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Abstract: The title compound 4-(5-((4-bromobenzyl)thio)-4-phenyl-4H-1,2,4-triazol-3-yl)pyridine
(C20H15BrN4S) was synthesized, and its structure was confirmed by 1H NMR, MS and elemental
analyses and single-crystal X-ray structure determination. It crystallizes in the triclinic space group
P-1 with a = 7.717(3), b = 9.210(3), c = 13.370(5) Å, α = 80.347(13), β = 77.471(13), γ = 89.899(16)˝,
V = 913.9(6) Å3, Z = 2 and R = 0.0260 for 3145 observed reflections with I > 2σ(I). A Density functional
theory (DFT) (B3LYP/6-31G) calculation of the title molecule was carried out. The full geometry
optimization was carried out using a 6-31G basis set, and the frontier orbital energy. Atomic
net charges are discussed. Calculated bond lengths and bond angles were found to differ from
experimental values, and the compound exhibits moderate antifungal activity.

Keywords: 1,2,4-triazole; pyridine; synthesis; crystal structure; theoretical calculation;
antifungal activities

1. Introduction

In recent years, 1,2,4-triazole compounds have represented an important class of nitro-linked
heterocyclic compounds, and they are often used in the medicinal or agricultural areas [1–3].
The 1,2,4-triazoles are considered an important nucleus that is associated with numerous biological
activities, such as herbicidal [4–6], antifungal [7–9], antiviral [10], GHS-R1a ghrelin receptor [11],
antimicrobial [12], anticancer [13], anticonvulsant [14], and antitubercular activities [15]. In addition,
Diniconazole, Triadimefon, Triadimenol, Flusilazole, Fluconazole, Itraconazole, which have a
1,2,4-triazole moiety, appear to be very effective. Besides, pyridines display outstanding activities,
such as fungicidal [16], herbicidal [17], anticancer [18], antiviral [19], antimicrobial [20], and
anti-inflammatory activity [21].

In view of these facts, and also as part of our work [22–26] on the synthesis of bioactive
lead compounds for drug discovery, the title compound was designed by introducing pyridine
pharmacophore into the 1,2,4-triazole scaffold. This new 1,2,4-triazole derivative characterized by
1H NMR, MS, elemental analysis and single-crystal X-ray structure analysis as well as its antifungal
activity has been tested.
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2. Results and Discussion

2.1. Crystal Structure

The crystal crystallizes in the triclinic space group P-1. The molecular structure is shown in
Figure 1, and the packing diagram is in Figure 2. The selected bond lengths and torsion angles are listed
in Table 1. CCDC-1438378 contains the supplementary crystallographic data for this crystal. These data
can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html or from the Cambridge
Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44-1223-336033; e-mail:
deposit@ccdc.cam.ac.uk.
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Table 1. Selected bond lengths (Å), angles (°) and theoretical calculations for the title compound. 

Bond X-Ray DFT Angle X-Ray DFT 
Br1–C18 1.9010(19) 1.946 C7–S1–C14 98.36(8) 97.256 
S1–C7 1.739(2) 1.808 C3–N1–C2 115.73(17) 117.152 
S1–C14 1.8273(18) 1.938 C7–N2–C6 104.50(14) 104.663 
N1–C3 1.329(2) 1.350 C7–N2–C8 125.40(15) 125.446 
N1–C2 1.343(2) 1.355 C6–N2–C8 129.53(16) 129.696 
N2–C7 1.369(2) 1.388 C7–N3–N4 106.70(14) 107.011 
N2–C6 1.375(2) 1.404 C6–N4–N3 107.78(14) 108.056 
N2–C8 1.445(2) 1.440 C2–C1–C5 119.39(17) 119.274 
N3–C7 1.315(2) 1.327 N3–C7–S1 126.94(14) 125.812 
N3–N4 1.391(2) 1.408 N2–C7–S1 122.17(13) 123.328 
N4–C6 1.311(2) 1.333 N1–C2–C1 124.02(18) 123.374 
C1–C2 1.379(2) 1.393 N1–C3–C4 124.92(18) 123.604 
C1–C5 1.391(2) 1.410 N4–C6–N2 110.13(15) 109.415 
C5–C6 1.473(2) 1.464 C3–C4–C5 118.49(18) 119.022 
C8–C9 1.370(3) 1.401 N2–C6–C5 127.01(16) 127.815 

C15–C20 1.383(2) 1.406 S1–C14–C15 108.42(12) 108.905 

Generally, the average bond lengths and bond angles of ring systems (phenyl, pyridine and 
triazole) are in normal ranges [27–29]. The C6=N4 bond (1.311(2)Å) in 1,2,4-triazole ring is longer than 
the general C=N double-bond (imine or Schiff Base) length of 1.27 Å. The bond angle of C7–S1–C14 
is 98.36(7)°. The torsion angle of the thioether group C7–S1–C14–C15 is 174.13(10)°. From Table 1, 
calculated bond lengths and bond angles were found to differ from experimental values. For example, 
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Br1–C18 1.9010(19) 1.946 C7–S1–C14 98.36(8) 97.256
S1–C7 1.739(2) 1.808 C3–N1–C2 115.73(17) 117.152

S1–C14 1.8273(18) 1.938 C7–N2–C6 104.50(14) 104.663
N1–C3 1.329(2) 1.350 C7–N2–C8 125.40(15) 125.446
N1–C2 1.343(2) 1.355 C6–N2–C8 129.53(16) 129.696
N2–C7 1.369(2) 1.388 C7–N3–N4 106.70(14) 107.011
N2–C6 1.375(2) 1.404 C6–N4–N3 107.78(14) 108.056
N2–C8 1.445(2) 1.440 C2–C1–C5 119.39(17) 119.274
N3–C7 1.315(2) 1.327 N3–C7–S1 126.94(14) 125.812
N3–N4 1.391(2) 1.408 N2–C7–S1 122.17(13) 123.328
N4–C6 1.311(2) 1.333 N1–C2–C1 124.02(18) 123.374
C1–C2 1.379(2) 1.393 N1–C3–C4 124.92(18) 123.604
C1–C5 1.391(2) 1.410 N4–C6–N2 110.13(15) 109.415
C5–C6 1.473(2) 1.464 C3–C4–C5 118.49(18) 119.022
C8–C9 1.370(3) 1.401 N2–C6–C5 127.01(16) 127.815

C15–C20 1.383(2) 1.406 S1–C14–C15 108.42(12) 108.905

Generally, the average bond lengths and bond angles of ring systems (phenyl, pyridine and
triazole) are in normal ranges [27–29]. The C6=N4 bond (1.311(2)Å) in 1,2,4-triazole ring is longer than
the general C=N double-bond (imine or Schiff Base) length of 1.27 Å. The bond angle of C7–S1–C14
is 98.36(7)˝. The torsion angle of the thioether group C7–S1–C14–C15 is 174.13(10)˝. From Table 1,
calculated bond lengths and bond angles were found to differ from experimental values. For example,
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the bond S1–C14 is 1.938 Å in our calculation result, but it is shorter in the crystal with the bond length
of 1.8273(18) Å.

Crystals 2016, 6, 4 

3 

the bond S1–C14 is 1.938 Å in our calculation result, but it is shorter in the crystal with the bond 
length of 1.8273(18) Å. 

 

Figure 2. A view of pack title compound. 

As shown in Figure 1, each of the four rings is planar. The interplanar angles between the triazole 
ring on the one hand and the pyridine, phenyl (C8–C13) and phenyl (C15–C20) rings on the other 
hand are 23.9°, 72.9° and 37.5°, respectively. Meanwhile, the mean plane of the pyridine ring forms 
angles of 72.4° and 60.6°, respectively, with the phenyl rings (C8–C13) and (C15–C20). The planes of 
the two phenyl rings form an angle of 68.7° with one another. 

An interesting feature is the intramolecular edge-to-face π–π stacking, which exists between the 
CH and the two phenyl rings (C8–C13 and C15–C20) (Figure 2); the distances between the CH and 
the centroids of the phenyl rings are 3.439 and 2.833 Å, and the angles of CH and the centroids of 
phenyl ring and pyridine ring are 88.05° and 87.42°, respectively. Between the CH of the phenyl ring 
and pyridine ring, the intramolecular edge-to-face π–π stacking also exists, with the distance between 
the CH and the centroid of the pyridine ring is 2.666 Å, and the angle of CH and the centroid of the 
pyridine ring is 85.38°, respectively. In addition, the intermolecular face-to-face π–π stackings exist 
between two phenyl rings: the centroid separation of them is 3.8744(18) Å (C15–C20), and the 
dihedral angle between the two π planes is 0.00°. These interactions are estimated to play a role in 
stabilizing the crystal structure. 

2.2. Frontier Orbital Energy Analysis and Molecular Total Energies 

Molecular total energy and frontier orbital energy levels are listed in Table 2. 

Table 2. Total energy and frontier orbital energy. 

Energy DFT
Etotal/Hartree b −3959.60345337 
EHOMO/Hartree −0.23217 
ELUMO/Hartree −0.05718 
ΔE a/Hartree 0.17499 

a ΔE = ELUMO − EHOMO; b 1 Hartree = 4.35974417 × 10−18 J = 27.2113845 ev. 

The energy gap between Highest Occupied Molecular Orbital (HOMO) and Lowest Unoccupied 
Molecular Orbital (LUMO) was calculated by Becke’s nonlocal three parameter exchange and 
correlation functional with Lee-Yang-Parr correlation functional (B3LYP). According to the frontier 
molecular orbital theory, HOMO and LUMO are the most important factors that affect the bioactivity. 

Figure 2. A view of pack title compound.

As shown in Figure 1, each of the four rings is planar. The interplanar angles between the triazole
ring on the one hand and the pyridine, phenyl (C8–C13) and phenyl (C15–C20) rings on the other
hand are 23.9˝, 72.9˝ and 37.5˝, respectively. Meanwhile, the mean plane of the pyridine ring forms
angles of 72.4˝ and 60.6˝, respectively, with the phenyl rings (C8–C13) and (C15–C20). The planes of
the two phenyl rings form an angle of 68.7˝ with one another.

An interesting feature is the intramolecular edge-to-face π–π stacking, which exists between the
CH and the two phenyl rings (C8–C13 and C15–C20) (Figure 2); the distances between the CH and
the centroids of the phenyl rings are 3.439 and 2.833 Å, and the angles of CH and the centroids of
phenyl ring and pyridine ring are 88.05˝ and 87.42˝, respectively. Between the CH of the phenyl ring
and pyridine ring, the intramolecular edge-to-face π–π stacking also exists, with the distance between
the CH and the centroid of the pyridine ring is 2.666 Å, and the angle of CH and the centroid of the
pyridine ring is 85.38˝, respectively. In addition, the intermolecular face-to-face π–π stackings exist
between two phenyl rings: the centroid separation of them is 3.8744(18) Å (C15–C20), and the dihedral
angle between the two π planes is 0.00˝. These interactions are estimated to play a role in stabilizing
the crystal structure.

2.2. Frontier Orbital Energy Analysis and Molecular Total Energies

Molecular total energy and frontier orbital energy levels are listed in Table 2.

Table 2. Total energy and frontier orbital energy.

Energy DFT

Etotal/Hartree b ´3959.60345337
EHOMO/Hartree ´0.23217
ELUMO/Hartree ´0.05718

∆E a/Hartree 0.17499
a ∆E = ELUMO ´ EHOMO; b 1 Hartree = 4.35974417 ˆ 10´18 J = 27.2113845 ev.

The energy gap between Highest Occupied Molecular Orbital (HOMO) and Lowest Unoccupied
Molecular Orbital (LUMO) was calculated by Becke’s nonlocal three parameter exchange and
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correlation functional with Lee-Yang-Parr correlation functional (B3LYP). According to the frontier
molecular orbital theory, HOMO and LUMO are the most important factors that affect the bioactivity.
HOMO has a priority to provide electrons, while LUMO can accept electrons firstly. Thus, study on
the frontier orbital energy can provide useful information about the biological mechanism. From the
Figure 3, the geometry of the title compound was optimized using the DFT method. The LUMO of the
title compound is mainly located on the pyridine ring, 1,2,4-triazole ring, phenyl ring and SCH2 group,
while the HOMO of the title compound is located on the pyridine ring, 1,2,4-triazole ring and SCH2

group. The fact is that the electron transitions from the pyridine ring, 1,2,4-triazole ring and SCH2

group to the phenyl ring, while the energy gap between the HOMO and LUMO is 0.17499 Hartree.
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2.3. Mulliken Atomic Charges and Electrostatic Potential (ESP)

Table 3 exhibits the calculated mulliken atomic charges except for atoms H. Taking DFT, for
example, again (Figure 4), all the nitrogen atoms (N1, N3, N4) are the most negatively charged ones,
which can interact with the positively charged part of the receptor easily. Therefore, we supposed this
compound can combine the amino-acid residue on its surface by the interaction of the pyridine ring or
1,2,4-triazole ring, which may be responsible for the bioactivity.

Table 3. Mulliken atomic charges except for atoms H (e).

Atom DFT Atom DFT

Br 0.153554 C8 0.193822
S 0.414796 C9 0.087561

N1 ´0.34484 C10 0.001415
N2 ´0.74971 C11 0.045526
N3 ´0.2961 C12 0.002975
N4 ´0.29831 C13 0.081998
C1 0.039917 C14 ´0.13113
C2 0.137539 C15 0.095849
C3 0.130136 C16 0.016004
C4 0.018614 C17 0.067704
C5 0.144262 C18 ´0.31752
C6 0.331575 C19 0.068198
C7 0.112535 C20 ´0.00637
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The in vivo fungicidal activities of the title compound against Stemphylium lycopersici (Enjoji) 
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3.1. Instruments 

Melting points were determined using an X-4 apparatus and uncorrected. The 1H NMR spectra 
were measured on a Bruker AV-400 instrument (Fallanden, Switzerland) using TMS as an internal 
standard and CDCl3 as the solvent. Elemental analyses were performed on a Vario EL elemental 
analyzer (Hanau, Germany). Crystallographic data of the compound were collected on a rigaku saturn 
diffractometer (Tokyo, Japan). All the reagents are of analytical grade or freshly prepared before use. 
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4 h. After cooling down to room temperature, HCl aqueous solution (4 N) was added to afford a large 
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2.4. Evaluation of the Bioactivity

The in vivo fungicidal activities of the title compound against Stemphylium lycopersici (Enjoji)
Yamamoto, Fusarium oxysporum. sp. cucumebrium and Botrytis cinerea were evaluated;
Zhongshengmycin, Thiophanate-Methyl and Cyprodinil were used as controls. The primary bioassay
showed the title compound exhibits weak inhibiting activity towards Stemphylium lycopersici (Enjoji)
Yamamoto, Fusarium oxysporum. sp. cucumebrium and Botrytis cinerea. Its inhibition rates to
Stemphylium lycopersici (Enjoji) Yamamoto, Fusarium oxysporum. sp. cucumebrium and Botrytis cinerea
reached 42.86%, 64.44%, 6.67% at 500 µg/mL, respectively, and it is lower than that of the controls
(Zhongshengmycin, 59.58%; Thiophanate-Methyl, 81.69%; Cyprodinil, 45.56%).

3. Experimental Section

3.1. Instruments

Melting points were determined using an X-4 apparatus and uncorrected. The 1H NMR spectra
were measured on a Bruker AV-400 instrument (Fallanden, Switzerland) using TMS as an internal
standard and CDCl3 as the solvent. Elemental analyses were performed on a Vario EL elemental
analyzer (Hanau, Germany). Crystallographic data of the compound were collected on a rigaku saturn
diffractometer (Tokyo, Japan). All the reagents are of analytical grade or freshly prepared before use.

3.2. General Procedure

The synthetic route of title compound was outlined in Scheme 1. The intermediate 1, 2 was
synthesized according to the reference [30,31]. A mixture of isonicotinyl hydrazine (1.37 g, 10 mmol)
with isothiocyanatobenzene (1.35 g, 10 mmol) was refluxed for 5 h in ethanol. After cooling down
to room temperature, the products were obtained and recrystallized from methanol to give 3, yield
95%. A mixture of compound 3 (10 mmol) in aqueous NaOH solution (5 mL, 2 N) was refluxed
for 4 h. After cooling down to room temperature, HCl aqueous solution (4 N) was added to afford
a large amount of precipitate. The solid was filtered, dried and recrystallized from methanol to
give intermediate 4, yield 88%. A CEM designed 10 mL pressure-rated vial was charged with
DMF (5 mL), 4 (0.25 g, 1 mmol), 4-bromo-1-(chloromethyl)benzene (1.1 mmol), and NaOH (0.05 g,
1.2 mmol). The mixture was irradiated in a CEM Discover Focused Synthesizer (Matthews, MO,
USA) (150 W, 90 ˝C, 200 psi, 15 min). The mixture was cooled to room temperature by passing
compressed air through the microwave cavity for 2 min. It was poured into cold ice (40 mL) and
the formed precipitate was filtered. The crude solid was recrystallized from EtOH to give the title
compound. 4-(5-((4-bromobenzyl)thio)-4-phenyl-4H-1,2,4-triazol-3-yl)pyridine: white crystal, yield
90%, m.p. 161–163 ˝C; 1H NMR (CDCl3, 400 MHz), δ: 4.48 (s, 2H, SCH2), 7.15 (d, J = 7.2 Hz, 2H, Py),
7.28–7.32 (m, 4H, ArH), 7.42 (d, J = 8.3 Hz, 2H, Ar-H), 7.51–7.60 (m, 3H, ArH). 8.60 (bs, 2H, Py). MS
(ESI), m/z: 424 (M + 1)+. Elemental anal. (%), calculated: C, 56.74; H, 3.57; N, 13.23; found: C, 56.87; H,
3.67; N,13.43.
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3.3. Structure Determination 

The cube-shaped single crystal of the title compound was obtained by recrystallization from 
EtOH. The crystal size is 0.20 mm × 0.18 mm × 0.14 mm. A total of 9617 reflections were collected, 
4313 of which were independent (Rint = 0.031) and 3145 were observed with I > 2σ(I). The calculations 
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Scheme 1. The synthetic route of title compound.

3.3. Structure Determination

The cube-shaped single crystal of the title compound was obtained by recrystallization from
EtOH. The crystal size is 0.20 mm ˆ 0.18 mm ˆ 0.14 mm. A total of 9617 reflections were collected,
4313 of which were independent (Rint = 0.031) and 3145 were observed with I > 2σ(I). The calculations
were performed with SHELXS-97 program [32] and the empirical absorption corrections were applied
to all intensity data. The non-hydrogen atoms were refined anisotropically. The positions of H atoms
were refined using riding models. A summary of the key crystallgraphic information was given in
Table 4.

Table 4. Crystal data of the title compound 5.

CCDC No. 1438378

Empirical Formula C20H15BrN4S

Formula weight 423.33

T/K 113(2)

λ/nm 0.071073

Crystal system, space group Triclinic, P-1

Unit cell dimensions
a = 7.717(3) Å, α = 80.347(13)˝

b = 9.210(3) Å, β = 77.471(13)˝

c = 13.370(5) Å, γ = 89.899(16)˝

V/nm3 913.9(6) Å3

Z 2

Calculated density/(g¨ cm´3) 1.538

Absorption coefficient/mm´1 2.374

Reflections collected/unique 9617/4313 (R(int) = 0.0306)

Refinement method Full-matrix least-squares on F2

Data/restraints/parameters 4313/0/235

Goodness-of-fit on F2 1.059

Final R indices (I > 2 σ(I)) R1 = 0.0263, wR2 = 0.0567

Largest diff. peak and hole 0.713 and ´0.281 e/Å3

3.4. Therotical Calculations

According to the above crystal structure, a crystal unit was selected as the initial structure, while
DFT-B3LYP/6-31G methods in Gaussian 03 package [33] were used to optimize the structure of the
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title compound. Vibration analysis showed that the optimized structures were in accordance with the
minimum points on the potential energy surfaces, which means no virtual frequencies, proving that
the obtained optimized structures were stable. All the convergent precisions were the system default
values, and all the calculations were carried out on a DELL computer.

3.5. Antifungal Activity

Antifungal activities of compound 5 against Stemphylium lycopersici (Enjoji) Yamamoto, Fusarium
oxysporum. sp. cucumebrium and Botrytis cinerea were evaluated according to references [34,35].

4. Conclusions

In summary, a new crystal structure, 4-(5-((4-bromobenzyl)thio)-4-phenyl-4H-1,2,4-
triazol-3-yl)pyridine, has been prepared by multi-step reaction and characterized by 1H NMR, MS
and elemental analyses and single-crystal X-ray structure determination. The results show that the
crystal structure exhibits intermolecular π–π stacking. The frontier orbital energy analysis, mulliken
atomic charges and electrostatic potential were also studied by using the DFT method. The antifungal
bioassay showed that it possessed moderate activity.
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