]—has
been achieved.

It is important to mention that round-shaped morphologies have been obtained using processing
temperatures higher than 500 ◦C [28,29]. Nevertheless, they include intentional oxidation of the
metallic source before its exposure to high temperature, which generates a thick underlying oxide
layer that impedes the liquid-solid mechanism.

On the basis of these growth mechanisms, the difference of the Zn:O ratio between round-shaped
and elongated structures can be explained. Since thermal diffusion is more effective in liquid than
solid media, the structures formed in absence of a liquid phase must contain lower oxygen content.
This effect is enhanced when the diffusion rate of oxygen drops after the sample is suddenly removed
from the furnace.
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Figure 3. SEM micrographs of the precursor powder (S0) and the products obtained after its thermal
oxidation (900 ◦C; air atmosphere) during different times: 3 (S1), 6 (S2), 12 (S3), and 24 min (S4).
Bottom-right corner: Detail of interleg connections observed in the ZnO tetrapods. All the scale bars
correspond to 5 microns.
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Hollow structures are obtained when the exposure time is further extended (≥6 min;
samples S2–S4). A two-step formation mechanism is believed as their origin. First, fast oxidation
of the surface of the precursor particles generates a Zn-ZnO core-shell structure. As the oxide shell
gets thicker, oxygen diffusion into the particle drops; meanwhile, the temperature of the metallic core
increases. Second, when it reaches Zn boiling point, the liquid core vaporizes. At this stage, open shells
allow Zn vapor to escape, but closed shells do not, therefore the vapor pressure continues to increase
until the wall is broken by the stress, generating pronounced holes. In this regard, it is proposed that
formation of closed ZnO shells is favored in the largest particles and by using shorter exposure times.
The strategy is to produce a thick underlying oxide layer before the temperature of particles reaches
Zn boiling point. According to this formation mechanism, hollow structures cannot be obtained if the
oxidation reaction is conducted at temperatures much lower than 907 ◦C.

An interesting feature of the SEM micrographs corresponding to the samples obtained after the
longest exposure times (S3–S4), is that ZnO tetrapods (ZnO-Ts) are always mixed with hollow structures
(most of them with incomplete shell). Formation of such structures suggests generation of zinc vapor at
some stage, indicating that the formation mechanism of ZnO-Ts is via a vapor–solid process. Because
of their functional properties [30–32], several research groups have experimented with different
techniques for obtaining ZnO-Ts, namely, flame transport synthesis (FTS) [18], catalyst-assisted
vapor-phase transport (VPT) [9], chemical vapor deposition (CVD) [33], and thermal oxidation [34,35].
All these techniques involve generation of Zn vapor by either inducing a physical phase transition
or through thermal decomposition of some zinc source [36]; these scientific reports reinforce
our asseveration.

The origin of the peculiar morphology of ZnO-Ts—initially known as fourlings—has been studied
since the 1940s by electron microscopy and stereographic projections [37]. Nowadays, there are three
highly accepted mechanisms for the morphogenesis of ZnO-Ts: (1) that involving the formation of
a stable zinc-blende core and subsequent growth of wurtzite legs [38,39]; (2) the model based on a
transformation of a zinc-blende embryo into a wurtzite twined nucleus [40,41]; and (3) the octahedral
multiple twin nucleus model (octa-twin model) [27,42–44]. Several arguments have been provided
in favor and against each model; however, the octa-twin model is the proposal which complies with
thermodynamic constrains and successfully explains the different sets of the interleg angles observed
in a variety of ZnO-Ts [45]. In addition, other formation mechanisms have been proposed [28],
nevertheless, they seem unreliable and poor empirical evidence has been provided to support them.

In agreement with the octa-twin model, the interleg angles of the reported ZnO-Ts is fairly
fixed [44]. Nevertheless, ZnO-Ts with legs of different size and shape (needle, hexagonal, cylindrical,
hierarchical) have been obtained [3,4,8,18,31,46–48]. An analysis of the experimental conditions
suggests that upon controlling the chemistry of the processing atmosphere (Zn:O partial pressure
ratio), ZnO-Ts with arms of desired shape and size can be fabricated.

On the basis of the growth mechanism discussed above, a scheme of possible ZnO structures that
can be obtained by thermal oxidation of zinc powders is presented in Figure 4.

It is well known that potential applications of materials depend largely on controlling the
microstructure and hence their physical properties. Therefore, to develop methods for obtaining
micro- and nanostructures with controlled morphology is a key issue to incorporate them in novel
technologies. From our results, we propose the following hypotheses concerning methods which could
allow obtaining of ZnO structures with predominant morphology by thermal oxidation of Zn powders
as raw material:

(1) Round-shaped particles: Oxidize zinc powder at temperatures below 400 ◦C. Extend thermal
oxidation until the reaction completes. In order to gain control over the average size of the resulting
ZnO aggregates, use powders with narrow particle-size distribution. The stoichiometry might be
influenced by processing temperature and content of oxygen gas in the reacting atmosphere.

(2) Elongated structures: Heat the raw material at 500–800 ◦C in absence of oxygen. Once the
processing temperature is reached, set an oxygen gas flow. Extend thermal oxidation until the reaction
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completes. Changing the processing temperature and/or oxygen partial pressure could lead to
obtaining one-dimensional structures of different shapes.

(3) Hollow structures: Oxidize the raw material below 400 ◦C under flow of oxygen and inert
gas. Then, cut the oxygen supply off, heat the sample above 900 ◦C, and allow displacement of
Zn vapor by the inert gas flow. Completeness and thickness of the ZnO shell might depend on
starting particle size and exposure time, therefore it is suggested to use of Zn powders with narrow
particle-size distribution.

(4) Tetrapods: Heat raw material above 900 ◦C under inert atmosphere. Once Zn vapor is
generated, set an oxygen gas flow. Extend thermal oxidation until the reaction completes. On changing
the Zn:O partial pressure ratio, shape and size of the legs can be modified.

Determination of growth mechanisms allows production of materials with controlled shape and
size. However, performance of materials depends not only on their morphology, but also their physical
properties. Therefore, studies concerning the influence of crystal growth and processing parameters
on electrical, optical, and optoelectronic properties are of huge interest.

The acquired diffuse reflectance spectra of the samples are shown in Figure 5. As can be seen, the
precursor powder has strong optical absorption in the visible range, which progressively decreases
with the exposure time. In addition, a sharp absorbance onset around 390 nm characterizes all the
spectra. The former feature is associated to interband electronic transitions involving 4s-like and
unoccupied states above the Fermi level in metallic zinc [49], whereas the latter is attributed to the
optical-absorption edge of ZnO. It is in agreement with the progressive consumption of the metallic
phase as the thermal oxidation reaction proceeds.
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It is worth noting that the diffuse reflectance spectra of pure ZnO samples (S3 and S4) have an
extended band tail. Frequently, this feature is associated roughly with crystallinity, but band-tail profile
is mainly determined by density of allowed states generated by crystal defects in the forbidden band
gap. In this regard, a correlation between the profile of the band tail and the density of charge carriers
in semiconductor compounds has been suggested [50,51]. In the case of Zn-rich ZnO, the point defects
with lower formation energy are oxygen vacancy (VO) and interstitial zinc (Zni) [52]. It is proposed
that the observed band tails in the single-phase ZnO samples is mainly due to oxygen vacancies,
in agreement with the elemental analysis and Raman spectroscopy.

Another important parameter of semiconductor compounds is the band-gap energy, Eg.
For powdered samples, it can be determined by applying the Kubelka-Munk formalism to their
diffuse reflectance spectra [53]. The Eg values of the ZnO obtained after different exposure times are
listed in Table 2. The estimated Eg was about 3.2 eV for all samples; therefore, it is independent of the
exposure time. This behavior suggests that ZnO-lattice parameters do not change considerably with
the exposure time; this is in spite of the prevalent nonstoichiometry.

Further information concerning dominant point defects generated in the obtained ZnO samples
can be obtained by analyzing their optical emission spectra. In our case, a greenish emission was
observed consistently from the sample while the powder precursor was exposed to thermal oxidation,
having maximum intensity after ~12 min. This thermoluminescence quenches gradually with exposure
time, implying loss of radiative relaxation channels (see Figure S1 in Supplementary Information).
Other authors have recorded similar luminescence phenomena while oxidizing Zn sources [54].

Figure 6 shows the photoluminescence (PL) spectra of the obtained samples. Invariably, they
are composed of two bands located at about 380 and 500 nm. While the UV band is attributed to
recombination of free excitons (FX) in ZnO, the visible band has been assigned to electronic transitions
involving point defects [55]. Commonly, the UV/visible emission intensity ratio is taken as qualitative
measurement of crystallinity [56]. In this direction, the sample obtained after 12 min of exposure time
(S3) has the lowest value (see Table 2). Nevertheless, according with XRD analysis, the oxidation
reaction has been completed at this time, and this sample has lower lattice strain than the sample
obtained after 24 min of thermal oxidation (S4). On the basis of these observations, it is proposed that
inhibition of the excitonic emission is mostly related to point defects rather than residual lattice strain,
probably the same kind of defects involved in the thermoluminescence phenomenon.
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Figure 6. Photoluminescence (PL) spectra of the precursor powder (S0) and the products obtained by
its thermal oxidation (900 ◦C; air atmosphere) during different times: 3 (S1), 6 (S2), 12 (S3), and 24 min
(S4). All the spectra were acquired using 325 nm as excitation wavelength.

On the other hand, the intensity of the visible emission increases monotonically with exposure
time. Initially, it can be attributed to an increase of ZnO phase, but after completion of the oxidation
reaction, generation of point defects must be involved.

It is widely accepted that the visible band of ZnO is constituted by several sub-bands, namely,
blue (450–480 nm), green (490–520 nm), yellow-orange (550–620 nm), and red (650–750 nm). The origin
of green emission is commonly attributed to oxygen vacancies (VO) [57,58], whereas the yellow-orange
emission is associated with interstitial oxygen (Oi) [59,60]. The origins of blue and red luminescence of
ZnO are still controversial. In this regard, formation of shallow levels associated with Zni has been
proposed as having a shared origin [61,62].

A deconvolution of the visible band reveals that for all the samples, the green emission is the
dominant emission, suggesting that VO is the predominant point defect, in agreement with the
elemental composition analysis. On comparing the visible emission of monophasic samples (S3 and
S4), it can be noted that it has a redshift while exposure time is increased. This is attributed to
increase of the yellow-orange contribution. Since the intensity of green and yellow emissions do not
show opposite behavior, another kind of point defect, besides VO and Oi, might be involved in these
transitions, probably Zni, because of prevalent Zn-rich conditions in both samples.

Photoluminescence excitation (PLE) spectra of UV and visible emissions observed in sample S4
are shown in Figure 7. It can be seen that the intensity of UV emission (386 nm; 3.21 eV) is sustained
once the energy of the incident photons is enough to promote electronic transitions from the conduction
to the valence band (>3.2 eV). This is consistent with the excitonic origin assigned to the UV band
(i.e., this emission is produced due to recombination of bonded electron-hole pairs). In the case of
the visible emission (507 nm; 2.45 eV), excitation wavelengths shorter than 400 nm are required to
stimulate it, having a maximum at 378 nm (3.28 eV). This feature indicates that green emission is
generated by relaxation of excited electrons located in the conduction band via defect levels (probably
VO) and not due to excitation-relaxation processes involving only point defects, as has been previously
suggested by other authors [63]. Moreover, the similitude between optical-absorption edge and the
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green emission onset confirms that its origin is the relaxation of photoexcited electrons from levels at
the conduction band.
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Figure 7. Diffuse reflectance spectroscopy (DRS) and photoluminescence excitation (PLE) spectra of
the free exciton (FX) and defect–related emissions of the sample obtained after 24 min (S4) of thermal
oxidation of Zn powders (900 ◦C; air atmosphere).

3. Materials and Methods

The analyzed samples were obtained by thermal oxidation of metallic zinc powders using the
following procedure. In an alumina crucible, 1.5 g of zinc powder (Zn; >99%, Meyer) was placed.
Then, it was introduced quickly (<5 s) into an open-end quartz tube located in a horizontal furnace
which was previously heated and stabilized at 900 ◦C. The crucible was maintained at the center of
the furnace during a specific time (3, 6, 12, or 24 min) before to be extracted from the work tube and
cooled freely. The precursor powder and the samples obtained after 3, 6, 12, and 24 min of exposure to
high temperature are labeled as S0, S1, S2, S3, and S4, respectively.

The zinc-powder precursor and the obtained samples were characterized by powder X-ray
diffraction (XRD; Advance D-8 diffractometer (Bruker Co., Berlin, Germany) with Bragg–Brentano
geometry equipped with a Ni-filtered Cu Kα radiation source) and a LynxEye detector (Bruker Co.,
Berlin, Germany); the diffractograms were recorded in the 2θ range of 20◦–80◦ with a step size
of 0.02◦ and a count time of 0.5 s at each position), micro-Raman spectroscopy (µ-RS; LabRAM
HR-Olympus Micro Raman system (Horiba Jobin Yvon Inc. Edison, NJ, USA) in backscattering
configuration, using the line 633 nm of a He–Ne laser as excitation source), field-emission
scanning electron microscopy (FESEM; MIRA3–LM FE–SEM (TESCAN ORSAY HOLDING, a.s.,
Brno, Czech Republic); secondary electrons images were recorded using an accelerating voltage
of 20kV), energy dispersive X-ray spectroscopy (EDS; QUANTAX XFlash 6|30 EDS detector
(Bruker Nano Analytics, Berlin, Germany), diffuse reflectance spectroscopy (DRS; Cary 5000
UV–Vis–NIR spectrophotometer (Agilent Technologies, Santa Clara, CA, USA) equipped with
a DRA–CA–30I accessory), and photoluminescence/photoluminescence excitation spectroscopy
(PL/PLE; NanoLog®spectrofluorometer (Horiba Jobin Yvon Inc. Edison, NJ, USA) equipped with a
monochromated Xe-lamp (450 W) and a Hamamatsu R–928P photomultiplier tube).

4. Conclusions

ZnO micro- and nanostructures can be obtained by thermal oxidation of Zn powders.
The morphology of the obtained products changes with the exposure time of the precursor powder to
the oxidant conditions (900 ◦C; air atmosphere). Rounded particles, elongated, hollow, and tetrapods
structures are the predominant morphologies. The results indicate that a specific growth mechanism
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leads to formation of each kind of ZnO structure, namely, solid–solid (rounded particles), liquid–solid
(elongated structures), or vapor–solid (tetrapods) mechanisms. In the case of hollow structures,
a two-step growth mechanism is proposed. Obtaining of ZnO samples with controlled morphology
might be possible by thermal oxidation of Zn powders when a growth mechanism is preferred.
This could be feasible by using raw material with narrow particle-size distribution, and specific
processing temperature and atmosphere. Finally, once the oxidation reaction completes, further
extending of the exposure time promotes formation of point defects in the ZnO structures, thus their
visible luminescence enhances.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4352/6/10/135/s1.
Figure S1: Time evolution of the experimental setup once the Zn powder precursor was exposed to thermal
oxidation (900 ◦C; air atmosphere).
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