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Abstract: A series of new infrared nonlinear optical (IR NLO) materials, LiRe3MS7 (Re = Sm, Gd;
M = Si, Ge), have been successfully synthesized in vacuum-sealed silica tubes via a high-temperature
solid-state method. All of them crystallize in the non-centrosymmetric space group P63 of the
hexagonal system. In their structures, LiS6 octahedra connect with each other by sharing common
faces to form infinite isolated one-dimensional ∞[LiS3]n chains along the 63 axis. ReS8 polyhedra share
edges and corners to construct a three-dimensional tunnel structure with ∞[LiS3]n chains located
inside. Remarkably, LiSm3SiS7 shows promising potential as one new IR NLO candidate, including
a wide IR transparent region (0.44–21 µm), a high laser damage threshold (LDT) (3.7 × benchmark
AgGaS2), and a good NLO response (1.5 × AgGaS2) at a particle size between 88 µm and 105 µm.
Dipole-moment calculation was also used to analyze the origin of NLO responses for title compounds.

Keywords: nonlinear optical materials; crystal structure; good NLO responses

1. Introduction

Nonlinear optical (NLO) crystals play an increasingly critical role in developing new coherent
light sources by frequency conversion technology on traditional lasers [1,2]. Recently, numerous
famous NLO crystals have been discovered and have effectively solved the generation of UV-visible
light [3–22]. However, for the mid-far infrared (IR) region (3–20 µm), outstanding IR NLO materials
have been discovered less, and only a few (chalcopyrites AgGaS2, AgGaSe2, and ZnGeP2) have been
commercially applied [23–25]. Note that some of the self-defects hinder their future development
(especially for high-energy laser system), such as low laser-damage thresholds (LDTs) for AgGaS2

and AgGaSe2, and serious two-photon absorption (TPA) for ZnGeP2. Nowadays, the development
of many important fields, such as laser guidance, infrared remote sensing, and telecommunication,
has hardly been realized without the help of high-energy IR sources. Thus, to find new excellent IR
NLO materials with a wide IR transparent range, a good chemical stability, a high LDT, and a large
NLO coefficient is still an urgent task and a great challenge. In recent decades, research systems
have almost covered the entire periodic table, and hundreds of new IR NLO crystals have been
discovered [26–52]. As one NLO material, a non-centrosymmetric (NCS) structure is an essential
condition. Previous investigations indicate that tetrahedral MIVS4 (MIV = Si, Ge, and Sn) with lively
alkali metals can increase the opportunity to obtain NCS structures [53,54]. Moreover, combining the
electropositive elements including alkaline, alkaline-earth, or rare-earth metals with crystal structures
can increase the band gaps of compounds and further increase their LDTs [55,56]. Based on the above
strategy, we have focused our research interests on the Li−Re−M−S system and fortunately obtained
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three new NCS compounds: LiSm3SiS7, LiSm3GeS7, and LiGd3GeS7, which belong to the well-known
ARe3MQ7 family, where A is the monovalent, divalent, or trivalent ions, Re is the rare-earth ions, M is
the tetravalent ions (Si4+, Ge4+, and Sn4+), and Q is S or Se [57–64]. To the best of our knowledge,
Li-containing ARe3MQ7 compounds has not been reported yet. All of them crystallize in the polar
space groups of P63 and exhibit similar crystal structures. Among them, LiSm3SiS7 has a high laser
damage threshold about 3.7 times that of benchmark AgGaS2. In addition, LiSm3SiS7 also shows
a wide transmission window in the IR range (up to 21 µm) and a large NLO response (1.5× AgGaS2) at
a particle size between 88 µm and 105 µm. Herein, LiSm3SiS7 can be expected as a new NLO candidate
in the IR region.

2. Results and Discussion

2.1. Crystal Structure

Three compounds including LiSm3SiS7, LiSm3GeS7, and LiGd3GeS7 crystallize in the NCS polar
space group P63 of the hexagonal system. Herein, LiSm3SiS7 was chosen as the representative
to illuminate its crystal structure. In its asymmetric unit, there is one unique Sm atom, one Li
atom, one Si atom, and three S atoms. As for its structure, Sm atoms are connected with eight S
atoms to form the distorted SmS8 polyhedra with d(Sm−S) = 2.791(5) − 2.993(6) Å. SmS8 polyhedra
connect together by sharing corners or edges to form the three-dimensional tunnel framework
(Figure 1a). Si atoms are connected with four S atoms to form the isolated typical SiS4 tetrahedra with
d(Si−S) = 2.089(2) − 2.132(1) Å. Li atoms are linked with six S atoms to form LiS6 octahedra with three
short (2.568(8) Å) and three long (2.623(3) Å) Li−S bonds. The LiS6 octahedra share faces with each
other to form one-dimensional ∞[LiS3]n chains along the 63 axis, and the chains then stretch in the
tunnels surrounded by SmS8 (Figure 1b,c). In addition, title compounds have similar crystal structures
to previous reported ARe3MQ7 series of crystals [57–64], where A represents Na, Cu, and Ag. In this
work, the new Li-containing compounds were discovered to enlarge the AIRe3MIVQ7 family and
enrich the structural chemistry.
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Figure 1. (a) Crystal structure of LiSm3SiS7. All the Li–S bonds are omitted for clarity. (b) Structure of
LiSm3SiS7 viewed down the c-axis. The Sm−S bonds were omitted for the sake of clarity. Blue: Sm;
Gray octahedron: LiS6; Green tetrahedron: SiS4. (c) One-dimensional ∞[LiS3]n chains in LiSm3SiS7.

Moreover, in order to ensure the reasonability of crystal structures of these compounds, the bond
valence [65,66] and the global instability index (GII) [67–69] are systemically calculated (Table 1).
The method of bond-valence parameters was used to calculate the bond valences of elements.
The following equation is commonly used to calculate the bond valence (vij):

Vi = ∑
j

vij = ∑
j

exp

(
r′ − rij

B

)
, (1)
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where r’ is an empirically determined bond valence parameter, rij is the actual bond length, and B is
commonly taken to be a universal constant equal to 0.37 Å. Calculated results (Li, 0.993–1.021; Sm/Gd,
3.024–3.039; Si/Ge, 4.060–4.134; S, 1.933–2.128) indicate that all atoms are in reasonable oxidation states.
In addition, GII can be derived from the bond valence concepts, which represent the tension of lattice
parameters and are always used to evaluate the rationality of structure. While the value of GII is less
than 0.05 vu (valence unit), the tension of the structure is not proper; while the value of GII is larger
than 0.2 vu, its structure is not stable. Thus, the value of GII in a reliable structure should be limited
to 0.05–0.2 in general. As for title compounds, calculated GII values are in the range of 0.07–0.09 vu,
which illustrates that the crystal structures of all compounds are reasonable.

Table 1. Bond valence sum (vu) and global instability index (GII) of title compounds.

Compounds Li+ Sm/Gd3+ Si/Ge4+ S2− GII

LiSm3SiS7 1.019 3.039 4.060 1.962–2.106 0.07
LiSm3GeS7 0.993 3.034 4.114 1.933–2.102 0.08
LiGd3GeS7 1.021 3.024 4.134 1.936–2.128 0.09

2.2. Optical Properties

Experimental optical bandgap (Figure 2) of LiSm3SiS7 was measured to be 2.83 eV (440 nm),
which is consistent with the crystal color (pale yellow). IR and Raman spectra (Figure 2) show that
LiSm3SiS7 has a wide transmission range in the IR region (up to 21 µm) that covers two critical
atmospheric windows (3–5 and 8–12 µm), which is comparable to those reported for powdered
BaGa4Se7 (~18 µm) [35], AgGaS2 (~23 µm) [30], Li2CdGeS4 (~22 µm) [70], and Na2Hg3Si2S8

(~20 µm) [47]. Moreover, the bandgap (2.83 eV) of LiSm3SiS7 is larger than that of commercial
AgGaS2 crystal (2.56 eV) [30]; thus, LiSm3SiS7 may have a higher laser damage resistance since the
LDT is generally proportional to the bandgap for one material. In this work, a pulse laser (1.06 µm,
10 Hz, and 10 ns) was chosen to measure the LDT of LiSm3SiS7 with AgGaS2 as the reference on
powder samples (Table 2). The LDT value of LiSm3SiS7 is 118 MW/cm2, about 3.7 times that of
commercial AgGaS2 (32 MW/cm2), which shows this material has good potential to apply in the
high-power laser system. We have also investigated the second-harmonic generation (SHG) response
for LiSm3SiS7, and the particle size versus SHG intensity of LiSm3SiS7 indicates a nonphase-matching
behavior at 2.09 µm. As seen from Figure 3 and Table 3, LiSm3SiS7 shows a large SHG response about
1.5 times that of standard AgGaS2 in the 88–105 µm particle size range. Remarkably, LiSm3SiS7 also
achieves a suitable balance of high LDT and good SHG response, which can effectively avoid the
drawbacks (low LDT and harmful TPA) of commercially available materials. Thus, LiSm3SiS7 has
potential application as a NLO material in the mid- and far-IR region.Crystals 2016, 6, 121  4 of 11 
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Table 2. Laser-damage thresholds (LDTs) of LiSm3SiS7 and AgGaS2 (as the reference).

Compounds Damage Energy (mJ) Spot Diameter (mm) LDT (MW/cm2)

AgGaS2 0.35 0.375 32
LiSm3SiS7 0.58 0.25 118
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Figure 3. (a) Second-harmonic generation (SHG) intensity versus particle size for LiSm3SiS7 and
AgGaS2. (b) Comparison on SHG intensities for LiSm3SiS7 and AgGaS2 at the particle size (88–105 µm).

Table 3. SHG intensity versus particle size for LiSm3SiS7 and AgGaS2 (as the reference).

Particle Size (µm)

compounds 33–55 55–88 88–105 105–150 150–200
AgGaS2 35.2 50 110 185 248

LiSm3SiS7 368 9.4 163 84 23

2.3. Dipole Moment Calculation

The SHG response has a close relationship with the distortion degree of anionic groups in the
crystal structure. While the spatial arrangement of all units tends to be uniform, the local NLO effects
stack with each other, and then lead to a large NLO effect for material. Thus, in order to obtain a deeper
understanding of NLO responses origin of title compounds, the dipole moments for the [LiS6], [ReS8],
and [MS4] units were calculated with a bond-valence method [71–73], and the calculated results are
listed in Table 4. From the table, it can be seen that the polarizations of the x- and y-directions from all
building units are almost canceled out, and the polarizations of z-direction are constructively added
in a unit cell for title compounds. Moreover, the polarization of the [ReS8] unit is also found to be
much larger than those of the distorted [LiS6] octahedra and [MS4] tetrahedra for all title compounds.
As seen from the results for previous reported La3Ga0.5(Ge0.5/Ga0.5)S7 and La3In0.5(Ge0.5/In0.5)S7 on
the calculation of cutoff-energy-dependent SHG coefficient [57], their SHG responses mainly originate
from the transition processes from S-3p, La-5d states to La-5d, S-3p states, which are consistent with
the calculated results of dipole moments for the title compounds in this work.
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Table 4. Dipole moment calculations for LiRe3MS7 (Re = Sm, Gd; M = Si, Ge).

Dipole Moment

Species x (a) y (b) z (c)
Magnitude

Debye ×10−4 esu·cm/Å3

LiSm3SiS7

LiS6 0.00 0.00 9.52 9.52 0.04
SmS8 0.00 0.06 21.08 21.08 0.09
SiS4 0.00 0.00 −8.24 8.24 0.03

Unit cell 0.00 0.06 22.37 22.37 0.09

LiSm3GeS7

LiS6 0.00 0.00 8.23 8.23 0.03
SmS8 0.06 0.00 21.31 24.90 0.10
GeS4 0.00 0.00 −8.05 8.05 0.03

Unit cell 0.06 0.00 21.49 21.49 0.09

LiGd3GeS7

LiS6 0.00 0.00 14.06 14.06 0.06
GdS8 0.00 0.00 22.18 26.91 0.12
GeS4 0.00 0.00 −8.43 8.43 0.04

Unit cell 0.00 0.00 27.81 27.81 0.12

3. Materials and Methods

3.1. Synthesis

Raw materials were commercially purchased. Because Li metal is easily oxidized in air, all the
preparation processes were completed in an Ar-filled glovebox.

3.1.1. LiSm3SiS7

Elementary reactants of Li, Sm, Si, and S were weighted at the stoichiometric ratio of 1:3:1:7.
All the raw materials were firstly loaded into a graphite crucible, the graphite crucible was then put
into a silica tube, and the tube was flame-sealed under 10−3 Pa. The detailed temperature-setting
curve for the muffle furnace was heated to 850 ◦C in 50 h and kept at this temperature for about 100 h,
then slowly cooled to 300 ◦C by 80 h, finally quickly cooled to the room temperature. The product was
washed with N,N-dimethylformamide (DMF) to remove the byproducts. Pale-yellow crystals were
found and stable in the air.

3.1.2. LiSm3GeS7 and LiGd3GeS7

These reaction processes including starting composition and heating profile are similar to that
of LiSm3SiS7. Finally, yellow crystals were also obtained by washing with DMF, but they would
deliquesce when exposed to air for a long time.

3.2. Structure Determination

Selected high-quality crystals were used for data collections on a Bruker SMART APEX II 4K
CCD diffractometer (Bruker Corporation, Madison, WI, USA) using MoKα radiation (λ = 0.71073 Å) at
296 K. The crystal structures were solved by a direct method and refined using the SHELXTL program
package [74]. Multi-scan method was chosen for absorption correction [75]. As for the LiSm3SiS7,
the space group was determined from the systematic absences was P63. The first run of a routine
refinement of the initial structure generated an “un-balanced” formula of “Sm3SiS7” with R1 = 2.04%,
R2 = 5.06%. In addition, a high electron density peak with 6.49 e−/Å3 and 2.55 Å away from S1,
was observed. We also tried to assign this position to the other atoms or a mixed occupation with two
atoms (Li and Sm), but no refinement results were proper or obtained the balanced formula. Only
this position was assigned as Li1, which provided a balanced formula of “LiSm3SiS7,” and R1 and R2
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converged to improved values of 1.50% and 3.05%. Rational anisotropic thermal parameters for all
atoms were obtained by the anisotropic refinement and extinction correction. Moreover, the maximum
and minimum peaks on the final Fourier difference map corresponded to 0.57 and −0.60 e−/Å3.
Other two compounds (LiSm3GeS7 and LiGd3GeS7) have the similar refinement process with that of
LiSm3SiS7. Final structures were also checked with the PLATON program, and no other symmetries
were found. Crystallographic data for title compounds are reported in Table 5.

Table 5. Crystal data and structure refinement for LiRe3MS7 (Re = Sm, Gd; M = Si, Ge).

Empirical Formula LiSm3SiS7 LiSm3GeS7 LiGd3GeS7

Formula weight 710.50 755.00 775.70

Temperature 296 (2) K

Crystal system Hexagonal

Space group P63

Unit cell dimensions a = 10.007(2) Å
c = 5.668(3) Å

a = 9.991(3) Å
c = 5.752(3) Å

a = 9.900(7) Å
c = 5.753(5) Å

Z, V 2, 491.6(3) Å3 2, 497.3(4) Å3 2, 488.4(2) Å3

Density (calculated) 4.800 g/cm3 5.042 g/cm3 5.274 g/cm3

crystal size (mm3) 0.182 × 0.180 × 0.095 0.261 × 0.172 × 0.138 0.210 × 0.160 × 0.120

Completeness to theta = 27.49 100 % 100.0 % 100 %

Goodness-of-fit on F2 1.003 1.183 1.150

Final R indices [Fo
2 > 2σ(Fo

2)] [a] R1 = 0.0150
wR2 = 0.01558

R1 = 0.0162
wR2 = 0.0169

R1 = 0.0179
wR2 = 0.0180

R indices (all data) [a] R1 = 0.0303
wR2 = 0.0305

R1 = 0.0357
wR2 = 0.0359

R1 = 0.0399
wR2 = 0.0399

Absolute structure parameter 0.02(2) 0.011(18) −0.02 (2)

Extinction coefficient 0.0150(3) 0.0277(6) 0.0350(8)

Largest diff. peak and hole 0.564 and −0.614 e Å−3 0.661 and −0.648 e Å−3 1.052 and −1.291 e Å−3

[a] R1 = Fo − Fc/Fo and wR2 = [w (Fo
2 − Fc

2)2/wFo
4]1/2 for Fo

2 > 2σ (Fo
2).

3.3. Powder XRD Measurement

Powder X-ray diffraction (XRD) analysis was measured at room temperature using an automated
Bruker D2 X-ray diffractometer. However, we did not prepare the pure phase of LiSm3GeS7 and
LiGd3GeS7 for the reason of moisture absorption. In this work, only the pure phase of LiSm3SiS7 was
obtained, and we systemically studied its physicochemical properties. In addition, in comparison
with calculated and experiment results (Figure 4), it can be found that the experimental powder XRD
patterns are basically consistent with calculated values.Crystals 2016, 6, 121  7 of 11 
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3.4. UV–Vis–NIR Diffuse-Reflectance Spectroscopy

With a Shimadzu SolidSpec-3700DUV spectrophotometer, optical diffuse reflectance spectrum was
measured in the wavelength range from 190 nm to 2600 nm. The absorption spectrum was calculated
from the diffuse reflectance spectra according to the Kubelka–Munk function: α/S = (1 − R)2/2R,
where R is the reflectance coefficient, and α and S are the absorption and scattering coefficient,
respectively. Based on the absorption spectrum, the optical bandgap was obtained with the absorption
edge of material.

3.5. Raman Spectroscopy

Hand-picked single-crystals were put on an object slide, and a LABRAM HR Evolution
spectrometer (Shimadzu Corporation, Beijing, China) equipped with a CCD detector with a 532-nm
laser was then used to record the Raman spectra. The integration time was 5 s.

3.6. Infrared Spectroscopy

IR spectra were measured on the powder sample mixed with dried KBr powder. A Shimadzu
IRAffinity-1 Fourier transform infrared spectrometer recorded the measurement data in the range of
400–4000 cm−1 with a resolution of 2 cm−1.

3.7. Second-Harmonic Generation (SHG) Measurement

A Q-switch laser (2.09 µm, 3 Hz, 50 ns) was used to measure the SHG response with different
particle sizes on powder sample, including 38–55, 55–88, 88–105, 105–150, and 150–200 µm. The AgGaS2

crystal was ground and sieved into the same size ranges as the reference.

3.8. LDT Measurement

A pulse laser (1.06 µm, 10 Hz, and 10 ns) was chosen to estimate the powder LDT with the same
powdered AgGaS2 sample as the reference with a particle size range of 150–200 µm. The detail test
procedure is as follows: with increasing laser energy, the color change of the powder sample was
constantly observed with an optical microscope to determine the damage threshold. To adjust different
laser beams, an optical concave lens was added into the laser path. The damage spot was measured by
the scale of optical microscope.

3.9. Calculations of Group Dipole Moments

The dipole moments of the LiS6, SmS8, GdS8, SiS4, and GeS4 units were calculated with a simple
bond-valence method [71–73]. Distribution of the electron on the each atom was estimated by the
bond-valence theory vij = exp[(r’ − rij)/B; where r’ is the empirical constant, rij is the actual bond
length, and B is commonly taken to be a universal constant equal to 0.37 Å. The geometrical position
was taken from the unit cell of the experimental X-ray crystal structure. The Debye equation µ = neR,
where µ is the net dipole moment in Debye, n the total number of electrons, e the charge on an electron,
and R the difference, in cm, between the “centroids” of positive and negative charges, was used to
calculate the dipole moment.

4. Conclusions

In summary, the first three new Li-containing ARe3MQ7 compounds including LiSm3SiS7,
LiSm3GeS7, and LiGd3GeS7 are isostructural with a polar space group P63 in the hexagonal system.
The LiSm3SiS7, for example, features a 3D tunnel structure composed of isolated SiS4 tetrahedra,
1D ∞[LiS3]n chains along the 63 axis formed by face-sharing LiS6 octahedra, and 3D framework by
the interconnection of SmS8 polyhedra, with the 1D ∞[LiS3]n chains located in the tunnels. Moreover,
LiSm3SiS7 shows good SHG efficiency ~1.5 times that of AgGaS2 in the particle size range of 88–105 µm
and a high LDT that is ~3.7 times that of AgGaS2, demonstrating that LiSm3SiS7 exhibits a suitable
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balance of good SHG response and high LDT and can be expected to be a potential candidate in the IR
NLO region.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4352/6/10/121/s1.
Cifs for title compounds.
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