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Abstract: Two new oxaspirocyclic compounds, 8-(4-(dimethylamino)benzylidene)-6,10-dioxaspiro[4.5]
decane-7,9-dione (1) and 8-(4-hydroxybenzylidene)-6,10-dioxaspiro[4.5]decane-7,9-dione (2) have
been synthesized and their structures determined by single crystal X-ray crystallography.
Compound 1, C17H19NO4, belongs to the monoclinic system, space group P21/c with a = 6.2554(13) Å,
b = 14.605(3) Å, c = 16.265(3) Å, β = 95.97(3)◦, V = 1477.9(5) Å3, Z = 4, Dc = 1.354 g/cm3, F(000) = 640,
µ(MoKa) = 0.097 mm−1, the final R = 0.0570 and wR = 0.1667. Compound 2, C15H14O5, is also of
the monoclinic system, space group P21/c with a = 10.739(2) Å, b = 18.348(4) Å, c = 6.7799(14) Å,
β = 104.20(3)◦, V = 1295.1(5) Å3, Z = 4, Dc = 1.407 g/cm3, F(000) = 608, µ(MoKa) = 0.106 mm−1, the final
R = 0.0568 and wR = 0.1739. Some C–H···O intra- and intermolecular hydrogen bonds and π··· π
stacking interactions are both observed in the two lattice structures. The difference between them
is that one type of C–H···π supramolecular interaction (1) and one type of O–H···O intermolecular
hydrogen bond (2) are observed.

Keywords: synthesis; crystal structure; 6,10-dioxaspiro[4.5]decane-7,9-dione

1. Introduction

In recent years, many efforts have been devoted to the preparation and characterization
of spiro compounds due to diverse industrial and biomedical applications in medicine [1–3],
catalysis [4], 18F-radiolabeling [5] and optical material [6–8]. The asymmetric characteristic of
the molecules, owing to the chiral spiro carbon, is one of the important criteria of the biological
activities. Also, it has been found that the selectivities and activities of spiro compounds will
be stronger by inducting an oxygen atom. The presence of oxaspirocyclic compounds in various
natural products has also emerged, increasing interest due to their important biological activities,
such as antimicrobial [9,10], antitumor [11] ,antiproliferative [12], antiviral [13], antiplasmodial [14]
and antihistamic [15] activity etc. Based on these reasons, our group began to synthesize various
oxaspirocyclic compounds and study their chemical properties [16–19]. In addition, to the best of our
knowledge, oxaspirocyclic compounds derived from 6,10-dioxaspiro[4.5]decane-7,9-dione are very rare.
In this paper, we describe the synthesis of two new oxaspirocyclic compounds: 8-(4-(dimethylamino)
benzylidene)-6,10-dioxaspiro[4.5] decane-7,9-dione 1 and -6,10-dioxaspiro[4.5]decane-7,9-dione 2.
Their structures are also characterized by elemental analysis, IR, NMR and single-crystal
X-ray diffraction.
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2. Results and Discussion

2.1. Crystal Structures

Selected bond lengths and angles of the two compounds are listed in Table 1. The molecular
structures of 1 and 2 are shown in Figure 1. The packing arrangements in the unit cell of 1 and 2 are
illustrated in Figure 2, respectively.

Table 1. Selected bond lengths (Å) and bond angles (◦) of the two compounds.

Compound 1 Compound 2

O(1)−C(8) 1.367(3) O(2)−C(8) 1.353(3)
O(1)−C(1) 1.422(3) O(2)−C(1) 1.423(3)
C(9)−C(7) 1.373(3) C(7)−C(9) 1.356(3)
C(15)−C(9) 1.428(3) C(9)−C(10) 1.447(3)
O(3)−C(6) 1.201(3) O(4)−C(6) 1.214(3)
O(4)−C(8) 1.202(3) O(3)−C(8) 1.202(3)
O(2)−C(6) 1.360(3) O(1)−C(6) 1.339(2)
O(2)−C(1) 1.415(3) O(1)−C(1) 1.454(3)
C(12)−N(1) 1.362(3) O(5)−C(12) 1.355(3)
N(1)−C(16) 1.446(3) C(10)−C(15) 1.399(3)
N(1)−C(17) 1.448(3) C(7)–C(6) 1.475(3)
C(7)−C(9)−C(15) 137.76(2) C(7)−C(9)−C(15) 129.67(2)
C(2)−C(1)−C(5) 106.3(2) C(2)−C(1)−C(5) 106.3(2)
O(2)−C(1)−O(1) 109.63(2) O(2)−C(1)−O(1) 108.55(2)
C(6)−C(7)−C(8) 117.6(2) C(6)−C(7)−C(8) 115.54(2)
C(10)−C(15)−C(14) 115.4(2) C(10)−C(15)−C(14) 117.61(2)
C(10)−C(15)−C(9) 116.42(2) C(10)−C(15)−C(9) 119.42(19)

The two compounds both consist of a phenyl ring and 6,10-dioxaspiro[4.5]decane-7,9-dione group
which connects a five-membered cyclopentane ring with the other O-containing six-membered ring by
a C spiro atom (Figure 1). The selected bond lengths and bond angles of compound 1 are similar to
those of 2 correspondingly.
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As can be seen from the Table 1, the C(7)–C(9)–C(15) bond angle of 137.76(2)◦ (1), 129.67(2)◦ (2) is
likewise in agreement with those reported earlier (136.78(18)◦, 136.5(2)◦) [18]. The C9–C7 bond length
of 1.373(3) Å (1), 1.356(3) Å (2) is indicative of the considerable double-bond character, while the C9–C15
bond length of 1.428(3) Å (1), 1.447(3) Å (2) is the typical C–C single bond. The 1,3-dioxane rings of
the two compounds are both in a distorted envelope conformation with atom C(1), common to the
cyclopentane ring forming the flap. It is noteworthy that the cyclopentane rings of the two compounds
exhibit a different configuration. The cyclopentane ring of 1 is in half-chair configuration with
puckering parameters [20] for q2 = 0.335(4) Å, ϕ2 = 96.3(6)◦; while the cyclopentane ring in 2 exhibits
an envelope configuration with puckering parameters for q2 = 0.298 Å, ϕ2 = 55.14◦.
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In 1, all atoms in the 4-dimethylamino benzylidene group are fairly planar (Plane equation:
2.469x + 4.909y + 13.165z = 10.899), with the maximum deviation from the mean plane of 0.069(3) Å.
The four atoms—O2, O3, C6 and C7—form a plane (Plane equation: 2.047x + 2.929y + 14.384z = 10.021),
with the largest deviation of 0.014(3) Å. The dihedral angle between the two planes is 9.53◦. In 2,
all atoms in the 4-hydroxybenzylidene group are also quite planar, (Plane equation: –2.6309x − 0.2671y
+ 6.7792z = 1.0129), and the largest deviation from the least squares plane is 0.035(3) Å. The four
atoms—O4, O1 C6 and C7—form a plane (Plane equation: –5.2019x + 2.6946y + 6.4742z = 0.4529), with
no deviation. The dihedral angle between the two planes is 17.71◦.

The two compounds have a similar structure. There are π···π stacking interactions and some
C−H···O intra- and intermolecular hydrogen bonds in the two lattice structures. In addition, one type
of C−H···π supramolecular interaction in 1 is also present. One classical intermolecular hydrogen
bond of O−H···O is also observed in 2 (Tables 2 and 3). All above hydrogen bonds and intermolecular
interactions play a significant role in stabilizing the crystal structures (Figure 3).
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2.2. IR Spectra

The IR spectra of the two compounds show a little difference. The broad absorptions at 3265 cm−1

for 2 are assigned to the O–H stretching vibration of PhOH. The strong bands at 1705 cm−1 1 and
1745 cm−1 2, respectively, are due to the C=O stretching vibration of the 1,3-dioxane ring. The broad
absorptions at 1167 cm−1, 1126 cm−1 for 1 and at 1204 cm−1, 1163 cm−1 for 2 are assigned to the
C–O stretching vibration of the 1,3-dioxane ring. Meanwhile, a similar band at 1609 cm−1 and
1688 cm−1 was observed in the IR spectra of 1 and 2, respectively, indicting C=C stretching vibration
of N(CH3)2−ph−C=C in 1 and HO−ph−C=C in 2. The IR spectra of the two compounds are in
agreement with the structural data.

3. Experimental Section

3.1. Materials and Methods

All the reagents and solvents from commercial sources were used without further purification.
The IR spectra were recorded as KBr pellets with a Nicolet FT-IR 510P Spectrometer (Nicolet Instrument
Inc., Madison, WI, USA). The analyses of C, H, and N were made on an Elementar Vario EL III elemental
analyzer (Elementar, Hanau, Germany). 1H NMR spectra were recorded on a Bruker Avance-400
spectrometer (Bruker, Elisabethhof, The Netherlands) with CH3COCH3 as the solvent. Melting points
were measured by using a melting point apparatus made in Shanghai Instrument Limited Company.
The X-ray single-crystal data collection for the compounds 1 and 2 were performed on a Bruker
Smart-1000 CCD diffractometer.

3.2. Preparation of Two Oxaspirocyclic Compounds

The synthetic route is shown in Scheme 1.
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Scheme 1. Synthesis of two new oxaspirocyclic compounds.

The mixture of malonic acid (6.24 g, 0.06 mol) and acetic anhydride (9 mL) in strong sulfuric acid
(0.25 mL) was stirred with a water bath at 303K. After dissolving, cyclopentanone (5.04 g, 0.06 mol)
was added dropwise into the solution for 2 h. The reaction was allowed to proceed for 3 h. Then the
mixture was cooled, washed with water and filtered. The intermediate compound, 6,10-dioxaspiro
[4.5]decane-7,9-dione, was obtained. 4-(dimethylamino)benzaldehyde (1.49 g, 0.01 mol) was added
to the ethanol solution (20 mL) containing 6,10-dioxaspiro[4.5]decane-7,9-dione (1.70 g, 0.01 mol).
Then the mixture was stirred and refluxed for 3 h. After cooling to room temperature, the precipitate
was filtered off and dried. Yield 36%, m.p.: 162.6∼163.1 ◦C. Anal. Calcd. for C17H19NO4: C, 67.76;
H, 6.36; N, 4.65. Found: C, 67.68; H, 6.28; N, 4.78. 1H NMR (ppm): 8.20 (d, 2H, Ar–H), 8.17 (s, 1H, =CH–),
6.80 (d, 2H, Ar–H), 3.2 (s, 6H, N–(CH3)2), 2.15 (m, 4H, cyclopentane–H), 1.84 (s, 4H, cyclopentane–H).
The red single crystals of 1 were obtained by evaporation of a solution in petroleum ether and ethyl
acetate (2:1 = v/v) after a few days.
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The synthesis procedure of 2 was similar to that of 1, except that 4-(dimethylamino)benzaldehyde
was replaced by 4-hydroxybenzaldehyde (1.22 g, 0.01 mol). Yield 36%, m.p.: 164.66∼165.2 ◦C.
Anal. Calcd. for C15H14O5: C, 65.69; H, 5.15; Found: C, 65.53; H, 5.08. 1H NMR (ppm): 9.66 (s, 1H,
–OH), 8.15 (s, 1H, =CH–) 8.22–8.24 (m, 2H, Ar–H), 6.99–7.0 (d, 2H, Ar–H), 2.19 (s, 4H, cyclopentane–H),
1.86 (s, 4H, cyclopentane–H). The yellow crystals suitable for X-ray diffraction analysis were obtained
by slow evaporation of a solution in petroleum ether and ethyl acetate (1:1 = v/v).

3.3. Crystallography

The structures of two compounds were solved by direct methods and refined by full-matrix
least-squares techniques on F2 using SHELXS-97 and SHELXL-97 programs [21]. The non-hydrogen
atoms were refined anisotropically. All hydrogen atoms were positioned with idealized geometry
and were refined isotropic with an Uiso(H) = 1.2Ueq(C) of the corresponding parent atom using
a riding model. The contributions of hydrogen atoms were included in the structure-factor calculations.
The atomic scattering factors and anomalous dispersion corrections were taken from International
Table for X-ray Crystallography [22]. The final cycle of refinement gave R = 0.0570 and wR = 0.1667
(R = 0.0568 and wR = 0.1739 for 2) with w = 1/(σ2(Fo

2) + (0.0995 P)2 + 0.4137 P) (w = 1/(σ2(Fo
2) +

(0.0937P)2 + 0.5137 P) for 2), where P = (Fo
2 + 2Fc

2)/3. Crystallographic data are summarized in Table 4.
CCDC-1486129 (2) and CCDC-1486130 (1) contain the supplementary crystallographic data for this
paper. These data can be obtained free of charge from the CCDC, 12 Union Road, Cambridge CB2 1EZ,
UK; Fax: +44 1223 336033; E-mail: deposit@ccdc.cam.ac.uk.

Table 4. Crystal and experimental data for 1 and 2.

Compounds 1 2

CCDC No. 1486130 1486129
Empirical formula C17H19NO4 C15H14O5

Color/shape red/block yellow/block
Formula weight 301.33 274.26
Crystal system Monoclinic Monoclinic

Space group P21/n P21/c

Unit cell dimensions
a = 6.2554(13) Å, α = 90◦

b = 14.605(3) Å, β = 95.97(3)◦

c = 16.265(3)Å, γ = 90◦

a = 10.739(2) Å, α = 90◦

b = 18.348(4) Å, β = 104.20(3)◦

c = 6.7799(14) Å, γ = 90◦

Volume/Å3 1477.9(5) 1295.1(5)
Z 4 4

Dx/g cm−3 1.354 1.407
µ/mm−1 0.097 0.106

F(000) 640 608
Crystal size/mm3 0.25 × 0.18 × 0.12 0.18 × 0.12 × 0.10
θmin/θmax/◦ 3.06/27.48 3.29/27.48

Limiting indices –7 ≤ h ≤ 8, –18 ≤ k ≤ 18,
–21 ≤ l ≤ 21

–13 ≤ h ≤ 13, –23 ≤ k ≤ 23,
–8 ≤ l ≤ 7

Reflections collected 14232 11961
Independent reflections 3370 [R(int) = 0.0330] 2964 [R(int) = 0.0360]

Reflections observed(I>2σ(I)) 2184 2286
Refinement method Full-matrix least-squares on F2 Full-matrix least-squares on F2

Data/restraints/parameters 3370/0/199 2964/0/181
Goodness-of-fit on F2 1.146 1.112

R1/wR2(I>2σ(I))
R1/wR2(all data)

0.0570/0.1667
0.0866/0.2009

0.0568/0.1739
0.0711/0.1869

∆$max/∆$min/e Å−3 0.389/–0.318 0.763/–0.380
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4. Conclusions

Two new oxaspirocyclic spiro compounds, 8-(4-(dimethylamino)benzylidene)-6,10-dioxaspiro[4.5]
decane-7,9-dione (1) and 8-(4-hydroxybenzylidene)-6,10-dioxaspiro[4.5]decane-7,9-dione (2), have
been synthesized and characterized by elemental analysis, IR and single-crystal X-ray diffraction. Some
C−H···O intra- and intermolecular hydrogen bonds and π··· π stacking interactions are both observed
in the two lattice structures. The difference between them is that one type of C–H···π supramolecular
interaction (1) and one type of O−H···O intermolecular hydrogen bond (2) are observed.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4352/6/10/134/s1.
cif 1: the cif file of compound 1; cif 2: the cif file of compound 2.
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